

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 51318NSC

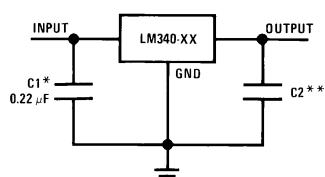
LM340/LM78XX Series 3-Terminal Positive Regulators

General Description

The LM140/LM340A/LM340/LM7800C monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

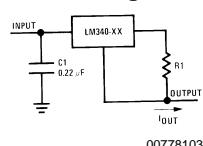
The 5V, 12V, and 15V regulator options are available in the steel TO-3 power package. The LM340A/LM340/LM7800C series is available in the TO-220 plastic power package, and the LM340-5.0 is available in the SOT-223 package, as well as the LM340-5.0 and LM340-12 in the surface-mount TO-263 package.


Features

- Complete specifications at 1A load
- Output voltage tolerances of $\pm 2\%$ at $T_j = 25^\circ\text{C}$ and $\pm 4\%$ over the temperature range (LM340A)
- Line regulation of 0.01% of V_{OUT}/V of ΔV_{IN} at 1A load (LM340A)
- Load regulation of 0.3% of V_{OUT}/A (LM340A)
- Internal thermal overload protection
- Internal short-circuit current limit
- Output transistor safe area protection
- P+ Product Enhancement tested

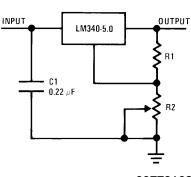
Device	Output Voltages	Packages
LM140	5, 12, 15	TO-3 (K)
LM340A/LM340	5, 12, 15	TO-3 (K), TO-220 (T), SOT-223 (MP), TO-263 (S) (5V and 12V only)
LM7800C	5, 8, 12, 15	TO-220 (T)

Typical Applications

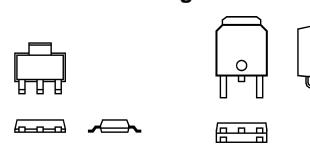

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter.

**Although no output capacitor is needed for stability, it does help transient response. (If needed, use 0.1 μF , ceramic disc).


Current Regulator

$$I_{\text{OUT}} = \frac{V_{2-3}}{R_1} + I_Q$$


$\Delta I_Q = 1.3 \text{ mA}$ over line and load changes.

Adjustable Output Regulator

$$V_{\text{OUT}} = 5V + (5V/R1 + I_Q) R2 \quad 5V/R1 > 3 I_Q, \\ \text{load regulation } (L_r) \approx [(R1 + R2)/R1] (L_r \text{ of LM340-5}).$$

Comparison between SOT-223 and D-Pak (TO-252) Packages

SOT-223

TO-252

00778138

Scale 1:1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 5)

DC Input Voltage

All Devices except LM7824/LM7824C	35V
LM7824/LM7824C	40V
Internal Power Dissipation (Note 2)	Internally Limited
Maximum Junction Temperature	150°C
Storage Temperature Range	-65°C to +150°C

Lead Temperature (Soldering, 10 sec.)

TO-3 Package (K)	300°C
TO-220 Package (T), TO-263 Package (S)	230°C
ESD Susceptibility (Note 3)	2 kV

Operating Conditions (Note 1)Temperature Range (T_A) (Note 2)

LM140A, LM140	-55°C to +125°C
LM340A, LM340, LM7805C,	
LM7812C, LM7815C, LM7808C	0°C to +125°C

LM340A Electrical Characteristics $I_{OUT} = 1A$, $-55^\circ C \leq T_J \leq +150^\circ C$ (LM140A), or $0^\circ C \leq T_J \leq +125^\circ C$ (LM340A) unless otherwise specified (Note 4)

Symbol	Output Voltage			5V			12V			15V			Units	
	Input Voltage (unless otherwise noted)			10V			19V			23V				
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
V_O	Output Voltage	$T_J = 25^\circ C$		4.9	5	5.1	11.75	12	12.25	14.7	15	15.3	V	
		$P_D \leq 15W$, $5\text{ mA} \leq I_O \leq 1A$		4.8	5.2		11.5		12.5	14.4		15.6	V	
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$		(7.5 $\leq V_{IN} \leq 20$)			(14.8 $\leq V_{IN} \leq 27$)			(17.9 $\leq V_{IN} \leq 30$)			V	
ΔV_O	Line Regulation	$I_O = 500\text{ mA}$			10			18			22		mV	
		ΔV_{IN}		(7.5 $\leq V_{IN} \leq 20$)			(14.8 $\leq V_{IN} \leq 27$)			(17.9 $\leq V_{IN} \leq 30$)			V	
		$T_J = 25^\circ C$			3	10		4	18		4	22	mV	
		ΔV_{IN}		(7.5 $\leq V_{IN} \leq 20$)			(14.5 $\leq V_{IN} \leq 27$)			(17.5 $\leq V_{IN} \leq 30$)			V	
		$T_J = 25^\circ C$			4			9			10		mV	
ΔV_O	Load Regulation	Over Temperature			12			30			30		mV	
		ΔV_{IN}		(8 $\leq V_{IN} \leq 12$)			(16 $\leq V_{IN} \leq 22$)			(20 $\leq V_{IN} \leq 26$)			V	
		$T_J = 25^\circ C$			10	25		12	32		12	35	mV	
I_Q	Quiescent Current	$250\text{ mA} \leq I_O \leq 750\text{ mA}$			15			19			21		mV	
		Over Temperature, $5\text{ mA} \leq I_O \leq 1A$			25			60			75		mV	
		$T_J = 25^\circ C$			6			6			6		mA	
ΔI_Q	Quiescent Current Change	Over Temperature			6.5			6.5			6.5		mA	
		$5\text{ mA} \leq I_O \leq 1A$			0.5			0.5			0.5		mA	
		$T_J = 25^\circ C$, $I_O = 1A$			0.8			0.8			0.8		mA	
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$		(7.5 $\leq V_{IN} \leq 20$)			(14.8 $\leq V_{IN} \leq 27$)			(17.9 $\leq V_{IN} \leq 30$)			V	
V_N	Output Noise Voltage	$I_O = 500\text{ mA}$			0.8			0.8			0.8		mA	
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$		(8 $\leq V_{IN} \leq 25$)			(15 $\leq V_{IN} \leq 30$)			(17.9 $\leq V_{IN} \leq 30$)			V	
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Ripple Rejection	$T_J = 25^\circ C$, $f = 120\text{ Hz}$, $I_O = 1A$			68	80		61	72		60	70	dB	
		or $f = 120\text{ Hz}$, $I_O = 500\text{ mA}$, Over Temperature, $V_{MIN} \leq V_{IN} \leq V_{MAX}$			68			61			60		dB	
		$(8 \leq V_{IN} \leq 18)$					(15 $\leq V_{IN} \leq 25$)			(18.5 $\leq V_{IN} \leq 28.5$)			V	
R_O	Dropout Voltage Output Resistance	$T_J = 25^\circ C$, $I_O = 1A$			2.0			2.0			2.0		V	
		$f = 1\text{ kHz}$			8			18			19		$m\Omega$	

LM340A Electrical Characteristics (Continued) $I_{OUT} = 1A$, $-55^{\circ}C \leq T_J \leq +150^{\circ}C$ (LM140A), or $0^{\circ}C \leq T_J \leq +125^{\circ}C$ (LM340A) unless otherwise specified (Note 4)

Symbol	Output Voltage			5V			12V			15V			Units	
	Input Voltage (unless otherwise noted)			10V			19V			23V				
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
	Short-Circuit Current	$T_J = 25^{\circ}C$			2.1			1.5			1.2			
	Peak Output Current	$T_J = 25^{\circ}C$			2.4			2.4			2.4			
	Average TC of V_O	Min, $T_J = 0^{\circ}C$, $I_O = 5$ mA			-0.6			-1.5			-1.8			
V_{IN}	Input Voltage Required to Maintain Line Regulation	$T_J = 25^{\circ}C$			7.5			14.5			17.5			

LM140 Electrical Characteristics (Note 4) $-55^{\circ}C \leq T_J \leq +150^{\circ}C$ unless otherwise specified

Symbol	Output Voltage			5V			12V			15V			Units	
	Input Voltage (unless otherwise noted)			10V			19V			23V				
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
V_O	Output Voltage	$T_J = 25^{\circ}C$, 5 mA $\leq I_O \leq 1$ A		4.8	5	5.2	11.5	12	12.5	14.4	15	15.6	V	
		$P_D \leq 15$ W, 5 mA $\leq I_O \leq 1$ A		4.75		5.25	11.4		12.6	14.25		15.75	V	
ΔV_O	Line Regulation	$I_O = 500$ mA	$T_J = 25^{\circ}C$	3 50			4 120			4 150			mV	
			ΔV_{IN}	(7 $\leq V_{IN} \leq 25$)			(14.5 $\leq V_{IN} \leq 30$)			(17.5 $\leq V_{IN} \leq 30$)			V	
		$I_O \leq 1$ A	$-55^{\circ}C \leq T_J \leq +150^{\circ}C$	50			120			150			mV	
			ΔV_{IN}	(8 $\leq V_{IN} \leq 20$)			(15 $\leq V_{IN} \leq 27$)			(18.5 $\leq V_{IN} \leq 30$)			V	
		$I_O \leq 1$ A	$T_J = 25^{\circ}C$	50			120			150			mV	
			ΔV_{IN}	(7.5 $\leq V_{IN} \leq 20$)			(14.6 $\leq V_{IN} \leq 27$)			(17.7 $\leq V_{IN} \leq 30$)			V	
ΔV_O	Load Regulation	$T_J = 25^{\circ}C$	5 mA $\leq I_O \leq 1.5$ A	10 50			12 120			12 150			mV	
			250 mA $\leq I_P \leq 750$ mA	25			60			75			mV	
I_Q	Quiescent Current	$I_O \leq 1$ A	$T_J = 25^{\circ}C$ $-55^{\circ}C \leq T_J \leq +150^{\circ}C$	50			120			150			mV	
				(8 $\leq V_{IN} \leq 12$)			(16 $\leq V_{IN} \leq 22$)			(20 $\leq V_{IN} \leq 26$)			V	
				6			6			6			mA	
ΔI_Q	Quiescent Current Change	5 mA $\leq I_O \leq 1$ A	$T_J = 25^{\circ}C$, $I_O \leq 1$ A $V_{MIN} \leq V_{IN} \leq V_{MAX}$	0.5			0.5			0.5			mA	
				(8 $\leq V_{IN} \leq 20$)			(15 $\leq V_{IN} \leq 27$)			(18.5 $\leq V_{IN} \leq 30$)			V	
				0.8			0.8			0.8			mA	
V_N	Output Noise Voltage	$T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz		40			75			90			μ V	

LM140 Electrical Characteristics (Note 4) (Continued) $-55^\circ\text{C} \leq T_J \leq +150^\circ\text{C}$ unless otherwise specified

Symbol	Output Voltage			5V			12V			15V			Units	
	Input Voltage (unless otherwise noted)			10V			19V			23V				
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Ripple Rejection	$I_O \leq 1\text{A}, T_J = 25^\circ\text{C}$ $f = 120\text{ Hz}$	$I_O \leq 500\text{ mA},$ $-55^\circ\text{C} \leq T_J \leq +150^\circ\text{C}$	68	80		61	72		60	70		dB	
				68			61			60			dB	
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$		$(8 \leq V_{IN} \leq 18)$			$(15 \leq V_{IN} \leq 25)$			$(18.5 \leq V_{IN} \leq 28.5)$			V	
R_O	Dropout Voltage	$T_J = 25^\circ\text{C}, I_O = 1\text{A}$			2.0		2.0		2.0		2.0		V	
	Output Resistance	$f = 1\text{ kHz}$			8		18		19		19		$\text{m}\Omega$	
	Short-Circuit Current	$T_J = 25^\circ\text{C}$			2.1		1.5		1.2		1.2		A	
	Peak Output Current	$T_J = 25^\circ\text{C}$			2.4		2.4		2.4		2.4		A	
	Average TC of V_{OUT}	$0^\circ\text{C} \leq T_J \leq +150^\circ\text{C}, I_O = 5\text{ mA}$			-0.6		-1.5		-1.8		-1.8		$\text{mV}/^\circ\text{C}$	
	V_{IN}	Input Voltage Required to Maintain Line Regulation			$T_J = 25^\circ\text{C}, I_O \leq 1\text{A}$	7.5		14.6		17.7			V	

LM340/LM7800C Electrical Characteristics (Note 4) $0^\circ\text{C} \leq T_J \leq +125^\circ\text{C}$ unless otherwise specified

Symbol	Output Voltage			5V			12V			15V			Units		
	Input Voltage (unless otherwise noted)			10V			19V			23V					
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
V_O	Output Voltage	$T_J = 25^\circ\text{C}, 5\text{ mA} \leq I_O \leq 1\text{A}$			4.8	5	5.2	11.5	12	12.5	14.4	15	15.6		
		$P_D \leq 15\text{W}, 5\text{ mA} \leq I_O \leq 1\text{A}$			4.75		5.25	11.4		12.6	14.25		15.75		
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$			$(7.5 \leq V_{IN} \leq 20)$			$(14.5 \leq V_{IN} \leq 27)$			$(17.5 \leq V_{IN} \leq 30)$				
ΔV_O	Line Regulation	$I_O = 500\text{ mA}$	$T_J = 25^\circ\text{C}$		3	50		4	120		4	150	mV		
			ΔV_{IN}		$(7 \leq V_{IN} \leq 25)$			$(14.5 \leq V_{IN} \leq 30)$			$(17.5 \leq V_{IN} \leq 30)$		V		
		$0^\circ\text{C} \leq T_J \leq +125^\circ\text{C}$	ΔV_{IN}		50			120			150		mV		
			$I_O \leq 1\text{A}$		$T_J = 25^\circ\text{C}$			50			120		mV		
		ΔV_{IN}	ΔV_{IN}		$(7.5 \leq V_{IN} \leq 20)$			$(14.6 \leq V_{IN} \leq 27)$			$(17.7 \leq V_{IN} \leq 30)$		V		
			$0^\circ\text{C} \leq T_J \leq +125^\circ\text{C}$		25			60			75		mV		
ΔV_O	Load Regulation	$T_J = 25^\circ\text{C}$			5	mA	$\leq I_O \leq 1.5\text{A}$	10	50		12	150	mV		
		$250\text{ mA} \leq I_O \leq 750\text{ mA}$			25			60			75		mV		
		$5\text{ mA} \leq I_O \leq 1\text{A}, 0^\circ\text{C} \leq T_J \leq +125^\circ\text{C}$			50			120			150		mV		
I_Q	Quiescent Current	$I_O \leq 1\text{A}$	$T_J = 25^\circ\text{C}$		8			8			8		mA		
ΔI_Q	Quiescent Current Change	$5\text{ mA} \leq I_O \leq 1\text{A}$			8.5			8.5			8.5		mA		
		$T_J = 25^\circ\text{C}, I_O \leq 1\text{A}$			1.0			1.0			1.0		mA		
		$V_{MIN} \leq V_{IN} \leq V_{MAX}$			$(7.5 \leq V_{IN} \leq 20)$			$(14.8 \leq V_{IN} \leq 27)$			$(17.9 \leq V_{IN} \leq 30)$		V		

LM340/LM7800C Electrical Characteristics (Note 4) (Continued)

 $0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$ unless otherwise specified

Symbol	Output Voltage			5V			12V			15V			Units		
	Input Voltage (unless otherwise noted)			10V			19V			23V					
	Parameter	Conditions		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
		$I_O \leq 500 \text{ mA}$, $0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$ $V_{\text{MIN}} \leq V_{\text{IN}} \leq V_{\text{MAX}}$			1.0 ($7 \leq V_{\text{IN}} \leq 25$)			1.0 ($14.5 \leq V_{\text{IN}} \leq 30$)			1.0 ($17.5 \leq V_{\text{IN}} \leq 30$)			mA V	
V_N	Output Noise Voltage	$T_A = 25^{\circ}\text{C}$, $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$			40			75			90			μV	
$\frac{\Delta V_{\text{IN}}}{\Delta V_{\text{OUT}}}$	Ripple Rejection	$I_O \leq 1\text{A}$, $T_J = 25^{\circ}\text{C}$ $f = 120 \text{ Hz}$ $\text{or } I_O \leq 500 \text{ mA}$, $0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$	$V_{\text{MIN}} \leq V_{\text{IN}} \leq V_{\text{MAX}}$	62	80	55	72	54	70	54	70	54	70	dB	
				62		55		54		($8 \leq V_{\text{IN}} \leq 18$)	($15 \leq V_{\text{IN}} \leq 25$)	($18.5 \leq V_{\text{IN}} \leq 28.5$)	V	dB	
R_O	Dropout Voltage	$T_J = 25^{\circ}\text{C}$, $I_O = 1\text{A}$			2.0			2.0			2.0			V	
	Output Resistance	$f = 1 \text{ kHz}$			8			18			19			$\text{m}\Omega$	
	Short-Circuit Current	$T_J = 25^{\circ}\text{C}$			2.1			1.5			1.2			A	
	Peak Output Current	$T_J = 25^{\circ}\text{C}$			2.4			2.4			2.4			A	
	Average TC of V_{OUT}	$0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$, $I_O = 5 \text{ mA}$			-0.6			-1.5			-1.8			$\text{mV}/^{\circ}\text{C}$	
V_{IN}	Input Voltage Required to Maintain Line Regulation	$T_J = 25^{\circ}\text{C}$, $I_O \leq 1\text{A}$			7.5			14.6			17.7			V	

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions see the Electrical Characteristics.

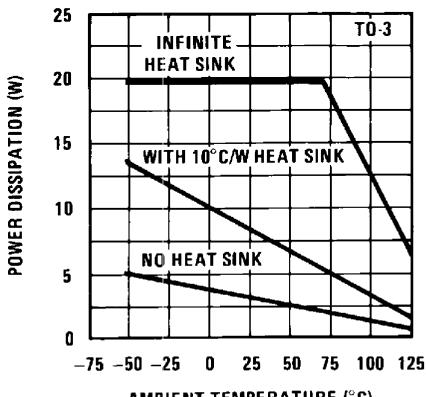
Note 2: The maximum allowable power dissipation at any ambient temperature is a function of the maximum junction temperature for operation ($T_{\text{JMAX}} = 125^{\circ}\text{C}$ or 150°C), the junction-to-ambient thermal resistance (θ_{JA}), and the ambient temperature (T_A). $P_{\text{DMAX}} = (T_{\text{JMAX}} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above T_{JMAX} and the electrical specifications do not apply. If the die temperature rises above 150°C , the device will go into thermal shutdown. For the TO-3 package (K, KC), the junction-to-ambient thermal resistance (θ_{JA}) is $39^{\circ}\text{C}/\text{W}$. When using a heatsink, θ_{JA} is the sum of the $4^{\circ}\text{C}/\text{W}$ junction-to-case thermal resistance (θ_{JC}) of the TO-3 package and the case-to-ambient thermal resistance of the heatsink. For the TO-220 package (T), θ_{JA} is $54^{\circ}\text{C}/\text{W}$ and θ_{JC} is $4^{\circ}\text{C}/\text{W}$. If SOT-223 is used, the junction-to-ambient thermal resistance is $174^{\circ}\text{C}/\text{W}$ and can be reduced by a heatsink (see Applications Hints on heatsinking).

If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is $50^{\circ}\text{C}/\text{W}$; with 1 square inch of copper area, θ_{JA} is $37^{\circ}\text{C}/\text{W}$; and with 1.6 or more inches of copper area, θ_{JA} is $32^{\circ}\text{C}/\text{W}$.

Note 3: ESD rating is based on the human body model, 100 pF discharged through 1.5 k Ω .

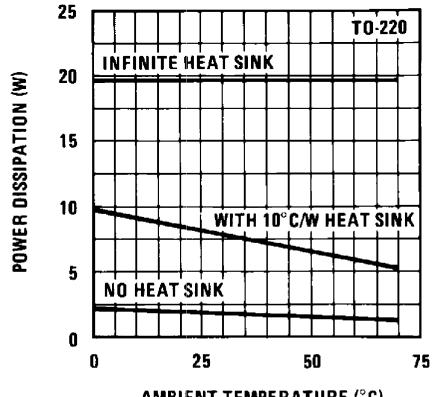
Note 4: All characteristics are measured with a 0.22 μF capacitor from input to ground and a 0.1 μF capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \leq 10 \text{ ms}$, duty cycle $\leq 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Note 5: A military RETS specification is available on request. At the time of printing, the military RETS specifications for the LM140AK-5.0/883, LM140AK-12/883, and LM140AK-15/883 complied with the min and max limits for the respective versions of the LM140A. At the time of printing, the military RETS specifications for the LM140K-5.0/883, LM140K-12/883, and LM140K-15/883 complied with the min and max limits for the respective versions of the LM140. The LM140H/883, LM140K/883, and LM140AK/883 may also be procured as a Standard Military Drawing.

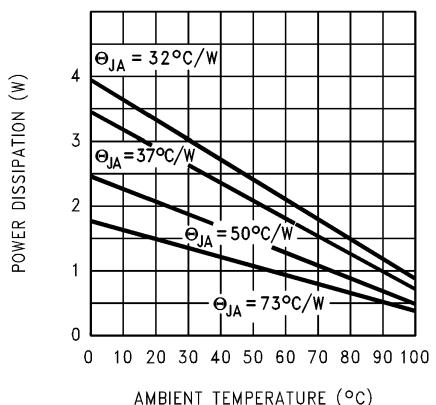

LM7808C
Electrical Characteristics
 $0^{\circ}\text{C} \leq T_J \leq +150^{\circ}\text{C}$, $V_I = 14\text{V}$, $I_O = 500 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, unless otherwise specified

Symbol	Parameter	Conditions (Note 6)	LM7808C			Units
			Min	Typ	Max	
V_O	Output Voltage	$T_J = 25^{\circ}\text{C}$	7.7	8.0	8.3	V
ΔV_O	Line Regulation	$T_J = 25^{\circ}\text{C}$	$10.5\text{V} \leq V_I \leq 25\text{V}$	6.0	160	mV
			$11.0\text{V} \leq V_I \leq 17\text{V}$	2.0	80	
ΔV_O	Load Regulation	$T_J = 25^{\circ}\text{C}$	$5.0 \text{ mA} \leq I_O \leq 1.5\text{A}$	12	160	mV
			$250 \text{ mA} \leq I_O \leq 750 \text{ mA}$	4.0	80	
V_O	Output Voltage	$11.5\text{V} \leq V_I \leq 23\text{V}$, $5.0 \text{ mA} \leq I_O \leq 1.0\text{A}$, $P \leq 15\text{W}$	7.6		8.4	V
I_Q	Quiescent Current	$T_J = 25^{\circ}\text{C}$		4.3	8.0	mA
ΔI_Q	Quiescent Current Change	With Line	$11.5\text{V} \leq V_I \leq 25\text{V}$		1.0	mA
		With Load	$5.0 \text{ mA} \leq I_O \leq 1.0\text{A}$		0.5	
V_N	Noise	$T_A = 25^{\circ}\text{C}$, $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$		52		μV
$\Delta V_I/\Delta V_O$	Ripple Rejection	$f = 120 \text{ Hz}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$	56	72		dB
V_{DO}	Dropout Voltage	$I_O = 1.0\text{A}$, $T_J = 25^{\circ}\text{C}$		2.0		V
R_O	Output Resistance	$f = 1.0 \text{ kHz}$		16		$\text{m}\Omega$
I_{OS}	Output Short Circuit Current	$T_J = 25^{\circ}\text{C}$, $V_I = 35\text{V}$		0.45		A
I_{PK}	Peak Output Current	$T_J = 25^{\circ}\text{C}$		2.2		A
$\Delta V_O/\Delta T$	Average Temperature Coefficient of Output Voltage	$I_O = 5.0 \text{ mA}$		0.8		$\text{mV}/^{\circ}\text{C}$

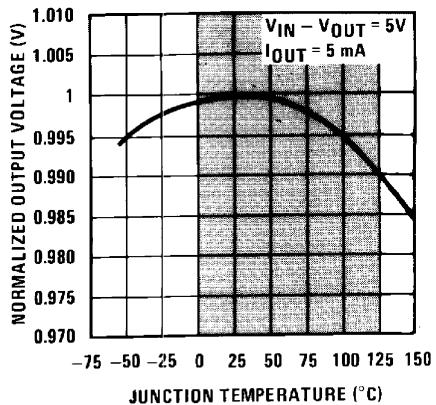
Note 6: All characteristics are measured with a $0.22 \mu\text{F}$ capacitor from input to ground and a $0.1 \mu\text{F}$ capacitor from output to ground. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \leq 10 \text{ ms}$, duty cycle $\leq 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.


Typical Performance Characteristics

Maximum Average Power Dissipation

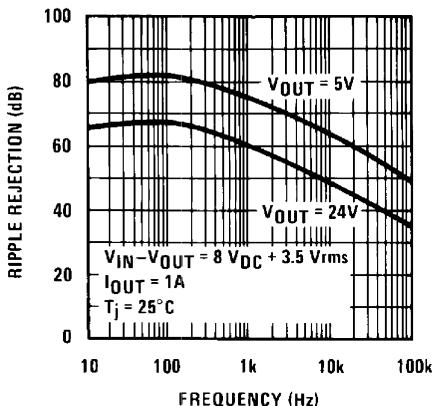

00778122

Maximum Average Power Dissipation

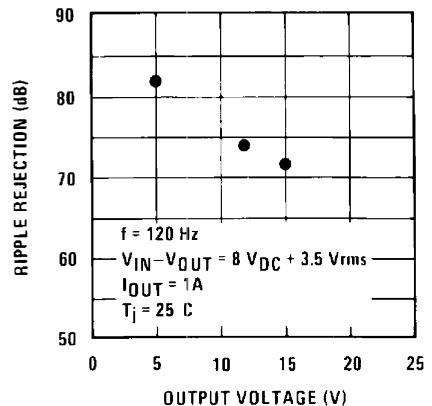

00778123

Maximum Power Dissipation (TO-263) (See Note 2)

00778124

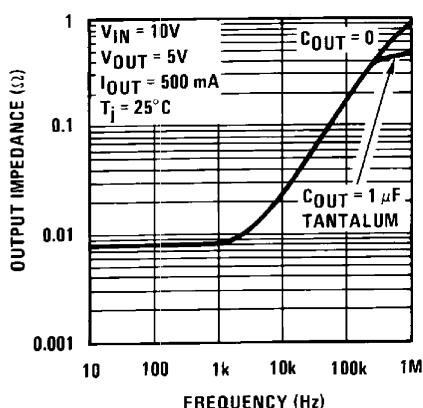

Output Voltage (Normalized to 1V at $T_J = 25^\circ\text{C}$)

00778125

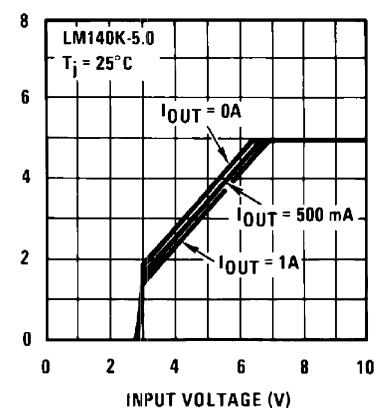

Note: Shaded area refers to LM340A/LM340, LM7805C, LM7812C and LM7815C.

Ripple Rejection

00778126


Ripple Rejection

00778127

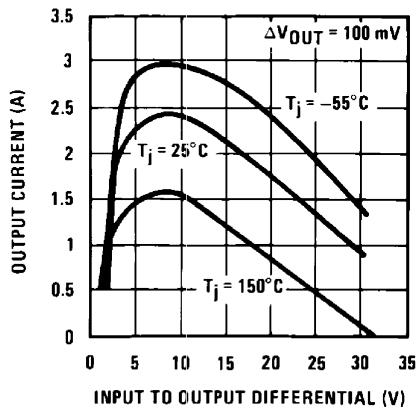

Typical Performance Characteristics (Continued)

Output Impedance

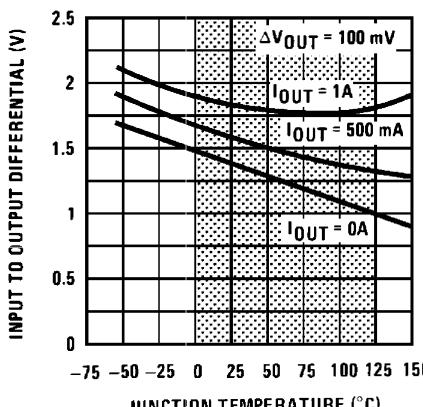
00778128

Dropout Characteristics

00778129

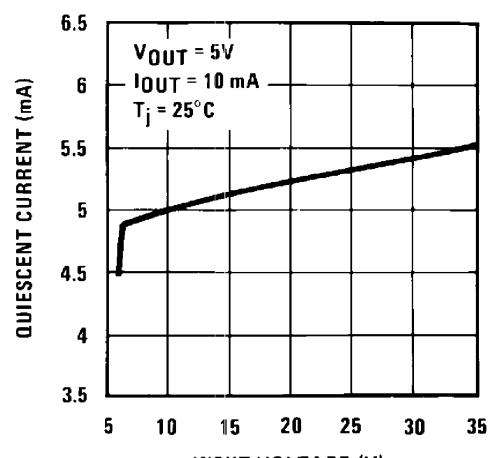

Quiescent Current

00778130

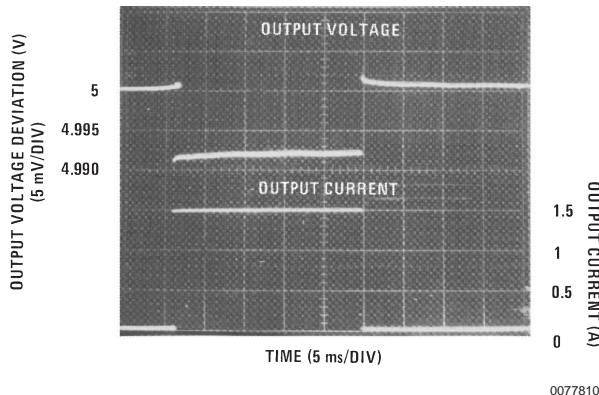

Note: Shaded area refers to LM340A/LM340, LM7805C, LM7812C and LM7815C.

Peak Output Current

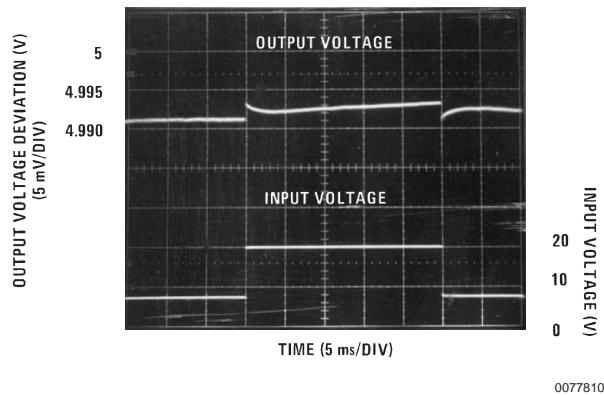
00778131


Dropout Voltage

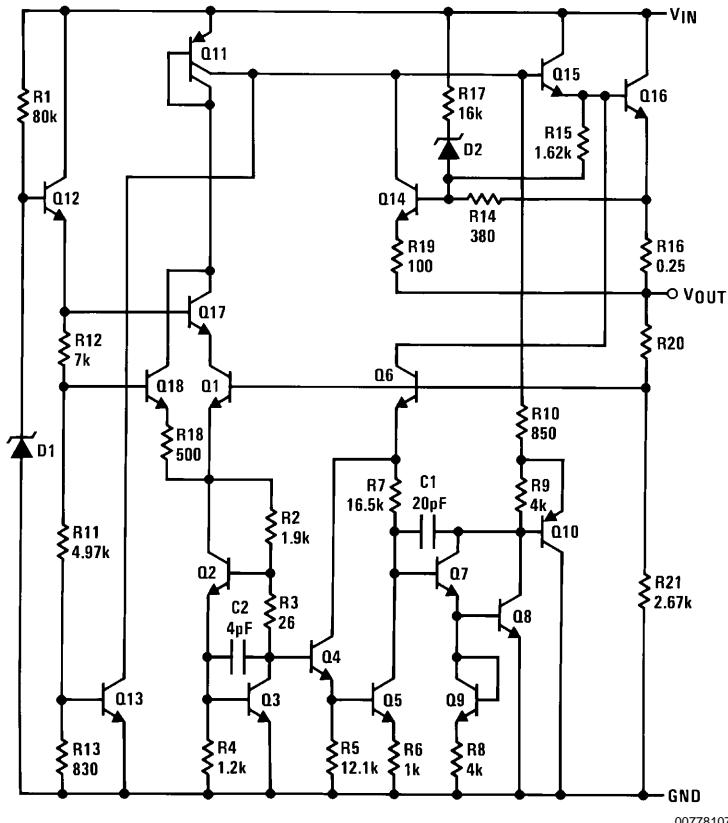
00778132


Note: Shaded area refers to LM340A/LM340, LM7805C, LM7812C and LM7815C.

Quiescent Current



00778133


Line Regulation
140AK-5.0, $I_{OUT} = 1A$, $T_A = 25^\circ C$

Line Regulation
140AK-5.0, $V_{IN} = 10V$, $T_A = 25^\circ C$

Equivalent Schematic

Application Hints

The LM340/LM78XX series is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with any IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

Shorting the Regulator Input: When using large capacitors at the output of these regulators, a protection diode connected input to output (Figure 1) may be required if the input is shorted to ground. Without the protection diode, an input short will cause the input to rapidly approach ground poten-

tial, while the output remains near the initial V_{OUT} because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy released by the capacitor is large enough, this diode, low current metal and the regulator will be destroyed. The fast diode in Figure 1 will shunt most of the capacitors discharge current around the regulator. Generally no protection diode is required for values of output capacitance $\leq 10 \mu F$.

Raising the Output Voltage above the Input Voltage: Since the output of the device does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

Application Hints (Continued)

Regulator Floating Ground (Figure 2): When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to V_{OUT} . If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Power should be turned off first, thermal limit ceases operating, or ground should be connected first if power must be left on.

Transient Voltages: If transients exceed the maximum rated input voltage of the device, or reach more than 0.8V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

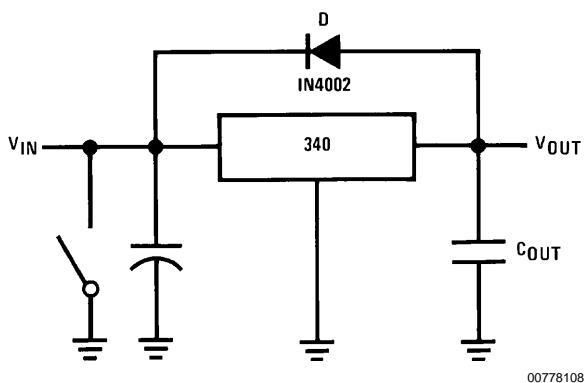


FIGURE 1. Input Short

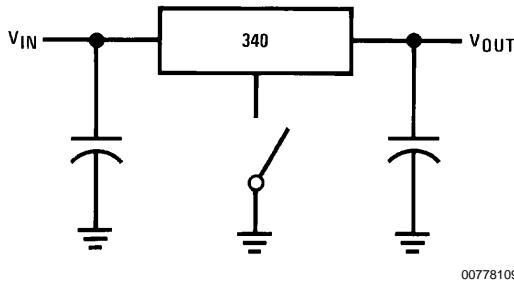


FIGURE 2. Regulator Floating Ground

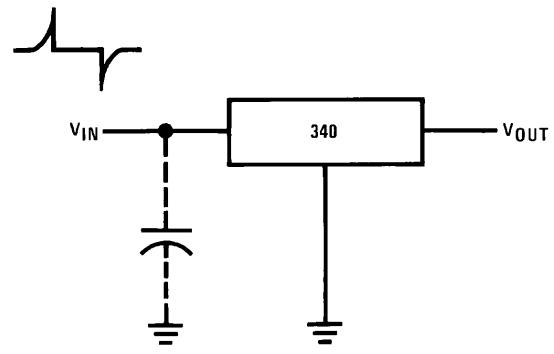


FIGURE 3. Transients

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.

$\theta_{(H-A)}$ is specified numerically by the heatsink manufacturer in this catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

HEATSINKING TO-263 AND SOT-223 PACKAGE PARTS

Both the TO-263 ("S") and SOT-223 ("MP") packages use a copper plane on the PCB and the PCB itself as a heatsink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the plane.

shows for the TO-263 the measured values of $\theta_{(J-A)}$ for different copper area sizes using a typical PCB with 1 ounce copper and no solder mask over the copper area used for heatsinking.

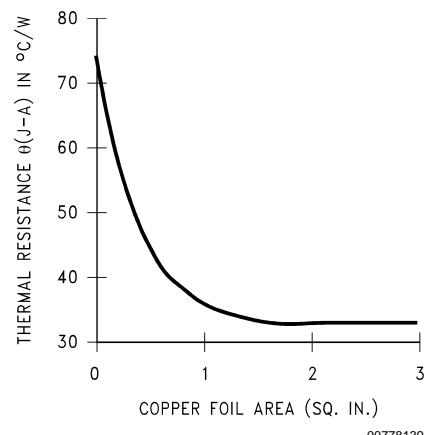
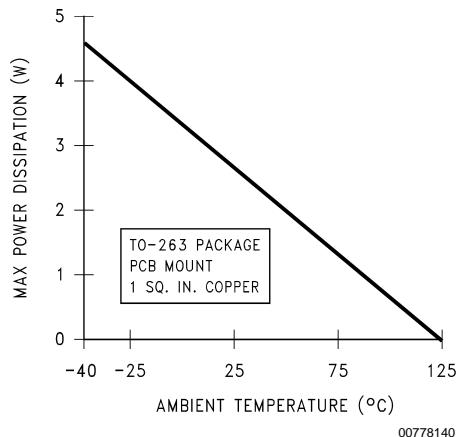
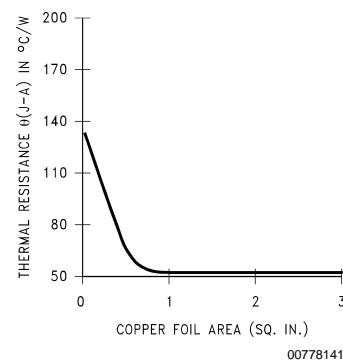



FIGURE 4. $\theta_{(J-A)}$ vs Copper (1 ounce) Area for the TO-263 Package

As shown in the figure, increasing the copper area beyond 1 square inch produces very little improvement. It should also be observed that the minimum value of $\theta_{(J-A)}$ for the TO-263 package mounted to a PCB is 32°C/W.


As a design aid, Figure 5 shows the maximum allowable power dissipation compared to ambient temperature for the TO-263 device (assuming $\theta_{(J-A)}$ is 35°C/W and the maximum junction temperature is 125°C).

Application Hints (Continued)

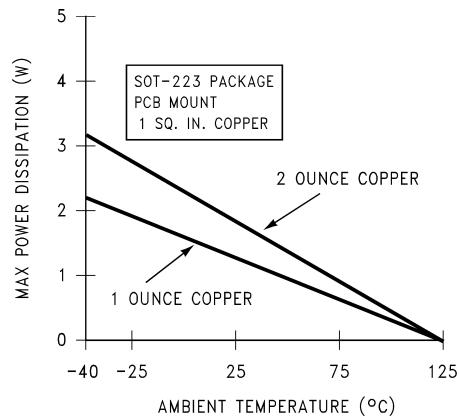
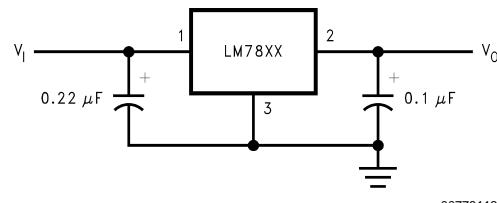


FIGURE 5. Maximum Power Dissipation vs T_{AMB} for the TO-263 Package

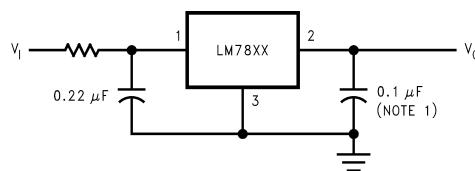
Figures 6, 7 show the information for the SOT-223 package. Figure 6 assumes a $\theta_{(J-A)}$ of 74°C/W for 1 ounce copper and 51°C/W for 2 ounce copper and a maximum junction temperature of 125°C.

FIGURE 6. $\theta_{(J-A)}$ vs Copper (2 ounce) Area for the SOT-223 Package

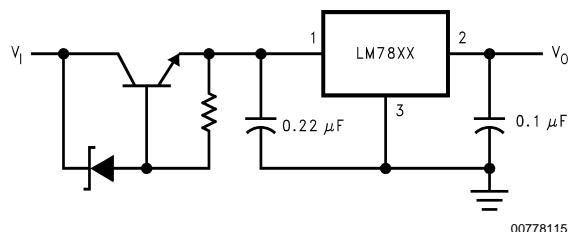


Please see AN-1028 for power enhancement techniques to be used with the SOT-223 package.

FIGURE 7. Maximum Power Dissipation vs T_{AMB} for the SOT-223 Package


Typical Applications

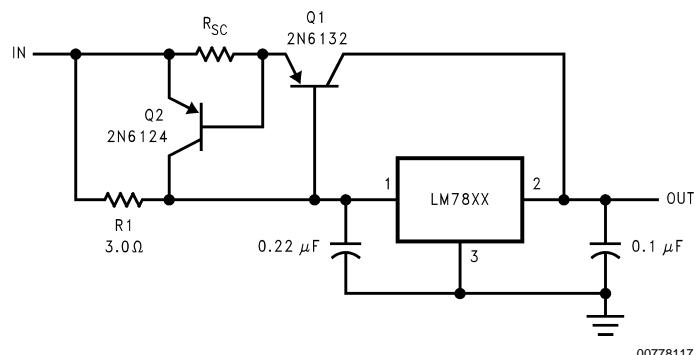
Fixed Output Regulator



Note: Bypass capacitors are recommended for optimum stability and transient response, and should be located as close as possible to the regulator.

High Input Voltage Circuits

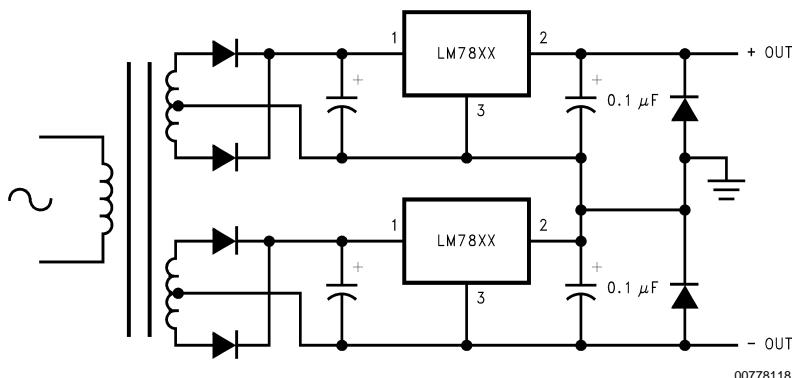
Typical Applications (Continued)


High Current Voltage Regulator

$$\beta(Q1) \geq \frac{I_{O \text{ Max}}}{I_{REG \text{ Max}}}$$

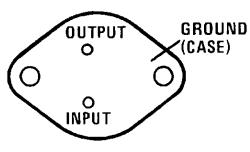
$$R1 = \frac{0.9}{I_{REG}} = \frac{\beta(Q1) V_{BE(Q1)}}{I_{REG \text{ Max}} (\beta + 1) - I_{O \text{ Max}}}$$

High Output Current, Short Circuit Protected



$$R_{SC} = \frac{0.8}{I_{SC}}$$

$$R1 = \frac{\beta V_{BE(Q1)}}{I_{REG \text{ Max}} (\beta + 1) - I_{O \text{ Max}}}$$


Typical Applications (Continued)

Positive and Negative Regulator

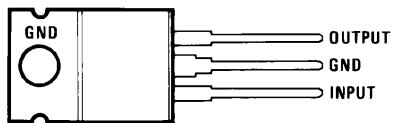
Connection Diagrams and Ordering Information

TO-3 Metal Can Package (K)

00778111

Bottom View

Steel Package Order Numbers:

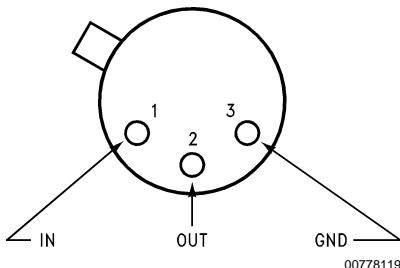

LM140K-5.0 LM140K-12 LM140K-15
 LM340K-12 LM340K-15
 LM340K-5.0

See Package Number K02A

LM140K-5.0/883 LM140K-12/883 LM140K-15/883

See Package Number K02C

TO-220 Power Package (T)


00778112

Top View

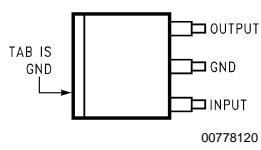
Plastic Package Order Numbers:

LM340AT-5.0 LM340T-5.0
 LM340T-12 LM340T-15
 LM7805CT LM7812CT
 LM7815CT LM7808CT
 See Package Number T03B

TO-39 Metal Can Package (H)

00778119

Top View


Metal Can Order Numbers†:

LM140H-5.0/883 LM140H-6.0/883
 LM140H-8.0/883 LM140H-12/883
 LM140H-15/883 LM140H-24/883

See Package Number H03A

Connection Diagrams and Ordering Information (Continued)

TO-263 Surface-Mount Package (S)

Top View

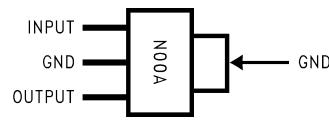
00778121

Side View

Surface-Mount Package Order Numbers:

LM340S-5.0 LM340S-12

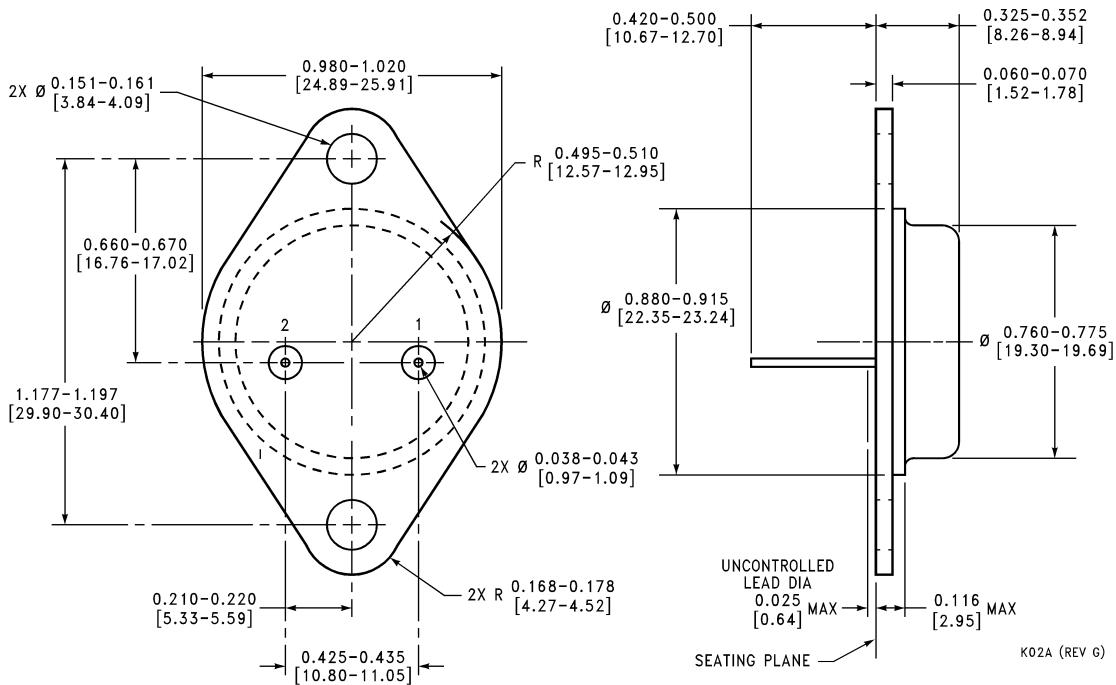
See Package Number TS3B

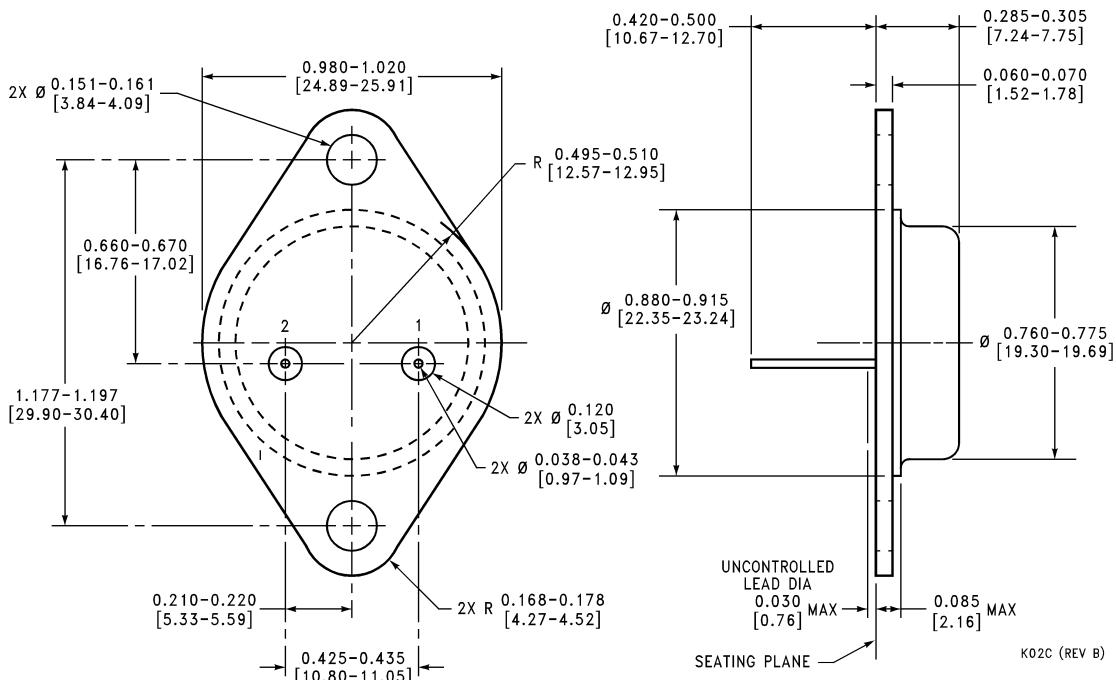

3-Lead SOT-223

(Front View)

Order Number LM340MP-5.0

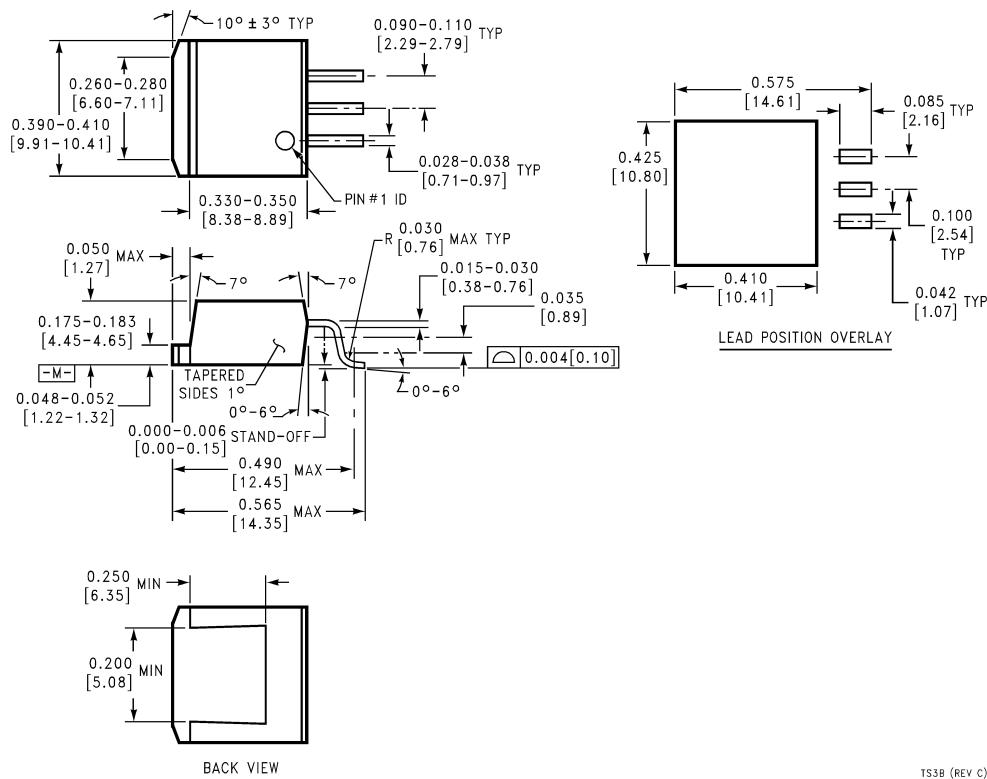
Package Marked NO0A


See Package Number MA04A


†The specifications for the LM140H/883 devices are not contained in this datasheet. If specifications for these devices are required, contact the National Semiconductor Sales Office/Distributors.

Physical Dimensions inches (millimeters)

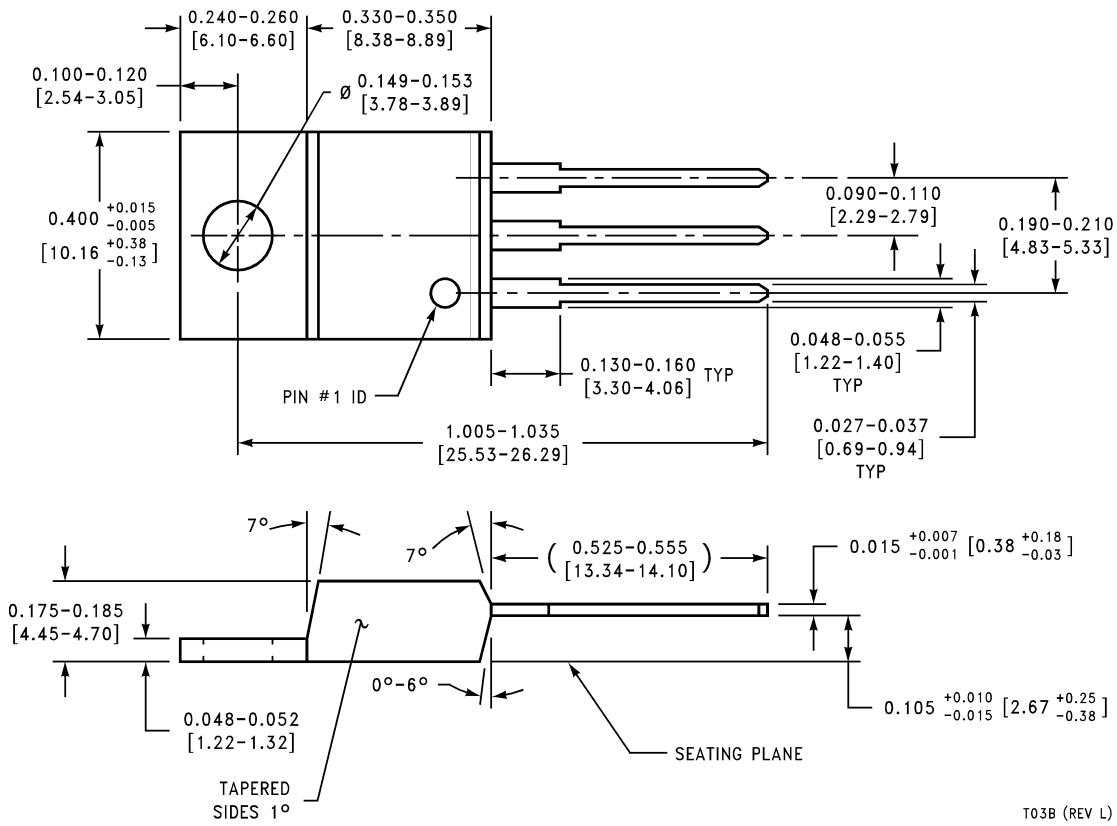
unless otherwise noted


TO-3 Metal Can Package (K)
**Order Number LM140K-5.0, LM340K-5.0, LM140K-12, LM340K-12,
 LM140K-15, LM340K-15, LM7806CK, LM7808CK, LM7818CK or LM7824CK**
NS Package Number K02A

TO-3 Metal Can Package (K)
Mil-Aero Products
Order Number LM140K-5.0/883, LM140K-12/883, or LM140K-15/883
NS Package Number K02C

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)

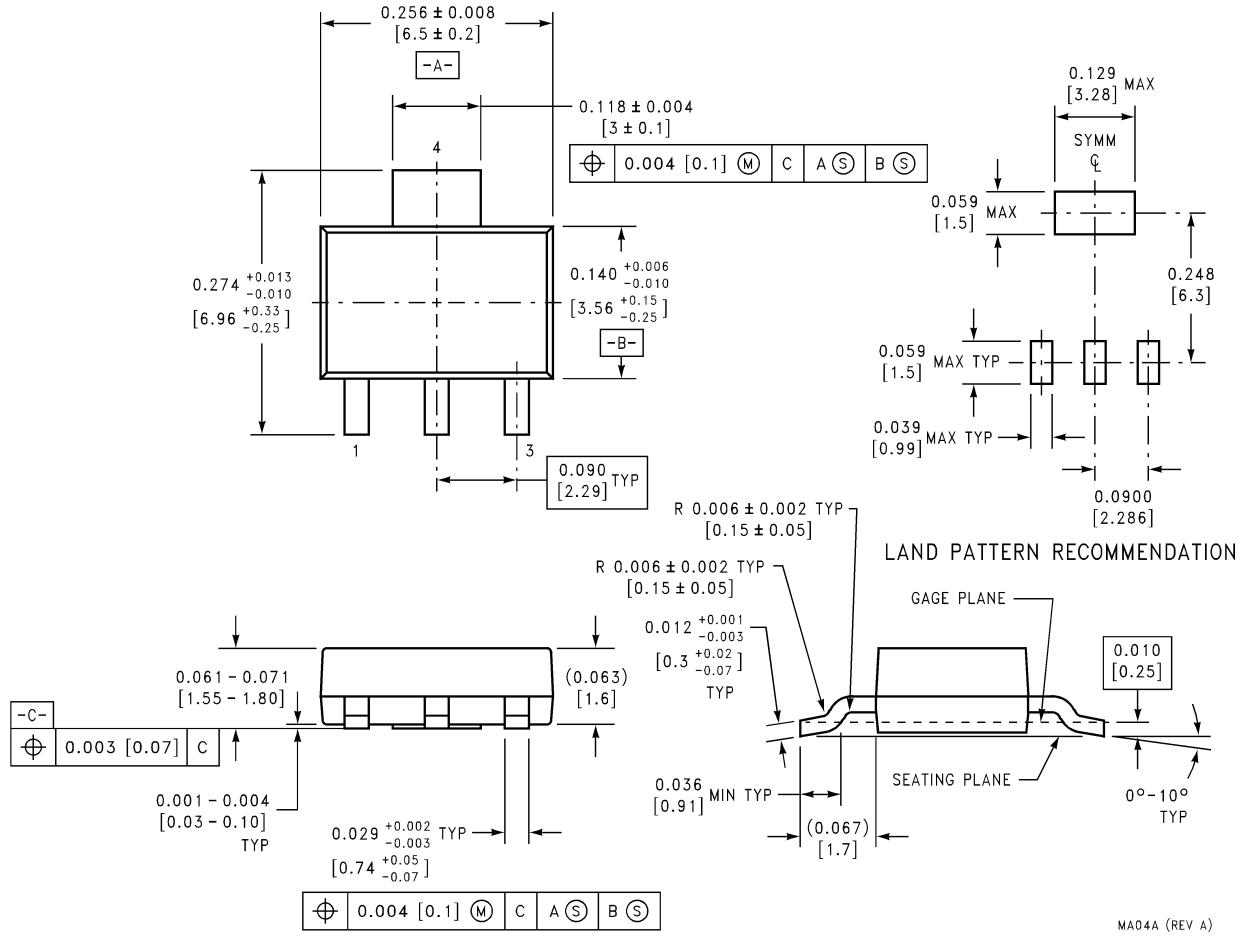


TS3B (REV C)

TO-263 Surface-Mount Package (S)
Order Number LM340S-5.0 or LM340S-12
NS Package Number TS3B

Physical Dimensions

inches (millimeters) unless otherwise noted (Continued)



TO-220 Power Package (T)

Order Number LM340AT/LM340T-5.0, LM340AT/LM340T-12, LM340AT/LM340T-15,
 LM7805CT, LM7812CT, LM7815CT, LM7806CT, LM7808CT, LM7818CT or LM7824CT
 NS Package Number T03B

T03B (REV L)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

3-Lead SOT-223 Package
Order Part Number LM340MP-5.0
NS Package Number MA04A

MA04A (REV A)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
 Americas
 Email: support@nsc.com

www.national.com

National Semiconductor
Europe
 Fax: +49 (0) 180-530 85 86
 Email: europe.support@nsc.com
 Deutsch Tel: +49 (0) 69 9508 6208
 English Tel: +44 (0) 870 24 0 2171
 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Response Group
 Tel: 65-2544466
 Fax: 65-2504466
 Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
 Tel: 81-3-5639-7560
 Fax: 81-3-5639-7507