MC6800

8-BIT MICROPROCESSING UNIT (MPU)

The MC8800 is a monolithic 8-bit microprocessor forming the central
control function for Motorola’s M6800 family. Compatible with TTL, the
MCB800, as with all MB800 system parts, requires only one + 5.0-volt
power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three-
state, making direct memory addressing and multiprocessing applica-
tions realizable.

@ 8-Bit Parallel Processing

® Bidirectional Data Bus

16-Bit Address Bus — 64K Bytes of Addressing
72 Instructions — Variable Length

Seven Addressing Modes — Direct, Relative, Immediate, Indexed,
Extended, Implied and Accumulator

Variable Length Stack
Vectored Restart
Maskable interrupt Vector

Separate Non-Maskable Interrupt — internal Registers Saved i
Stack

Six Internal Registers — Two Accumulators, Index Regist
Program Counter, Stack Pointer and Condition Code Register

Direct Memory Addressing (DMA) and Multiple P ssor
Capability

Simplified Clocking Characteristics
Clock Rates as High as 2.0 MHz
Simple Bus Interface Without TTL
Halt and Single Instruction Executi

ERING INFORMATION

Package Type quency (MHz) Temperature Order Number
1.0 0°C to 70°C MC6800L
1.0 ~40°C to 85°C MC6800CL
1.5 0°C to 70°C MCB8A00L
15 —40°C to 85°C MCB8A00CL
2.0 0°C to 70°C MCEB8BOOL
Eerdip 1.0 0°C to 70°C MCB800S
S Suffix 1.0 —40°C to 85°C MCB800CS
15 0°C to 70°C MC68A00S
1.5 —40°C to 85°C MCB8A00CS
2.0 0°C to 70°C MC68B00S
Plastic 1.0 0°C to 70°C MC86800P
P Suffix 1.0 —40°C to 86°C MC6800CP
1.5 0°C to 70°C MC68A00P
1.5 —40°C to 86°C MC68A00CP
2.0 0°C to 70°C MC68BO0OP

MOS

(N-CHANNEL, SILICON-G
DEPLETION LOAD)

S SUFFIX
CERDIP PACKAGE
CASE 734

P SUFFIX
PLASTIC PACKAGE
CASEN

L SUFFIX
CERAMIC PACKAGE
CASE 715

PIN ASSIGNMENT

Vss]t @ -/ 40[1RESET
HALT 2 39fITsc
103 sfIN.C.
iRCQ4 37[1¢2
VMAT[]S 36 [1DBE
NMiQs 3BAN.C.
BAL7 MR/W
vecll s 33100
Acl}o 32{1D1
Ao 31{ip2
A2l 30{1D3
A3[]12 29[1D4
A4l]3 28[JD5
A5{}14 27108
Aslls 26 {]D7
A76 25[A15
As[}17 24[1A4
Asll18 23[1A13
at0l}19 22f1an2
A11020 21fVss

©MOTOROLA INC., 1984

DS9471-R2

MAXIMUM RATINGS

Rating Symbol Value Unit|
Supply Voltage vee -0.3t0 +7.0 \
Input Voltage Vin —-0.3t0 +7.0 \ This device contains circuitry to protect the
Operating Temperature Range TLto TH inputs against damage due to high static
MC6800, MCE8A00, MC68B00 Ta 0to +70 °C voltages or electrical fields; however, it is ad-
MCB800C, MCBBA0DOC -40to +8b6 vised that normal precautions be taken to
Storage Temperature Range Tstg —~B5to +160 | °C avoid application of any voltage higher than
maximum-rated voltages to this high-
impedance circuit. Reliability of operation
enhanced if unused inputs are tied to an
THERMAL RESISTANCE . propriate logic voltage {e.g., either
Rating Symbol Value Unit Veo).
Plastic Package 100
Cerdip Package A 60 °C/W
Ceramic Package 50

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:
Ty=Ta+(Ppegjp)

Where:
Ta=Ambient Temperature, °C
6 =Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT + PPORT
PINT=Iccx Vce, Watts — Chip Internal Power
PpORT = Port Power Dissipation, Watts — User Determi

For most applications PPORT<P|NT and can be neglected. Pg
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPOR

(1

R¥ may become significant if the device is configured to

feglected) is:

PD=K~+{(TJ+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Pp®(TA+273°C)+0 A ® Pp2 (3)

Where K is a constant pertaining to the partic
for a known T a. Using this value of K the v.
value of Ta.

. K can be determined from equation 3 by measuring Pp (at equilibrium)
"D and T can be obtained by solving equations (1) and (2) iteratively for any

DC ELECTRICAL CHARACTERI cc=5.0 Vde, £5%, Vgs=0, To=TL to TH unless otherwise noted)

racteristic - Symbol Min Typ Max Unit
input High Voltage Logic VIH Vgs+2.0 - vee Vv
¢1,¢2| ViHC | Vec—086 - Vee+0.3
Input Low Voltage Logic VIL Vgs—0.3 - Vgs+0.8 Vv
o1, $2 ViLe Vgg—0.3 — Vgs+0.4
Max) Logic lin — 1.0 25 rA
QSV Vee=0V 10 5.25 V) o1, $2 - — 100
bo-D7 | — 2.0 10 A
Max) AO-A15, R/W 1z - - 100 #
) ngh Voltage
“lLoad= —205 kA, Vcc=Min) __DG-D7 v Vgg+2.4} — - v
ILoad= — 145 gA, VCC = Min) AC-A15, R/W, VMA OH vgg+24| - -~
U pad= — 100 kA, Vcc = Min) BA Vgs+2.4 - -
Output Low Voltage (I gagd=1.6 mA, Vcc=Min) VoL - - Vss+0.4 \
Internal Power Dissipation (Measured at To =T\) PiNT - 0.5 1.0 w
Capacitance
(Vin=0, TA=25°C, {=1.0 MHz2) ¢1 - 25 35
¢2 Cin - 45 70 pF
DO-D7 ' - 10 126
Logic inputs — 6.5 10
AQ-A15, R/W,VMA | Cqut — — 12 pF

@ MOTOROLA Semiconductor Products Inc.
2

CLOCK TIMING (Vcc=5.0V, +5%, Vgg=0, TA=T{ to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MC6800 0.1 — 1.0
MCB8A00 f 0.1 - 1.5 MHz
MC68B00 0.1
Cycle Time (Figure 1) MC6800 1.000
MCB8A00 teye 0.666
MC68B00 0.500
Clock Pulse Width 1, 2 — MCB6800 400
(Measured at Ve —0.6 V) @1, ¢2 — MCB8A00 | PWgH 230
o1, $2 — MCE8BOO 180
Total ¢1 and ¢2 Up Time MC6800 300
MCE68A00 tut 600
MC68B00 440
Rise and Fall Time (Measured between Vgg+0.4 and Vcc—0.6) tr, tf —
Delay Time or Clock Separation {Figure 1)
(Measured at Voy=Vg5+0.6 V@1, =1tf=<100 ns) 1d
(Measured at Voy =Vss+ 1.0 V@t =t<35 ns)

FIGURE 1 — CLOCK TIMING WAVEFORM

Teye

Tut

Thf

NOTES:

1. Voltage levels sho 0.4, V=24V, unless otherwise specified.

2. Measurement wi are 0.8 V and 2.0 V, unless otherwise noted.

READ/WRITE TIMING (Reference Figures 2 he, 8 9 11, 12 and 13)

MC6800 MC68BA00 MC68B00 .
Symbol - . - Unit
Min | Typ | Max | Min | Typ | Max | Min | Typ | Max
Address Delay
C=90 pF tAD - - 1270 | - — 1180 | — — | 180 | ns
C=30 pF - — 250 | — - 1656 | — - 135
Peripheral Read Access
t 5 — — 400 | — — 1200 | ~ —_— ns
tacc=tut— tAD+ acc 60
tDSR 100 - — 60 — - 40 — - ns
tH 10 - — 10 — — 0| — - ns
tH 10 25 — 10 25 — 10 yis] - ns
tAH 30 50 - 30 50 - 30 50 - ns
tEH 450 - - 280 - - 220 | — - ns
{DDW — - 2% - — 200 | - - 160 | ns
Processor Controls
Processor Control Setup Time tPCS 200 — - 140 - — 110 - —
Processor Control Rise and Fall Time tpCr, tPCf - - 100 — - 100 — - 100
Bus Available Delay 1BA — — |} 260 | — — 166 | — - 135 ns
Hi-Z Enable tTSE 0 — 40 0 - 40 0 - 40
Hi-Z Delay TSD - - 270 | — - 270 | — — | 220
Data Bus Enable Down Time During ¢1 Up Time tDBE 180 { — — 120 | — - 75 - -
Data Bus Enable Rise and Fall Times tDBE IDBEf | — - 25 — - 25 - - 25

@ MOTOROLA Semiconductor Products Inc.
3

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

Start of Cycle

/
[Vike \
_— 104V 04V
S Iy S |
KVIHC
®2 0.4V
tAD
24V
R/W
Address 2.4V AN
From MPU 0.4 Vv e
tAD
24V
VMA
tAD tace
Data
From Memory
or Peripherals

Z

\\\\\\\‘ Data Not Valid

FIGURE 3 — WRITE IN MEMORY OR

_—— Start of Cycle

Vine
1 Z 0.4V

$2

R/W
L N

Address
From MPU

tEH
S
r-fDBEf, —| (=—tDBEF ty
et |
Data 24v |
From MPU ﬂ Data Valid
—1tD DW ——={

Y pata Not vatid

NOTES:
1. Voltage levels shown are V| =0.4, VH=2.4 V, unless otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.

@ MOTOROLA Semiconductor Products Inc.
., _

DELAY TIME (ns)

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

800 [=205 yA max @ 24 v
FipL=1.6mA max @04V
500 VCC =50V
i Ta=25°C
400
300 o
//
200 ——
//
/,
100 —=
CL includes stray capacitance
0 0 100 200 300 400 500 600

C(, LOAD CAPACITANCE {pF)

FIGURE 6 — BUS TIMING TEST L

Vee

R =22 k2

Test Point MMDE150

C=130pF for DO-D7, E
=90 pF for AO-A15,
(Except top o)

= 30 pF for AO-

DELAY TIME (ns)

@ MOTOROLA Semiconductor Products Inc.
5

FIGURE 6 — TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING (Tap)

800 I O '=—195 uA max © 24 V

FlgL=1.6mAmax @04V

| Vee=5.0V
800 FraZ o5
400
300
200 —— —
100 ik

CL includes stray capacitance
OU 100 20 400 500 600

‘CAPACITANCE (pF)

TEST CONDITIONS

The dynamic test load for the Data Bus is
130 pF and one standard TTL load as shown.
The Address, R/W, and VMA outputs are tested
under two conditions to allow optimum opera-
tion in both buffered and unbuffered systems.
The resistor (R) is chosen to insure specified
load currents during V1 measurement.

Notice that the Data Bus lines, the Address
lines, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 VvV of dynamic noise immunity at both
1" and "'Q”’ logic levels.

Clock, ¢1

Clock, ¢2

RESET

Non-Maskable interrupt
HALT

Interrupt Request
Three-State Control
Data Bus Enable

Bus Available

Valid Memory Address

Read/Write, R/W

Vee=Pin 8
Vgg=Pins 1, 21

FIGURE 7 — EXPANDED BLOCK DIAGRAM

A15 Al14 A13 A2 A1l A10 A9 A8 A7 A6 AB A4 A3 A2 A1l AO
25 24 23 212 20 19 18 17 16 15 14 13 112 1 10 9
Output Output
Buffers Buffers
33—
37 —I~
40 —p Program
6 ‘ Counter H
2—®1 |nstruction
4 —— Decode Stack
and Pointer H
39 » Control
36 ——= Index Index
7 -— Register Register L
5 -f—y
34 -— Accumulator
A
Instruction Accumulator
Register 8
Condition
Code
Register
ALU

i

32 33
D1 DO

30 3
D3 D2

28 29
6 D5 D4

@ MOTOROLA Semiconductor Products Inc.
: 6

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control
and timing signals be provided to accomplish specific func-
tions and that other signal lines be monitored to determine
the state of the processor.

Clocks Phase One and Phase Two (¢1, ¢2) — Two pins
are used for a two-phase non-overlapping clock that runs at
the V¢ voltage level.

Figure 1 shows the microprocessor clocks. The high level
is specified at VIHC and the low level is specified at ViLC.
The allowable clock frequency is specified by f {frequency).
The minimum ¢1 and ¢2 high level pulse widths are specified
by PWgH (pulse width high time). To guarantee the required
access time for the peripherals, the clock up time, tyt, is
specified. Clock separation, tq, is measured at a maximum
voltage of Vgy {overlap voltage). This allows for a multitude
of clock variations at the system frequency rate.

Address Bus (AO-A15) — Sixteen pins are used for the ad-
dress bus. The outputs are three-state bus drivers capable of
driving one standard TTL load and 90 pF. When the output is
turned off, it is essentially an open circuit. This permits the
MPU to be used in DMA applications. Putting TSC in its high
state forces the Address bus to go into the three-state mode.

Data Bus (D0-D7) — Eight pins are used for the data bus.
It is bidirectional, transferring data to and from the memory
and peripheral devices. it also has three-state output buffers
capable of driving one standard TTL load and 130 pF. Daf
Bus is placed in the three-state mode when DBE is

Data Bus Enable (DBE) — This level sensitive
three-state control signal for the MPU dat
enable the bus drivers when in the high st
TTL compatible; however in normal opera
driven by the phase two clock. Duri
the data bus drivers will be disable
desired that another device cont
Direct Memory Access (DMA
held iow.

If additional data setup gr holditime is required on an MPU
write, the DBE dow be decreased, as shown in
Figure 3 (DBE#¢2 inimum down time for DBE is
tDBE as shown.. cewing DBE with respect to E, data
setup or hold ti be increased.

A} — The Bus Available signal will nor-
' low state; when activated, it will go to the
dicating that the microprocessor has stopped
the address bus is available. This will occur if the
HALT'ine is in the low state or the processor is in the WAIT
state as a resuit of the execution of a WAIT instruction. At
such time, all three-state output drivers will go to their off
state and other outputs to their normally inactive level. The
processor is removed from the WAIT state by the occurrence
of a maskable {mask bit | =0) or nonmaskable interrupt. This
output is capable of driving one standard TTL load and
30 pF. if TSCis in the high state, Bus Available will be low.

Read/Write (R/W) — This TTL compatible output signals
the peripherals and memory devices wether the MPU is in a

@ MOTOROLA Semiconductor Products Inc.

Read (high) or Write (low) state. The normal standby state of
this signal is Read (high). Three-State Control going high will
turn Read/Write to the off (high impedance) state. Also,
when the processor is halted, it will be in the off state. This
output is capable of driving one standard TTL load:
90 pF.

RESET — The RESET input is used to re: art the
MPUYU from a power down condition resul
failure or initial start-up of the processo
input can also be used to reinitialize
after start-up.

If a high level is detected in t
MPU to begin the reset s
quence, the contents of t
in memory will be loade

ne at any time

t, this will signai the
During the reset se-
o locations (FFFE, FFFF)
Program Counter to point

IRQ. While
cycles have

Tow (assuming a minimum of 8 clock
d) the MPU output signals will be in the
#VMA=low, BA=low, Data Bus=high im-
=high (read state), and the Address Bus will

uence using the RESET control line. After the power
reaches 4.76 V, a minimum of eight clock cycles are
d for the processor to stabilize in preparation for
estarting. During these eight cycles, VMA will be in an in-
determinate state so any devices that are enabled by VMA
which could accept a false write during this time (such as
battery-backed RAM) must be disabled until VMA is forced
low after eight cycles. RESET can go high asynchronousiy
with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and
fall transition times are specified by tpcr and tpcy. if RESET
is high at tpcs (processor control setup time), as shown in
Figure 8, in any given cycle then the restart sequence will
begin on the next cycle as shown. The RESET control line
may also be used to reinitialize the MPU system at any time
during its operation. This is accomplished by pulsing RESET
low for the duration of a minimum of three complete ¢2
cycles. The RESET pulse can be completely asynchronous
with the MPU system clock and will be recognized during ¢2
if setup time tpcs is met.

interrupt Request (IRQ) — This level sensitive input re-
quests that an interrupt sequence be generated within the
machine. The processor will wait until it completes the cur-
rent instruction that is being executed before it recognizes
the request. At that time, if the interrupt mask bit in the Con-
dition Code Register is not set, the machine will begin an in-
terrupt sequence. The Index Register, Program Counter, Ac-
cumulators, and Condition Code Register are stored away on
the stack. Next, the MPU will respond to the interrupt re-
quest by setting the interrupt mask bit high so that no further
interrupts may occur. At the end of the cycle, a 16-bit ad-
dress will be loaded that points to a vectoring address which
is located in memory locations FFF8 and FFF9. An address
loaded at these locations causes the MPU to branch to an in-
terrupt routine in memory. Interrupt timing is shown in
Figure 9.

)

8

"0U| S]oNPOId 10}oNPUOdIWES VW ITOHOLOW

FIGURE 8 — RESET TIMING

| Cycle
| I #1

n+4\ m‘m+1|m+2|m+3|

‘#8‘#9\ n n+ 1]ln+ 2|n + 3

{
Power On)
Switch J

Power 525 Vv #

Supply 475 Vv
4—‘ le— tPCS
N

RESET ~

X XXX

FFFE FFFF_New PC

=
/
/
_—
_—
/
/
/
_—
_—
/
1
/
/
/
/
/
/
/
/
[
/
]
_—
[
[
[
]
[
/
1
L1
1
]
[
—
[
_—
[
_—
L1
[
/
=
/%
]

FFFE FFFE

, YLU
XX g(:‘{;)(g(fX:

PC 8-15 PC 0-7 First
Instruction

Address
Bus
W

{{—
1)
m = Iindeterminate
'RE 9 — INTERRUPT TIMING
Cycle ‘
#1 #2 #8 #9 #10 #11 #12 #13 #14 #15

XX XXX X X X

SP(n-3) SP(n-4) SP(n-5) SP(n-6) SP(n-7) FFF8 FFF9 New PC
Address Address Address

/
XX X X XX XA YK X XX

- -7, First Inst of
- - - - cCcA ACCB CCR New PC 8-15 New PC O |)
re o reets xe e aee Address Address “Interrupt Routine

VA WY n_/

Address

b XXX
Next Inst
Fetch

-

SP(n) SP(n-1) SP(n-2)

IR or

Interrupt
Mask

Data Bus

—

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 k@ external resistor to V¢ should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMi} and Wait for Interrupt
(WAI) — The MC6800 is capable of handiing two types of in-
terrupts: maskable (TRQ) as described earlier, and_non-
maskable (NMI) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while NMT is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either TRQ or NMT and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
low at time tpcs in cycle #1 which precedes the first cycle of
an instruction {(OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators {ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMl interrupt and from FFF8, FFFQ
for an TRQ interrupt. Upon completion of the interrupt ser-
vice routine, the execution of RTI will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in prepare
for the interrupt. This technique speeds up the M
response to the interrupt because the stacking of t
ACCX, and the CCR is already done. While
waiting for the interrupt, Bus Available wi

i in the high
s serviced as
previously described.

A 3-10 kQ externa! resistor to

FERRUPT VECTORS

Description

Reset
Non-Maskable Interrupt
Software Interrupt
Interrupt Request

igure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control {TSC) line is a logic "1, the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC="1" to prevent
false reads or writes on any device enabled by VMA. Ht is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 {or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant so long as they do not change). Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

@ MOTOROLA Semiconductor Products Inc.

9

time PWgH without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tT S (three-state enable) while holding
¢1 high and ¢2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTgp (three-state
delay), with VMA being forced low. in this examp
Data Bus is also in the high-impedance state whi
ing held low since DBE=¢2. At this point in tig
transfer could occur on cycles #3 and #4. W
returned low, the MPU Address and R/W'|
bus. Because it is too late in cycle #5 to
cycle is dead and used for synchroni
tion resumes in cycle #6.

turn to the
emory, this
rogram execu-

Valid Memory Address (V!
peripheral devices that ther

- This output indicates to
address on the address
_signal should be utilized for
such as the PIA and ACIA.

This signal is not th
90 pF may be dirét

HALT line provides an input to the MPU to allow con-
program execution by an outside source. If HALT is
he MPU will execute the instructions; if it is low, the
will go to a haited or idle mode. A response signal, Bus
ailable (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMI or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=low, Data Bus=high impedance, R/W=high (read
state), and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of ¢1 of the last cycle of an instruction
{point A of Figure 13). HALT must not go low any time later
than the minmum tpCs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, .the MPU would have
halted after completion of the following instruction. BA will
go high by time tgA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high for one MPU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of
HALT must occur tpcg before the trailing edge of ¢1. BA
will go low at tgA after the leading edge of the next ¢1, in-
dicating that the Address Bus, Data Bus, VMA and R/W

FIGURE 10 — MPU FLOWCHART

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used for this example also. During the first cy-
cle, the instruction Y is fetched from address M+ 1. BA
returns high at tga on the last cycle of the instruction in-
dicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

Py

\'TEMP—=1

[

Next inst

1— 1

0—BA

l

Vector—PC
FFFE

{See Note 3)

l

ITMP — |

I

PC, X, A, B, CC

Stack

Notes:

MOTOROLA Semiconductor Products Inc.

0—BA >

1
1—IT™MP
11—
| Condition Code Register
Vector — PC |1|1|H[||N[z|v|<ﬂ
NMI FFCA
W FFEA ITEMP’ 1-Bit
IrQ FFF8 Buffer Register

Reset is recognized at any position in the flowchart.

instructions which affect the |-Bit act upon a one-bit buffer register,
“ITMP.” This has the effect of delaying any CLEARING of the I-Bit one
clock time. Setting the I-Bit, however, is not delayed.

See Tables 6-11 for details of Instruction Execution.

W

L

‘0U| S}oNPOId 10}oNPUOIIWSS W ITOMHOLOW

FIGURE 11 — WAIT INSTRUCTION TIMING

Cycle
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 ‘ n n+1 n+4 n+5
o2 L]
New PC
Add Address
ress N\ {
e XXX X X XX X X 1 ;
__ —Instruction SP(n) SP(n-1) SP(n-2) SP(n-3) SP(n-4) SP(n-B) SP(n-6) . SPin7) FFF8 FFFO
R/W \ J L
VMA /
Interrupt
Mask / First Inst
_ of Interrupt
IRQ or Routine
NMI Y
Data Bus A X X A A X X X X X X X
Wait PC 0~7 PC8-15 1 0-7 | 8-15 ACCA ACCB New PC 8-15 New PC 0-7
Inst Address Address
BA
Note: Midrange waveform indicates

high impedance state.

FIGURE 12, EE-STATE CONTROL TIMING

Cycle
| #2 s | =6 | 7 = =0 |
System
3 | |
PWq»,Hmax—-————b{
MPU @1

tTsD tTsD -—

Address
Bus

R/W

L
—
-
—
L
—
—
—

——| fa—ITSE ITSE —poed fut—

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

L.ast Cycie
of Current
Instruction

BA

Instruction
Fetch

Instruction
Execute

u i I I I

o1 | | | [1
1 101] P(is I L1

- —:{ " tpct ‘

@2

lﬂ el

=
]

\\\\\\\\\\l o]

BA

VMA u

A\

XY
R/W :X XT

N
/s
Fetch Execute
Address X ﬂ N
Bus Addr M Pe

—
Bus
Inst
X

0

Note: Midrange waveform indicates
high impedance state.

The MPU has three 16-bit registers and th
registers available for use by the programmer (Fjj

byte

Program Counter — The program count 4
im address.

(16 bits) register that points to the curre

Stack Pointer — The stack pon
that contains the address of the next a
external push-down/pop-up :
random access Read/Write
tion {address) that is conve
require storage of infofmat
lost, the stack muste

WO byte register
ilable location in an
is stack is normally a
that may have any loca-
. In those applications that
in the stack when power is
volatile.

Index Regis
that is used o s
the Indexgd v

‘hie index register is a two byte register
data or a sixteen bit memory address for
e of memory addressing.

metic logic unit (ALU}.

Condition Code Register — The condition code register in-
dicates the results of an Arithmetic Logic Unit operation:
Negative (N), Zero {Z), Overflow (V}, Carry from bit 7 (C),
and half carry from bit 3 (H). These bits of the Condition
Code Register are used as testable conditions for the condi-
tional branch instructions. Bit 4 is the interrupt mask bit (1).
The unused bits of the Condition Code Register (b6 and b7}
are ones.

12

FIGURE 14 — PROGRAMMING MODEL OF
THE MICROPROCESSING UNIT

7 o
ACCA Accumulator A
7 o
ACCB Accumulator B
15 °
tX Index Register
15 0
PC Program Counter
15 5
SP Stack Pointer
7 o}
11 |nf1|n]Z{v]c g‘;;‘g:‘e':’" Code

I— Carry (From Bit 7)

Overflow

Zaro

Negative

MOTOROLA Semiconductor Products Inc.

Interrupt

Half Carry (From Bit 3)

MPU INSTRUCTION SET

The MC6B800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MC6800 control programs. The MC6800 has a set of 72 dif-
ferent executable source instructions. included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. {The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which resuit from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

TABLE 1 — HEXADECIMAL VALUES OF MACHINE CQDES

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain{s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: {1) memory reference, so called
because they operate on specific memory locations; (2)
operating instructions that function without needing a
memory reference; (3) 1/0 instructions for transferring data
between the microprocessor and peripheral devices.

tion on both its internal accumulators and
memory locations. in addition, the MCB800
adapters (PI1A and ACIA) allow the MPU
devices exactly like other memory loca
instructions as such are required. Beca

MCB800's instruction set: (1)
operations; (2) Program con
Code Register operations.

perations; {3) Condition

a0 * 40 NEG A 80 sSuB A
0t NOP 41 - 81 CMP A
02 * 42 3 82 SBC A
03 * 43 COoM A 83 -
04 * 44 LSR A 84 AND A
05 * 45 * 85 BIT A
06 TAP 46 ROR A 86 LDA A
07 TPA 47 ASR A 87 N
08 INX 48 ASL A 88 EOR A
09 DEX 49 ROL A 88 ADC A
0A CLV 4A DEC A 8A ORA A
0B SEV 48 8B ADD A
oC CLC 4C INC A 8C CPX A
0D SEC 4D TST A 8D BSR
0E CLl 4E " 8E LDS
OF SEi 4F CLR A 8F *
10 SBA 50 NEG B
11 CBA 51 -
12 * 52
13 N 53
14 * 54
15 * 55
16 TAB 56
17 TBA 57
18 * 58
19 DAA 59
1A 5A
1B ABA 5B
ic 5C
D 5D
1 ° 5E
1F SF
A IND
A IND
A IND
A IND
A IND
A IND
A IND
A IND
A IND
A IND
A IND
IND | AC CPX IND
IND | AD JSR IND
IND | AE LDS IND
IND | AF STS IND
EXT|{BO SUB A EXT
B1 CMP A EXT
‘B2 SBC A EXT
EXT|B3 ~
EXT{B4 AND A EXT
B5 BIT A EXT
EXT|B6 LDA A EXT
EXT|B7 STA A EXT
EXT | B8 EOR A EXT
EXT{B3 ADC A EXT
EXT|BA ORA A EXT
BB ADD A EXT
EXT{BC CPX EXT
EXT|BD JSR EXT
EXT{BE LDS EXT
EXT|BF STS EXT

Notes: 1. Addressing Modes:

A = Accumulator A
B = Accumutator B
REL = Relative
IND = Indexed
IMM = Immediate
DIR = Direct

suB B DIR f indi YR X2

oMP B iR 2. Unassigned. code indicated by .

SBC B DIR

AND B DIR

BIT B DIR

LDA B DiR

STA B DIR

EOR B DIR

ADC B DIR

ORA B DIR

ADD B DIR

LDX DIR

STX DIR

suB B IND

CMP B IND

SBC B IND

AND B IND

BIT B IND

LDA B IND

STA B {IND

EOR B IND

ADC B IND

ORA B IND

ADD B IND

LDX IND

STX IND

suB B EXT

cMmp B EXT

SBC B EXT

AND B EXT

BIT B EXT

LDA B EXT

STA B EXT

EOR B EXT

ADC B EXT

ORA B EXT

ADD B EXT

LDX EXT

STX EXT

MOTOROLA

Semiconductor Products Inc.

13

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS

AODRESSING MODES BOOLEAN/ARITHMETIC DPERATION CONO.CODE REG.
IMMED DIRECT INDEX EXTND IMPLIED (Al register labels 5(4|32[1]0
OPERATIONS MNEMONIC| 0P ~ =|0p. ~ =[op ~ =|op ~ =[op ~ = refer to contents) Hv|NvizvIcC
Add ADDA 88 2 2|98 3 2|AB 288 3 A+M—A tle (|t |F]e
ADDB c8 2 2|0B 3 2|EB 5 2|F8 4 3 B+M-—8B tlofc|tit]e
Add Acmiltrs ABA B 2 1 A+B—A E3 LN R I
Add with Carry ADCA 89 2 2|99 3 2|A3 5 2|Bg 4 3 A+M+C-—A tlejr |ttt
ADC8 €9 2 2{D9 3 2{ES 5 2|F3 4 3 B+M+C—8 tleft |8t
And ANDA 84 2 2,94 3 2{A4 5 28B4 4 3 A-M-A eleltit(R|®
ANDB c4 2 204 3 2{E4 5 2}F4 4 3 B-M-B oie|t|t[R}e®
Bit Test BITA 85 2 2j9% 3 2|A5 5 2|B5 4 3 A M eleit)l|Rie
8ITB ¢6 2 2|D5 3 2|{Es 5 2|F5 4 3 B-M ele|t|t[R]e®
Clear CLR 6F 7 217F 6 3 00~-M e|®R{S|R[R
CLRA 4F 2 1 00-A e(®|RISIR(R
CLRB §F 2 1 00->8 e|®|RIS|R
Camgpare CMPA 81 2 2|91 3 2[A1 5 2(8B1 4 3 A-M eleltit !
CMPB cr 2 2|D1 3 2{EY &5 2|F1 4 3 B-M eje |
Compare Acmltrs CBA m 2 1 A-B LR]
. Complement, 1's com 63 7 2173 6 3 M-m L4 §
COMA 43 2 1 A—A S
comB 63 2 1 B-B tIRIS
Complement, 2's NEG 60 7 2|70 6 3 00-M->M DD
(Negate) NEGA 40 2 1| 00-A—A D@

NEGB 50 2 1| 00-8-B 1@
Decimal Adjust, A DAA 19 2 1 Converts Binary Add. of BC oo [©)]

into BCD Format

Decrement DEC 6A 7 217A 6 3 M-1->M

DECA a2 1 A—-1-A

DECB 5A 2 1 B-1—8
Exclusive DR EORA 88 2 2!98 3 2|AB 5 2|88 4 3

EORB cg 2 2{D8 3 2|E8 5 2,F8 4 3
tncrement INC 6C 7 2,7 6 3

{NCA ac 2

INCB 5C 2
Load Acmite LOAA 86 2 2|9 3 2{AB 5 2|B6 4 3

LOAB C6 2 2|Dp6 3 2|E6 5 2|F6 4 3
DOr, Inclusive 0RAA 8A 2 2|9A 3 2|AA 5 2|BA 4 3 A+tM->A

ORAB CA 2 2|DA 3 2|EA 5 2}FA 4 3 B+M—B
Push Data t] A—>Mgp, SP-1—>SP

1| B->Mgp,SP—1-SP
Pull Data 1} SP+1—>SP,Mgp—~A
1

ele(iitis]e
ool tid)e
elo(l(tid]|e
eio|lit|R|e®
oie|l(t|R|®
o|o|1 |t e
ole|t|t|B)e
eleit|ti®|e
eleltiliR|e®
o|le(f{|}|Rle®
eleil[t|R|®
ele|t|t|R|e®
LK RE A K J
(AN K AR AN BN 4
LEN B AR IR BN 1
4 SP+1->8P, Mgp—> B eje|e|oje|e
Rotate Left M oleit|t®[t
2 1|8 C b2 = b0 BOHHGE
Rotate Right 6 3 M} ele|tt®)t
s 2 1| ay o - oo NNHHGE
56 2 1|8 ¢ h7 = b0 NOHHGE
Shift Left, Arithmetic 6 3 M - ole|2ti®t
4% 2 1| Ay O- OIIIID~0 elel2ti®)
58 2 1B c b? 50 eletiti®)t
Shift Right, Arithmetic 6 3 M - elei it B!
47 2 1 A}E’IEEDID -0 ULk CE
57 2 1|8 b7 b0 [} NOHHGE
Shift Right, Logic 6 3 M - olelR|1IB) ¢
a4 2 1A 0~OTITITTH -~ O eleirIt®N?
54 2 1108 b7 LUBI elofrRI1®) 1
Store Acmitr. 5 3 A—>M eo|lejt Ll Ri®
5 3 B—>M ole|t|t|R|e
Subtract 4 3 A-M-A eleft it 1]t
4 3 B-M-B ele|t|tt]t
Subtract Acmitrs. 0 2 1{A-B-A eleitltitt
Subtr. with Carry 4 3 A-M-C—A ejeftitit|d
3 B-M-C—8B oottt
Transfer Acmitrs 16 2 1| A-B elelt|t|R|e®
17 2 1 B—A eleilltR|e®
6 3 M-00 e/e|t]t|R|R
4D 2 1 A-00 eie|1|TIR|R
ISD 2 1 B - 00 e|e(1|1IRIR
HiI|N(2lV|C
CONDITION CODE SYMBOLS: CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)
mber of MPU Cycles; H Half-carry from bit 3; 1 (BitV) Test: Result = 100000007
mber of Program By e L ermupt mask 2 (BitC) Test: Result = 00000000
thmetic Ptus; N Negative {sign bit) . . NP
Arithmetic Minus: z Zero (byte} 3 (Bit C) Test: Decimal value of most significant BCD
Boolean AND; v Dverflow, 2‘s complement Character gregter th?" nine?
Contents of memory location pointed to be Stack Pointer; c Carry from hit 7 {Not cleared if previously set.)
Boolean Inclusive DR; R Reset Always 4 (Bit V} Test: Operand = 10000000 prior to execution?
Boolean Exclusive OR; S Set Always 5 (Bit V) Test: Qperand = 01111111 prior to execution?
Complement of M; 1 Test and set if true, cleared otherwise 6 (Bit V) Test: Set equal to result of N@®C after shift has occurred.
Transfer Into; [] Not Affected

Bit = Zero;
Byte = Zero;

Note — Accumulator addressing mode instructions are included in the column for IMPLIED addressing

14

@ MOTOROLA Semiconductor Products Inc.

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: (1) Index Register/Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
"stack.” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
"stack’” to come from the location indicated by the index
Register. The utility of these two instructions can be clarified
by describing the “stack’” concept relative to the M6800
system.

The ""stack” can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out (LIFO) basis in contrast
to the random access mode used by the MPU’s other ad-
dressing modes.

The MCB6800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instruct
can be used to establish one or more “'stacks’ anywh

amount of memory that is made available.
Operation of the Stack Pointer with the Pus
structions is illustrated in Figures 15 and 1
struction (PSHA) causes the contents of
cumulator (A in this example) to be st i
location indicated by the Stack Point
automatically decremented by ope
operation and is ““pointing” to the
The Pull instruction (PULA
stacked to be loaded into, t

swing the storage
mpty stack location.
) causes the last byte
opriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “remove’’ the data from memory; in the
example, 1A is still in location {(m + 1) following execution of

location with the new ‘‘pushed’” data.
Execution of the Branch to Subroutine (BSR)
Subroutine {JSR) instructions cause a retu
saved on the stack as shown in Figures 18¢
stack is decremented after each byte of
pushed onto the stack. For both of
return address is the memory locatity
code that correspond to the BSR.an
code required for BSR or J
bytes, depending on whetl#
bytes) or the extend
Before it is stacked, t
cremented the co
focation of the
instruction,

wing the bytes of
SR instruction. The
be either two or three
.JSR is in the indexed {two
bytes) addressing mode.
am Counter is automatically in-
ber of times to be pointing at the
struction. The Return from Subroutine
uses the return address to be retrieved
he Program Counter as shown in Figure 21.
»several operations that cause the status of the
MPUgto beisaved on the stack. The Software interrupt (SWH1)
Mait for Interrupt (WAI) instructions as well as the
e (IRQ) and non-maskable (NMI) hardware inter-
all cause the MPU's internal registers (except for the
itack Pointer itself) to be stacked as shown in Figure 23.
- MPU status is restored by the Return from Interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. lts only effect is to
increment the Program Counter by one. It is useful during
program development as a ‘“‘stand-in” for some other in-
struction that is to be determined during debug. It is also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED 51413 (2|110

JIONS MNEMONIC | OP [~ | = |OP| ~ | # 0P|~ | = |0OP|~ | =|DP|~ & BODLEAN/ARITHMETIC OPERATION H| I NiZiV|C

i CcPX 8C |3 3[(9c| 4|2 }|AC|6|2]|BC[5 |3 XH=-M X ~(M+1) oo
DEX 09| 4 |1 X-1-X ele/ell ale

Stack Pntr DES 341411 SP—1->8P el oo oo
Increiment index Reg INX 084 |1 X+1->X ele o liole
Increment Stack Pntr INS 3t 401 SP+1->SP IR AR AR AN
Load Index Reg Lox CE|{ 3| 3|DE| 4| 2 |EE|B6 | 2|FE|5 |3 M= Xy, (M+1) =X e e(D|I|R|®
Load Stack Pntr LDS 8E | 3| 3|9E}j 4| 2|AE|6 |2 |BE|5 |3 M~ SPH, (M+ 1} = SP o oD|t|R|®
Store Index Reg STX DF{ 5| 2{EF|7 | 2|FF|6 |3 XH=M, X = (M+1) e o(Di1|R|e
Store Stack Pntr sTS 9F | 5| 2|AF|7 | 2iBF|6 |3 SPH =M, SPL > (M +1) UOMER
Indx Reg — Stack Patr TXS 3B 411 X-1-8P eoie o0 oo
Stack Pntr — Indx Reg TSX 304 |1 SP+1—>X LN AR IR IR]

(@ (Bit N) Test: Sign bit of most significant (MS) byte of result = 1?
@ (Bit V) Test: 2's complement overflow from subtraction of ms bytes?

(® (Bit N) Test: Resuit less than zero? (Bit 15 = 1)

@ MOTOROLA

Semiconductor Products Inc.
15

FIGURE 15 — STACK OPERATION, PUSH INSTRUCTION

MPU

ACCA

m+ 1 7F
Previously
Stacked m + 2 63
Data
m+ 3 FD
=
PC ———p PSHA
Next instr.
e ———]

(a) Before PSHA

FIGURE 16 — STA

PC =

1A

3C

D5

EC

/
/

PULA

Next {nstr,

/

(a) Before PULA

Data Bus

16

MPU

ACCA

SP——am—1

New Data

Previously
Stacked
Data

PSHA

Next Instr.

PERATION, PULL iINSTRUCTION

V_

(b) After PSHA

MPU

ACCA

m— 2
m —1
m

SP—» m+1

1A

m+ 2

ac

Previously

Stacked m+3

D5

Data

EC

/
/

PULA

PC ——

Next Instr,

L_/

(b) After PULA

@ MOTOROLA Semiconductor Products Inc.

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS

COND. CODE REG.

RELATIVE INDEX EXTND IMPLIED 5|1afi{3(2}11]0
OPERATIONS MNEMONIC OP| ~ | #|OP, ~ | #|OP| ~ | #{0P ~ | # BRANCH TEST H| I |{N|Z]|]V]|C
Branch Always BRA 20412 None e oo 0|00
Branch If Carry Clear BCC 2414 |2 cC=0 e oo o|0le
Branch !f Carry Set BCS 2514 | 2 C=1 e o 0|0 0 o0
Branch if = Zero BEQ 2714 |2 2=1 e oo o .
Branch If 2> Zero BGE 21 4|2 N®V=0 o oo o
Branch If > Zero BGT 2E1 4 | 2 Z+{N@ V)=0 e sle
Branch If Higher BHI 22|42 C+Z=0 e | o [
Branch if < Zero BLE 2F | 4| 2 Z+{N@V)=1 o e o | o
Branch If Lower Or Same BLS 23| 4| 2 C+Z=1 [} e
Branch If <Zera BLT 2D} 4| 2 N®V=1 e e e
Branch If Minus BMi 2B 4|2 N=1 el oo
Branch If Not Equal Zero BNE 2614 | 2 Z=0 el oo e
Branch If Overflow Clear BVC 2814 | 2 V=0 el o| 0| e
Branch If Overflow Set BVS 291412 V=1 ool 0o o0e
Branch If Plus BPL 2A 4 2 N=0 o o o 0o 0o
Branch To Subroutine BSR 8D | 8§ 2 o/l o 0| 0| 0|0
Jump JMP 6E| 4| 27| 3| 3 el e/ 0o 0o 0|0
Jump To Subroutine JSR AD| 8| 28D 9| 3 o o| ol o|o|e
No Operation NOP 611211 ® o o/ o oo
Return From [nterrupt RTI 3B 101 @
Return From Subroutine RTS 39(5 |1 ol o |0 0| 0|
Software Interrupt SWI 3F 1241 ociil Operations el oo 0|0 6@
Wait for Interrupt* WAL 3E|9 {1 ° o o o e@

*WAL puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

@ (am

is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump (Indexed) instruction,
it adds the offset to the value in the Index Register and
the result as the address of the next instruction to

next instruction to be executed is fetched from
tions immediately following the JMP instructior
Always (BRA) instruction is similar to the J
struction except that the relative addregsi
and the branch is limited to the rang
bytes of the branch instruction it
BRA instruction requires one les
but takes one more cycle to

The effect on program flo
(JSR) and Branch to St
18 through 20. Note t
cremented to be
before it is stacke

ode applies
125 or +127

> (BSR) is shown in Figures
‘Program Counter is properly in-
at the correct return address

es versus 3 bytes) and also executes one cy-

PC Main Program
n 6E=JMP
K = Offset
INDXD n+1 - EXTND
X+K I Next Instruction I
(a) Jump

&

Load Condition Code Register from Stack. {See Special Op
@ {Bit 1) Setwhen interrupt occurs. If previously set, a Non-Mask

e faster than JSR. The Return from Subroutine, RTS, is
used as the end of a subroutine to return to the main pro-
gram as indicated in Figure 21.

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SW! causes the
MPU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented to point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, (Figure 22} is used at the end of an interrupt routine to
restore control to the main program. The SWH instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

pC Main Program Main Program
7E=JMP
" n 2¢=BRA
n+1 {Ky=Next Address
n+1 K = Offset”
n+2 KL= Next Address =

-
K [Next lnstructit&]

n+2)+K I Next Instruction]

MOTOROLA Semiconductor Products Inc.

17

*K = Signed 7-bit value
(b) Branch

FIGURE 18 — PROGRAM FLOW FOR BSR

m—2 SPp—F»m — 2

m—1 m-1 (n +2)H
SP—+ m m (n+2)L

m+ 1 7E m+ 1 7E

TA

___—
—

PC—» n BSR n
n+1 tK = Offset* n+1
n+2 Next Main instr, ’ n+2

/

*K = Signed 7-Bit Value

t Subr. Instr.

{a) Before Execution {b) After Execution

I

(n+2)H

(nh+2}L

7€

7A

J

JSR = AD

K = Offset

Next Main Instr.

. —
r—_’/

1st Subr. instr.

FIGURE 19 — PROGRAM FLOW FOR JSR (EXTENDED), FIGURE 20 — PROGRAM FLOW FOR JSR (INDEXED)
__/
SP—»m — 2
m - 2 SP—#m — 1
m—1 (n +:3)H SP —» m m
SP— m (n+3)L . 7€ 1
m 7E 7A
e
m 7A
7C
L PC— n JSR = AD n
n+1 K = Offset* n+1
PC~—# n n JSR n+2 Next Main Instr, n+2
n+1 n+1 SH = Subr. Addr. /_
S| = Subr. Addr. n+2 S| = Subr. Addr.
K = 8-Bit Unsigned Value PC — X + K
Next Main Instr, n+3 Next Mair Instr,
f f

—

L

(a) Before Execution PC—»S 1st Subr. Instr. *Contents of Index Register

(a) Before Execution

{S formed from

SpandS)) —_

(b) After Execution

{b} After Execution

MOTOROLA Semiconductor Products Inc.
18

PC —Sn

Sn

PC ——

FIGURE 21 — PROGRAM FLOW FOR RTS

(n + 3)H

{n + 3)L

7E

TA

f
/

JSR = 8BD

Sy = Subr. Addr.

Sy = Subr. Addr.

Next Main Instr.

.
—-—'/

Last Subr. instr.

RTS

/_ ‘

{a) Before Execution

X (Index Reg)

X {Index Reg)

PC({n+1)H

PC(n+1)L

[= ——
/

Next Main Instr.

—

Last Inter. Instr.

RTI

/—

{a) Before Execution

SP——» m

m+ 1

Jain Instr.

Last Subr. Instr.

RTS

t\/_

(b) After Execution

/

CCR
ACCB
ACCA
m -3 XH
m—2 Xy
m—1 PCH
SP—t m PCL

-

PC —t— n +

(e _—
/

Next Main instr.

/
_/—7

Last Subr. Instr.

RTI

(b) After Execution

MOTOROLA Semiconductor Products Inc.

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Hardware [nterrupt or
Non-Maskable Interrupt {NMI)

Main Program

Wait For
Software Interrupt Interrupt
Main Program Main Program
n 3F = SWi n 3E = WAI
n+1 | NextMain Instr. n+1 1 Next Main instr. n

Last Prog. Byte

gﬁ,_./ | —

(CCR 4)

Stack
SP— m —7
Stack MPU m — 6 | Condition Code
Register Contents l:> m —5] Acmitr. B
m—41 Acmitr. A

m—3
m — 2

Index Register (X
Index Register

m —1

PC(n + 1)

m PC(n + 150

SWI HDWR
INT

WAI NMI

‘ Restart)

Int.
Mask Set?
(CCR 4)

FFF8

| il

Wait Loop

FFEC | FFFE
Fee Y rere

Interrupt Memory Assignm ent!

FFF8 IRQ MS
FFFY IRQ LS
FFFA SwWi Ms
FFFB SWi LS [:::::::,
FFFC NMI MS
FFFD NMI LS
FFFE Reset MS
FFFF Reset LS

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

@ MOTOROLA

v

Set [nterrupt
Mask (CCR 4)

First Instr. +

Addr. Formed Load Interrupt

By Fetching Vactor Into
2-Bytes From Program Counter
Per. Mem.

Assign.

r Interrupt Program)

1st Interrupt Instr.

Semiconductor Products Inc.
20

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI : N=1 BEQ Z=1 ;
BPL : N=¢ BNE : Z=¢ ;
BVC : V=¢ ; BCC : C=¢ ;
BVS : v=1 . BCS : C=1 ;
BHI : C+Z=¢ ; BLT : N®V =1
BLS : cC+zZ=1 ; BGE : N®V=¢

BLE : Z+{N®V)=1 ;

BGT : Z+(N®V)=¢ ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence {test fails) or
cause a branch to another point in the program (test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BM1} and Branch On Plus (BPL) tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal {BEQ) and Branch On Not Equal
(BNE) are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following a Com-
pare (CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit po
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Bra
Overflow Set (BVS) tests the state of the V bit to de
if the previous operation caused an arithmetic

4. Branch On Carry Clear (BCC) and Bran
(BCS) tests the state of the C bit to determin

operation caused a carry to occur. BCC S are useful

The Condition
within the MPU:
during syste

egister (CCR) is a 6-bit register
useful in controlling program flow
tion. The bits are defined in Figure 25.

The instr. shown in Table 5 are available to the user
for direct: lation of the CCR.

A Ct At instruction sequence operated properly, with
early’ 00 processors, only if the preceding instruction

@ MOTOROLA Semiconductor Products Inc.

VAl

for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest). BCC following a
comparison {(CMP) will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.
The fifth complementary pair, Branch On Higher (

piements to BCC and BCS. BH! tests for both
used following a CMP, it will cause a bran
the accumulator is higher than the oper
BLS will cause a branch if the unsign
accumulator is lower than or the sa

The remaining two pairs are ust
operations in which the value:
complement numbers. This
case in the following sengg
higher or lower; in si
parison is between }
values is between —1

Branch On Lg
Than Or Eq
and Ne V=

esting results of
egarded as signed two's
from the unsigned binary
: igned, the orientation is
0's complement, the com-
- smaller where the range of
d +127.

Zero (BLT) and Branch On Greater
) (BGE) test the status bits for Ne V=1
pectively. BLT will always cause a branch
y Operation in which two negative numbers were
addeg. In"agdition, it will cause a branch following a CMP in
futhe value in the accumulator was negative and the
Brand’ was positive. BLT will never cause a branch follow-
a CMP in which the accumulator value was positive and
operand negative. BGE, the complement to BLT, will
cause-a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
for Ze (N+V)=1 and Z& (N+V) =0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

to precede any SEl instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

FIGURE 256 — CONDITION CODE REGISTER BIT DEFINITION

bs bg b3z by by bp

n[Infz]v]e]

H = Half-carry; set whenever a carry from b3 to bg of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

| = Interrupt Mask; set by hardware or software interrupt or SE| instruction;
cleared by CLi instruction. {Normally not used in arithmetic operations.)
Restored to a zero as a resuit of an RT1 instruction if |, stored on the
stacked is low.

N = Negative; set if high order bit (by) of result is set; cleared otherwis

Z = Zero; set if result = 0; cleared otherwise.

V = Qverlow; set if there was arithmetic overflow as a result. operation;
cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b7) of the
result; cleared otherwise.

TABLE 5 — CONDITION CODE REGISTER INSTRUCTIONS
COND. CODE REG.

5143210
OPERATIONS BOOLEAN QPERATION | H{ L [N [Z V]| C
Clear Carry 2 1 0->C e | e| o |e o R
Clear [nterrupt Mask 2|1 01 ¢ Rie|e e e
Clear Qverflow 2 1 g-v e e e e Rj|e
Set Carry QD[2 | 1 1-C e o e |@ol @] S
Set Interrupt Mask QF [2 1 1 11 o S| e |9 | @
Set Overflow 0B |2 |1 1=V eo|e|eo eS| e
Acmltr A~ CC TAP 062 |1 A—CCR
CCR — Acmitr TPA 072 |1 CCR-A e|ojeje]e]|e

es on 8-bit binary numbers presented to it
la_Bus. A given number (byte) may represent
or an instruction to be executed, depending on
encountered in the control program. The M6800
unique instructions, however, it recognizes and takes
on 197 of the 256 possibilitis that can occur using an
8-bit word length. This larger number of instructions results
from the fact that many of the executive instructions have
more than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU’s internal registers and all of the external memory loca-
tions.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into

@ MOTOROLA Semiconductor Products Inc.

22

ALL) Set according to the contents of Accumulator A.

ADDRESSING MODES

appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the immediate, Direct, Indexed,
and Extended modes may all be used with the ADD instruc-
tion. The proper mode is determined by selecting (hex-
adecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adequate informa-
tion for the selection if an assembler program is used to
generate the opcode. For instance, the Immediate mode is
selected by the Assembler whenever it encounters the ‘"
symbol in the operand field. Similarly, an X"’ in the operand
field causes the Indexed mode to be selected. Only the
Relative mode applies to the branch instructions, therefore,
the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes ““Accumulator Addressing’”” Mode}

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

FIGURE 26 — ADDRESSING MODE SUMMARY

Direct: n DO Instruction

Example: SUBB Z

Addr. Range = 0—265 n+1 Z = Oprnd Address
& n+2 Next Instr.
L]
L]
L]
(K = One-Byte Oprnd) z K = Operand
OR
(K = Two-Byte Oprnd} z K¢y = Operand
Z+1

A\ 1 2 $2565, Assembler Select DirecgMo
If Z>> 285, Extended Mode is se

Extended: n FO Instruction

Example: CM Z4 = Oprnd Address

n+2 Z = Oprnd Address
n+3 Next instr.
L]
L]
L]
(K = One-Byte Oprnd) zZ K = Operand
OR
(K = Two-Byte Oprnd) z K4y = Operand
Z+1 Ky = Operand

MOTOROLA Semiconductor Products Inc.

23

“operands’’ but the space between them and the operator
may be omitted. This is commonly done, resulting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12 TO

or
ADDB MEM12 ADD CONTENTS OF MEM12
The example used earlier for the test inst
applies to the accumulators and uses th:
dressing mode”’ to designate which o
is being tested:

‘acéumulator ad-
"accumuliators

Immediate: Instruction
Example: LDAA #i _
(K = One-Byte Op K = Operand
n+2 Next inst.
OR
wo-Byte Oprnd) n i
DX, and LDS) Instruction
N
n+1 Ky = Operand
n+2 K| = Operand
n+3 Next Instr,
Relative: n Instruction
Example: BNE K n+1 *+K = Brnch Offset
(K = Signed 7-Bit Value) n+2 Next instr. é
Addr. Range: ®
—125 to +129
Relative to n.
®
®
(n +2) K Next Instr. &

é If Brnch Tst Faise, & If Brnch Tst True,

Indexed: n Instruction
Exampte: ADDA Z, X n+1 Z = Offset
Addr. Range: n+2 Next Instr.
0—255 Relative to
Index Register, X °

®

®
(Z = 8-Bit Unsigned X+2Z K = Operand
Value)

Operator Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address informa-
tion that is required, that is, "inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of “accumulator addressing,” causes the contents
of accumulator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — in the immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Comment
LOAD 25 INTO ACCA

Operator Operand
LDAA #25

causes the MPU to “immediately load accumulator A with
the value 25'; no further address reference is required. The
immediate mode is selected by preceding the operand value

with the "“#' symbol. Program flow for this addressing mede -

is illustrated in Figure 29.

The operand format allows either properly defi
bols or numerical values. Except for the instru
LDX, and LDS, the operand may be any value,
to 255. Since Compare Index Register (C
Register (LDX), and Load Stack Pointer (
values, the immediate mode for thes
quire two-byte operands. In th

FIGURE 27 — INHEREN

INDEX

| G—

RAM

| =

P;Sgg:y PROGRAM
MEMORY
PC INSTR K PC = 5000 INX K
GENERAL FLOW EXAMPLE

@ MOTOROLA Semiconductor Products Inc.

mode, the '“address’” of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — !n the Direct
and Extended modes of addressing, the operand field of the
source statement is the address of the value that o be
operated on. The Direct and Extended modes di by in
the range of memory locations to which they t the
MPU. Direct addressing generates a sin “"operand
and, hence, can address only memory |gcs 0 through
255; a two byte operand is generated #ended address-
ing, enabling the MPU to reach th ng memory loca-
tions, 256 through 6553b. An e
and its effect on program flo

illtistrated in Figure 30.
he opcode for the instruc-
location 5004 (Program

sets the program counter equal
00 in the example) and fetches the

 retrieved from locations 100 and 101. Table 8
cycle-by-cycie operation for the direct mode of
nded addressing, Figure 31, is similar except that a
-byte address is obtained from locations 5007 and 5008
ter the LDAB (Extended) opcode shows up in location

'5006. Extended addressing can be thought of as the “stan-

dard” addressing mode, that is, it is a method of reaching
any place in memory. Direct addressing, since only one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 9 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

MPU MPU
ACCB
15 —»16
RAM RAM
PROGRAM PROGRAM
MEMORY MEMORY
PC NSTR K PC = 5001 incs K

GENERAL FLOW EXAMPLE

—

Relative Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU’s branch instructions, specifies a
memory location relative to the Program Counter’s current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"relative’’ address {see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, “0" =plus and 1" =minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of + 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that wouid be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. If D is defined as the address of the
branch destination, the range is then:

(PC+2)—127=D={PC+2)+127
or
PC-125<D=PC+129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itself. For transferring control beyond this range,

the unconditional jump (JMP), jump to subroutine (JSR},
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. !f that bit is “/0,” in-
dicating a non-zero result, the MPU continues execution
with the next instruction {in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient-

control program is normally in read-only memor
be changed, the relative address used in executi

2xed addressing,
iends on the current
urce statement such as

Indexed Addressing Mode —
the numerical address is variable ¢
contents of the Index Registeri

Comment
T A IN INDEXED LOCATION

Operator Operan
STAA X

causes the MPU

Address Mode Cycle | VMA
and Instructions Cycles # Line Address Bus Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2 2 1 Op Code Address + 1 1 Op Code of Next Instruction
ASR INC SEV ’
CBA LSR TAB
CLC NEG TAP
CL1 NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 1 Op Code
IIDNESX 4 2 1 j¢ Address + 1 1 Op Code of Next Instruction
INX 3 0 yus Register Contents 1 Irrelevant Data (Note 1)
4 ew Register Contents 1 Irrelevant Data {(Note 1)
PSH 1 Op Code Address 1 Op Code
Op Code Address + 1 1 Op Code of Next Instruction
1 Stack Pointer 0 Accumulator Data
0 Stack Pointer — 1 1 Accumulator Data
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data {(Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 0 New Index Register 1 Irrelevant Data {Note 1)
1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 4] Index Register 1 {rrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (Note 2)
5 3 0 Stack Pointer 1 Irrelevant Data {(Note 1}
4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction {Low
Order Byte)

MOTOROLA Semiconductor Products Inc.

25

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION (CONTINUED)

Address Mode Cycle| VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 |Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 | Return Address {Low Order Byte)
4 1 | Stack Pointer — 1 0 | Return Address {High Order Byte
9 5 1 | Stack Pointer — 2 0 { Index Register (Low Order
6 1 | Stack Pointer — 3 0 | Index Register (High Ord
7 1 | Stack Pointer — 4 0 [Contents of Accumulat
8 1 |Stack Pointer ~ 5 0 | Contents of Accumuyj
9 1 | Stack Pointer — 6 (Note 3) 1 | Contents of Con egister
RTI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Irrelevant
3 0 | Stack Pointer 1
4 1 | Stack Pointer +1 1
10 5 1 | Stack Pointer + 2 ts of Accumulator B from Stack
6 1 | Stack Pointer + 3 tents of Accumulator A from Stack
7 1 |Stack Pointer + 4 Index Register from Stack (High Order
Byte)
8 1 |Stack Pointer + 5 index Register from Stack {Low Order
Byte)
g9 1 |Stack Pointer + 6 Next Instruction Address from Stack
(High Order Byte)
10 1 |Stack Pointer +7 1 | Next Instruction Address from Stack
{Low Order Byte)
SWi 1 1 [.Op Code
2 1 | Irrelevant Data (Note 1)
3 0 | Return Address {Low Order Byte}
4 0 | Return Address {High Order Byte)
5 0 | Index Register (Low Order Byte)
12 6 0 | Index Register (High Order Byte)
7 0 | Contents of Accumulator A
8 ack Pointer — 5 0 | Contents of Accumulator B
Stack Pointer — 6 0 | Contents of Cond. Code Register
Stack Pointer — 7 1 |lrrelevant Data (Note 1)
Vector Address FFFA (Hex) 1 | Address of Subroutine {High Order
Byte)
Vector Address FFFB (Hex) 1 | Address of Subroutine (Low Order
Byte)
Note 1. dressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
"capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. by the MPU,
Note 3. U is waiting for the interrupt, Bus Availabte will go high indicating the following states of the control lines: VMA is

ter (recall that the label "X’ is reserved to designate the
Index Register). Since there are instructions for manipulating
X during program execution (LDX, INX, DEC, etc.}, the In-
dexed addressing mode provides a dynamic "‘on the fly’” way
to modify program activity.

The operand field can also contain a numerical value that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB (Indexed) opcode in

26

@ MOTOROLA Semiconductor Products Inc.

ess Bus, R/W, and Data Bus are all in the high impedance state.

location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-255
as in the example. In the earlier example, STAA X, the
operand is equivalent to O, X, that is, the O may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the indexed Mode of Address-

ing.

FIGURE 29 — IMMEDIATE ADDRESSING MODE

FIGURE 30 — DIRECT ADDRESSING MODE

MPU MPU MPU MPU
ACCA ACCA
RAM RAM RAM RAM
<: <: ADDR DATA ADDR = 100
PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY
/\A T S— N—
PC INSTR pC =5002| LDA A pC INSTR
DATA 25 K PC + 1 ADDR]
ADDR =0 < 255
GENERAL FLOW EXAMPLE GENERAL FLOW EXAMPLE
TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCLE
Address Mode Cycle |[VMA
and Instructions Cycles # Line Address Bus Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
238 égﬁ 2 2 1 Op Code Address + 1 Operand Data
BIT SBC
CMP SUB \
CPX 1 Op Code Address ™ 1 Op Code
tgi 3 2 1 1 Operand Data (High Order Byte)
3 1 1 Operand Data (Low Order Byte)
DIRECT MODE CYCLE-BY-CYCLE OPERATION
Address Mode R/W
and Instructions Cycles Address Bus Line Data Bus
ADC EOR 1 | Op Code Address 1 | OpCode
ADD LDA ¢
AND ORA 1 Op Code Address + 1 1 Address of Operand
BIT SBC 3 1 Address of Operand 1 Operand Data
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
ll:B?(2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)
ST 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address 0 Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 irrelevant Data {Note 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 0 Register Data (Low Order Byte)

Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

MOTOROLA Semiconductor Products Inc.

27

ADDR

PC

FIGURE 31 — EXTENDED ADDRESSING MODE

MPU

<

RAM

q

DATA

ADDR = 300

%

PROGRAM
MEMORY

Q\

INSTR PC = 5006

ADDR

ADDR

[—< 5009

ADDR > 256

GENERAL FLOW

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

MPU
ACCB

=]

RAM

——

45

%

PROGRAM
MEMORY

—

LDA B

300 K

/'\

EXAMPLE

Note 2.

Address Mode Cycle | vmA R/W
and Instructions Cycles * Line Address Bus Line Data Bus
STS 1 1 Op Code Address
STX 2 1 Op Code Address + 1 Address of Operand (High Order Byte)
6 3 1 Op Code Address + 2 Address of Operand (Low Order Byte}
4 o] Address of Operand Irrelevant Data (Note 1)
5 1 Address of Operand 0 Operand Data {High Order Byte)
[1 Address of Operand + 1 0 Operand Data {Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 Address of Subroutine {High Order Byte)
3 1 1 Address of Subroutine {Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pojnter 0 Return Address {Low Order Byte)
6 1 r—1 4] Return Address {High Order Byte)
7 ¢] St -2 1 trrelevant Data (Note 1}
8 o] : “Address + 2 1 Irrelevant Data (Note 1}
9 1 Lode Address + 2 1 Address of Subroutine (Low Order Byte)
JMP Op Code Address 1 Op Code
Op Code Address + 1 1 Jump Address {High Order Byte}
Op Code Address + 2 1 Jump Address {Low Order Byte)
ADC EOR Op Code Address 1 Op Code
QB[D) (lSDRﬁ 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
4 1 Address of Operand 1 Operand Data
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data (Low Order Byte)
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address (High Order Byte}
3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 0 Operand Destination Address 1 Irrelevant Data {Note 1)
5 1 Operand Destination Address 0 Data from Accumulator
1 1 Op Code Address 1 Op Code
(A:EE ggf 2 1 Op Code Address + 1 1 | Address of Operand {High Order Byte)
COM ROR 6 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
PNECC ST 4 1 Address of Operand 1 Current Operand Data
5 0] Address of Operand 1 Irrelevant Data (Note 1}
6 1/0 Address of Operand ¢} New Operand Data (Note 2)
(Note
2)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
For TST, VMA = 0 and Operand data does not change.

@ MOTOROLA Semiconductor Products Inc.

28

e

.

FIGURE 32 — RELATIVE ADDRESSING MODE

MPU MPU
RAM }AM
Program Program
Memory Memory
PC Instr.
Offset PC 5008 BEQ

(PC + 2){ Next Instr.

15

PC 5010]| Next instr.

—\A

‘_\\
—-\

(PC + 2) + (Offset)]| Next Instr.

PC 5025} Next instr,

MPU

ADDR = INDX
+ OFFSET

ADDR = 405 59

PROGRAM
MEMORY

PC = 5006 LDAB

5

-~

-
-

OFFSET < 255
GENERAL FLOW

—

EXAMPLE

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address M Cycle | VMA R/W
and Instrucgi Cycles # Line Address Bus Line Data Bus

1 1 |Op Code Address 1 |Op Code

4 2 1 |Op Code Address + 1 1 |Branch Offset
3 0 |Op Code Address + 2 1 |irrelevant Data {(Note 1)
4 0 |Branch Address 1 |Irrelevant Data {Note 1)
1 1 |Op Code Address 1 |Op Code
2 1 }Op Code Address + 1 1 |Branch Offset
3 0 |Return Address of Main Program 1 Jirrelevant Data (Note 1)

8 4 1 |Stack Pointer 0 |Return Address (Low Order Byte)
5 1 |Stack Pointer — 1 0 |[Return Address (High Order Byte)
6 0 |Stack Pointer — 2 1 [irrelevant Data (Note 1}
7 0 |[Return Address of Main Program 1 |Irrelevant Data (Note 1}
8 0 |Subroutine Address 1 |lrrelevant Data (Note 1)

Note 1.

If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

28

MOTOROLA Semiconductor Products Inc.

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

Address Mode Cycle | VMA R/W
and |nstructions Cycles # Line Address Bus Line Data Bus
INDEXED
JMP 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data {(Note 1)
4 0 Index Register Pius Offset (w/o Carry) 1 Irrelevant Data (Note 1)
ADC EOR 1 1 Op Code Address 1 Op Code
::BB égAA 2 1 Op Code Address + 1 1 Offset
BIT SBC 5 3 0] Index Register 1 irrelevant Data (Not:
CMP suB 4 0 Index Register Plus Offset (w/o Carry) 1 trrelevant Data {
5 1 Index Register Plus Offset 1 Operand Dat
CPX 1 1 Op Code Address 1 Op Code
tgi 2 1 Op Code Address + 1 1
6 3 0 index Register 1 a (Note 1)
4 0 Index Register Plus Offset {w/o Carry) 1 'Data (Note 1)
5 1 tndex Register Plus Offset 1 d Data (High Order Byte)
6 1 index Register Plus Offset + 1 1 Jperand Data (Low Order Byte)
STA 1 1 Op Code Address Op Code
2 1 Op Code Address + 1 Offset
6 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset {w/o 1 Irrelevant Data {Note 1)
5 0 Index Register Plus Offset 1 trrelevant Data {(Note 1)
6 1 index Register Plus Offgs 0 Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
éfg 'I:SGL 2 | 1 | OpCode Address: 1 | Offset
g(é(l\:ﬂ ?é)_ll_:i 7 3 0 Index Register r 1 Irrelevant Data (Note 1)
NG 4 0 Index Register Plus Offset {w/o Carry) 1 Irrelevant Data (Note 1)
5 1 Index Ptus Offset 1 Current Operand Data
6 0 er Plus Offset 1 Irrelevant Data (Note 1)
7 1/0 gister Plus Offset 0] New Operand Data (Note 2)
(Note
2)
STS 1 p Code Address 1 Op Code
STX Op Code Address + 1 1 Offset
Index Register 1 Irrelevant Data {Note 1)
0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1}
0] Index Register Plus Offset 1 Irrelevant Data {Note 1)
6 1 Index Register Plus Offset 0 Operand Data {High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data (Low Order Byte)
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0] Index Register 1 Irrelevant Data (Note 1)
4 1 Stack Pointer 0 Return Address {Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (Note 1)
7 0 index Register 1 Irrelevant Data {Note 1)
8 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1}

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA Semiconductor Products Inc.
30

o~

r—

PACKAGE DIMENSIONS

ﬁﬁﬁﬁﬁhhhﬂﬁﬁhﬁﬁhhhﬁﬂg
40

i 20
UV U U U U U U U OIS

i- A
[

N

AR W

CASE 734-04

(CERDIP}

MILLIMETERS| _ INCHES
DIM[MIN | MAX | MIN | MAX NOTES
A [51.31] 53.24 | 2.020 | 2.096
B | 1270 1549 | 0500 | G610
C | 406 | 584 | 0.160 | 0.230
D | 0:38 | 0.56 | 0.015 | 0.022 1S SEATING PLANE.
F | 127 | 165 | 0.050 | 0.065 TO CENTER OF LEADS WHEN
3 254 BSC 0.100 BSC . €D PARALLEL.
J [020 [030] 0.008] 0.0y IMENSIONS A AND B INCLUDE
K |318] a06 |01 | § gfnréicslljgmns AND TOLERANCIN
L | 15248SC - 6
W 5 PER ANS! Y145, 1973,
N | 051 [.27

ﬂﬁﬁﬁﬁﬁﬁhhhhhﬁﬁﬁﬁﬁ{\ﬁg
40

D

—lHl— —Jal—

SEATING
PLA

MILLIMETERS

MIN | MAX

=izl xfe|x|o ncnwblg
=
%
&
&

CASE 711-03
(PLASTIC)

NOTES:

1.

RN

POSITIONAL TOLERANGE OF LEADS (D),
SHALL BE WITHIN 0.25 mm (0.010} AT
MAXIMUM MATERJAL CONDITION, IN
RELATION TD SEATING PLANE AND
EACH OTHER,

DIMENSION L TO CENTER DF LEADS
WHEN-FDRMED PARALLEL.

. DIMENSION B DOES NOT INCLUQE

15.24 BSC 0.600 85C MOLD FLASH,
Q© T18° [09 [{50
0.51 | 1.02 | 0.020 | 0.040
CASE 715-05
(CERAMIC)
MILLIMETERS | INCHES NOTES:
DIM [MIN_[MAX | MIN | MAX 1. DIMENSIONCAT IS OATUM,
[A_[5029 5131 | 1880 | 2.020 2. POSITIONAL TOLERANCE FOR LEADS:
1 576 | 0610

[elo2s 0o @lT[A@)

3. [T 1S SEATING PLANE.

4. DIMENSION “L” TO CENTER OF LEADS
WHEN FORMED PARALLEL.

6. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5, 1973,

- Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

31

MOTOROLA Semiconductor Products Inc.

— MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 ¢ A SUBSIDIARY OF MOTOROLA INC.

Al1532-4 PRINTED IN USA 3-84 IMPERTAL LITHO C20204 18,000

DS947LR2

