
vii

CONTENTS

About the Authors xi

Foreword xv

Introduction xvii

Chapter 1 The Propeller Chip Multicore Microcontroller 1
Introduction 1
Multicore Defi ned 2
Why Multicore? 3
Multicore Propeller Microcontroller 3
Summary 14
Exercises 14

Chapter 2 Introduction to Propeller Programming 15
Introduction 15
What’s the Secret? 16
Ready to Dive In? 17
Let’s Get Connected! 17
Your First Propeller Application 22
A Blinking LED 25
RAM versus EEPROM 27
A More Powerful Blink 28
All Together Now 32
Wrapping It Up 34
Timing Is Everything 38
Sizing the Stack 41
Propeller Objects and Resources 45
Summary 48
Exercises 49

Chapter 3 Debugging Code for Multiple Cores 51
Propeller Features That Simplify Debugging 52
Object Design Guidelines 56
Common Multiprocessor Coding Mistakes 58
Survey of Propeller Debugging Tools 78
Debugging Tools Applied to a Multiprocessing Problem 86
Summary 116
Exercises 117

Chapter 4 Sensor Basics and Multicore Sensor Examples 119
Introducing Sensors by Their Microcontroller Interfaces 119
On/Off Sensors 122
Resistive, Capacitive, Diode, Transistor, and Other 137
Pulse and Duty Cycle Outputs 144
Frequency Output 153
Voltage Output 156
Synchronous Serial 168
Asynchronous Serial 174
Questions about Processing and Storing Sensor Data 182
Summary 187
Exercises 188

Chapter 5 Wirelessly Networking Propeller Chips 189
Introduction 189
Overview of Networking and XBee Transceivers 191
Hardware Used in This Chapter 193
Testing and Confi guring the XBee 193
Sending Data from the Propeller to the PC 204
Polling Remote Nodes 208
Using the XBee API Mode 214
A Three-Node, Tilt-Controlled Robot with Graphical Display 221
Summary 231
Exercise 232

Chapter 6 DanceBot, a Balancing Robot 235
Introduction 235
The Challenge 235
Building the DanceBot 238
Controlling the DanceBot 255
Summary 255
Exercises 255

Chapter 7 Controlling a Robot with Computer Vision 257
Introduction 257
Understanding Computer Vision 258
PropCV: A Computer Vision System for the Propeller 259
Apply Filters and Track a Bright Spot in Real Time 265
Following a Line with a Camera 270
Track a Pattern 272
State-of-the-Art Computer Vision with OpenCV 274
OpenCV and Propeller Integration 276
Summary 279
Exercises 280

Chapter 8 Using Multicore for Networking Applications 281
Introduction 281
Ethernet and Internet Protocols 281
EtherX Add-in Card for the Propeller-Powered HYDRA 287

viii CONTENTS

Creating a Simple Networked Game 312
Summary 318
Exercises 318

Chapter 9 Portable Multivariable GPS Tracking and
Data Logger 319

Introduction 319
Overview of the Sensors 322
Main Spin Object 344
Experiment 346
Summary 351
Exercises 352

Chapter 10 Using the Propeller as a Virtual Peripheral
for Media Applications 353

Introduction 353
Overview, Setup, and Demo 354
System Architecture and Constructing the Prototype 362
Remote Procedure Call Primer 366
Virtual Peripheral Driver Overview 370
Client /Host Console Development 372
Exploring the Command Library to the Slave/Server 387
Enhancing and Adding Features to the System 389
Exploring Other Communications Protocols 389
Summary 396
Exercises 396

Chapter 11 The HVAC Green House Model 399
Introduction 399
Exploring the Problem 400
The HVAC Green House Model 402
Summary 423
Exercises 425

Chapter 12 Synthesizing Speech with the Propeller 427
Introduction 427
Using Spectrographs to “See” Speech 427
Exploring the VocalTract Object 431
Summary 441
Exercises 442

Appendix A Propeller Language Reference 443
Categorical Listing of Propeller Spin Language Elements 443
Categorical Listing of Propeller Assembly Language 449
Reserved Word List 457

Appendix B Unit Abbreviations 459

Index 463

CONTENTS ix

PROGRAMMING AND
CUSTOMIZING THE

MULTICORE PROPELLERTM

MICROCONTROLLER

189

5
WIRELESSLY NETWORKING

PROPELLER CHIPS

Martin Hebel

Introduction
This chapter looks at how your Propeller can be part of a wireless sensor network
(WSN) to share data through wireless communications. WSNs are not intended for large
data transfers, such as fi les, but small amounts of data back and forth. The Propeller is
an amazing controller, and its ability to perform parallel processing makes data com-
munications fast and simple for use in a WSN. While the main task is being carried out,
other cogs can be sending or receiving data on the network.

With a lot to discuss and learn along the way, the fi nal completed project of this
chapter, depicted in Fig. 5-1, will be a three-node network that has:

■ A tilt-controller node transmitting drive and control data.
■ A robot (bot) node that receives the data; has a compass and ultrasonic range fi nder;

and is transmitting data on drive, range, and direction. It also has the ability to “map”
what is in front of it for remote display.

■ A node that accepts data from the bot and displays the information graphically on
the TV.

This chapter highlights communications to, from, and between Propeller chips using
XBee® transceivers from Digi International. Topics covered in this chapter include:

■ Networking and XBee overview
■ PC-to-XBee communications
■ Confi guring the XBee manually and with the Propeller

■ PC-to-Propeller and Propeller-to-Propeller communications with the XBee
■ Transparent and API data modes of the XBee
■ Forming a multi-node Propeller network for robot control and monitoring

This chapter will work through several examples of communications, but really, the
intent and focus is on how to perform the communications with the Propeller. It is left to
you, the reader, to take the principles discussed, combine them with your imagination or
needs, and develop a Propeller network of your own. Many other projects and informa-
tion from this text can be combined with this chapter for truly amazing projects!

 Figure 5-1 Three-node network for monitoring and control.

190 WIRELESSLY NETWORKING PROPELLER CHIPS

Resources: Demo code and other resources for this chapter are available
for free download from ftp.propeller-chip.com/PCMProp/Chapter_05.

Overview of Networking
and XBee Transceivers
The ability to communicate wirelessly has had such a signifi cant impact on personal
and data communications that many today cannot envision life without the use of cell
phones, Wi-Fi networks and Bluetooth® features in personal devices. The ability of
these devices to communicate on their respective networks (even your Bluetooth headset
forms a network with the player) relies on key features:

■ The use of addressing to send data to specifi c destination devices and to identify the
source of the data

■ The use of framing and packets to encompass the data itself in a “package” with
necessary information (such as the destination address)

■ The use of error checking to ensure the data arrives at the destination without
errors

■ The use of acknowledgements back to the source so that the sender knows the data
arrived correctly at its destination

Simple two-device (or two-node) systems may not need all these features. It’s really
dependent on the needs of the network, but if ensuring data arrives correctly to an
intended destination is vital, then these features are a must.

The XBee uses a fully implemented protocol and communicates on a low-rate wireless
personal area network (LR-WPAN), sometimes referred to as a wireless sensor network
(WSN) with RF data rates of 250 kbps between nodes. For the seasoned network readers,
LR-PANs operate using IEEE 802.15.4, a standardized protocol similar to Wi-Fi (IEEE
802.11) and Bluetooth (IEEE 802.15.1). The XBee is currently available in the XBee
802.15.4 series and the XBee ZigBee/Mesh series. The 802.15.4 series (often referred
to as Series 1) is the simplest and allows point-to-point communications on a network.
The ZigBee/Mesh series (Series 2) uses the ZigBee® communications standard on top
of 802.15.4 for WSNs to provide self-healing mesh networks with routing. This chapter
will focus exclusively on the XBee 802.15.4 and its higher-power sibling the XBee-Pro
802.15.4. These will be referred to as simply the XBee.

Key benefi ts of using the XBee include the ability to perform addressing of individual
nodes on the network, data is fully error-checked and delivery acknowledged, and data can
be sent and received transparently—simply send and receive data as if the link between
devices were directly wired. XBees operate in the 2.4 GHz frequency spectrum.

An image and a drawing of an XBee are shown in Fig. 5-2. The XBee is a 20-pin
module with 2.0 mm pin spacing. This can cause some aggravation when working with
breadboards and protoboards, which have 2.54 mm (0.1 in) pin spacing, but solutions
to this will be addressed.

OVERVIEW OF NETWORKING AND XBee TRANSCEIVERS 191

192 WIRELESSLY NETWORKING PROPELLER CHIPS

Don’t get scared! The XBee has a large number of pins, but for most of this chapter,
we will use only four:

■ Vcc, Pin 1: 2.8 V to 3.4 V (Propeller Vdd voltage)
■ GND, Pin 10 (Propeller Vss)
■ DOUT, Pin 2: Data out of the XBee (data received by Propeller)
■ DIN, Pin 3: Data into the XBee (data to be transmitted by Propeller)

Other pins include a sleep pin (Sleep_RQ) for low power consumption, fl ow control
pins (RTS/CTS), analog-to-digital (ADC) inputs, digital inputs and outputs (DIO),
among others. This chapter will discuss some of these other pin functions, but the focus
is on simply sending and receiving data between the Propeller and XBees using the
DOUT and DIN pins.

Note: Please see the XBee manuals on Digi’s web site for in-depth discussion
and information: www.digi.com and included in the distribution fi les.

The XBee has a current draw of around 50 mA and a power output of 1 mW with a
range of about 100 m (300 ft) outdoors. The XBee-Pro has a current draw of 55 mA
when idle or receiving data and 250 mA when transmitting. With a power output
of 100 mW, it has a range outdoors of 1600 m (1 mi) line sight. They both have sleep

 Figure 5-2 XBee module and pins.

www.digi.com

modes, with current draws of less than 10 µA, but can’t send or receive data while
sleeping. There are different antenna styles as well, though the whip antenna is prob-
ably the most popular.

Tip: Don’t get too excited about the distances. Line-of-sight communications
rely on height as well as distance. Due to ground reflections and deconstructive
interference (Fresnel losses), the heights of the antennas need to be taken
into account. For good communications at 100 m, a height of 1.4 m (4.6 ft)
is recommended.

Information: For more insight on distance, height issues, and calculations,
search the web for “Fresnel clearance calculation.”

Though the XBee is ready to go right out of the box, it is feature-rich and can be
confi gured for specifi c applications.

Hardware Used in This Chapter
The following is a list of hardware used in this chapter and their sources, but as you read
through, you’ll fi nd it’s not written in stone. We recommend you read through the chapter
to understand how the hardware is used before making an expensive investment.

■ 2—Propeller Demo Boards (Parallax)
■ 1—Propeller Proto Board (Parallax)
■ 1—Prop Plug (Parallax)
■ 3—XBee 802.15.4 (Series 1) modem/transceivers (www.digikey.com)
■ 3—AppBee-SIP-LV XBee carrier boards (www.selmaware.com or other styles avail-

able on www.sparkfun.com)
■ 1—PING))) ultrasonic sensor (Parallax)
■ 1—HM55B compass module (Parallax)
■ 1—Memsic 2125 accelerometer/inclinometer (Parallax)
■ 1—Boe-Bot chassis (Parallax)
■ 1—Ping Servo Mounting Bracket Kit (Parallax)
■ 2—Additional Boe-Bot battery holders or other portable battery source
■ Miscellaneous resistors

Testing and Confi guring the XBee
An important step in constructing a complex project is to make sure the individual devices
work properly and their use is understood. In this section, the XBees will be tested, con-
fi guration settings explored, and means of confi guring these devices discussed.

TESTING AND CONFIGURING THE XBee 193

www.digikey.com
www.selmaware.com
www.sparkfun.com

194 WIRELESSLY NETWORKING PROPELLER CHIPS

Figure 5-3 shows the diagram for this test. A PC will communicate directly to an
XBee, and a remote XBee is set up with a loop-back jumper. In the loop-back, the
DOUT line of the XBee is tied to its DIN so that any RF data it receives is looped back
into the device to send it out again via RF.

The following is a list of the hardware and software used for this test, but there are
many ways to achieve the same results. Essentially, a means is needed to communicate
to an XBee serially from the PC and means to supply power to the base and remote
XBees.

Equipment and other software:

■ 2—Propeller Demo Boards (Parallax)
■ 2—XBees (www.digikey.com)
■ 1—Prop Plug (Parallax)
■ 1—AppBee-SIP-LV from Selmaware Solutions (www.selmaware.com)
■ X-CTU software from Digi International (www.digi.com)

The AppBee-SIP-LV is simply a carrier board for the XBee providing 3.3 V power
from the Demo Board and access to I/O in a breadboard-compatible header. Figure 5-4
shows the AppBee-SIP-LV and a drawing of the physical connections to the XBee.

 Figure 5-3 Confi guration and testing diagram.

www.digikey.com
www.selmaware.com
www.digi.com

Tip: Another good source of carrier boards and other XBee accessories is
www.sparkfun.com. Search their web site for XBee.

ESTABLISHING PC-TO-XBee COMMUNICATIONS

The fi rst task is to communicate with the XBee directly from the PC for confi guration
changes and monitoring. Figure 5-5 shows two ways of establishing communications:
using the Propeller as a serial pass-through device or communicating directly with the
XBee using the Prop Plug as a serial interface. Either method allows the serial connec-
tion between the PC and the transceiver.

If you are using the Propeller to pass serial communications, the program Serial_
Pass_Through.spin should be downloaded using F11. If the serial communications
port is closed in the software, the Propeller may be cycled when the DTR is toggled,
reloading the Propeller from EEPROM. Using F11 ensures a cycling of the Propeller
will reload the correct program.

The program itself is simple but highlights the power of Propeller. Microcontrollers
that provide multiserial communications are diffi cult to fi nd. Two instances of the

TESTING AND CONFIGURING THE XBee 195

 Figure 5-4 AppBee-SIP-LV carrier board and drawing with physical connections.

www.sparkfun.com

196 WIRELESSLY NETWORKING PROPELLER CHIPS

FullDuplexSerial object establish the transparent link. Data from the PC is sent to the
XBee, and data from the XBee is sent to the PC; with each method in separate cogs, it
allows transfer speeds tested up to 115,200 bps. But for now we need to stick to 9600 bps
since that is the default confi guration on the XBee.

OBJ
 PC : "FullDuplexSerial"
 XB : "FullDuplexSerial"

Pub Start

 PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC
 XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee
 cognew(PC_Comms,@stack) ' Start cog for XBee--> PC comms

 Figure 5-5 Two methods of PC communications
with XBee.

 PC.rxFlush ' Empty buffer for data from PC
 repeat
 XB.tx(PC.rx) ' Accept data from PC and send to XBee

Pub PC_Comms
 XB.rxFlush ' Empty buffer for data from XB
 repeat
 PC.tx(XB.rx) ' Accept data from XBee and send to PC

Caution: Watch the I/O numbers! If another confi guration is used, modify the
pin numbers in the CON section of the code.

If you are using the Propeller for passing serial data:

✓ Connect the hardware as shown in Fig. 5-5a.
✓ Download the Serial_Pass_Through.spin program to the Propeller using F11.

If you are using the Prop Plug to communicate directly, connect it as shown in Fig. 5-5b.

✓ If you haven’t yet, download and install the X-CTU software available in the distrib-
uted fi les or from Digi’s web site. There is no need to check for updates—this can
take a long time and the basic installation has all that is needed for now.

✓ Open the X-CTU software. It should look similar to Fig. 5-6. Select the COM port
that your Propeller is communicating through.

✓ At this point, use the Test/Query pushbutton to test communications with the
XBee.

Caution: As always, only one software package can access the same COM
port at any time. You’ll get used to slapping your head when you can’t communicate
as you go between the Propeller tool software and X-CTU!

Tip: If communications fail, recheck your hardware and pin numbers, reload the
Propeller program, and verify no other software is using the COM port. If you
continue to have problems and it is not a brand-new XBee, the serial baud rate
may have been changed or the XBee may be in API mode—test various baud
rates and check the API box to test.

If all went well, you may have seen the RX and TX lights blink on the board and
received a message informing you communications were okay, along with the fi rmware
version on the XBee.

✓ Select the Modem Confi guration tab on the X-CTU software.
✓ If your XBee was reconfi gured, this would be a good time to click the Restore button

to return it to the default confi guration.
✓ Click the Read button.

TESTING AND CONFIGURING THE XBee 197

198 WIRELESSLY NETWORKING PROPELLER CHIPS

The screen should have loaded with the confi guration setting of the XBee as shown
in Fig. 5-7. Many of them will be explained shortly—we’re only going to use a handful
of the settings available. But for now, let’s test out some wireless communications.

TALKING XBee TO XBee USING LOOP-BACK

With a second XBee, supply power and connect a jumper between DOUT and DIN (or RX
and TX on the carrier board), as illustrated in Fig. 5-8, using the AppBee-SIP-LV car-
rier board (or similar). Do not connect to any Propeller I/O at this time—we are simply
using the board for power. We used a second Demo Board for this test.

✓ Power up the remote XBee with loop-back jumper in place.
✓ Click the X-CTU Terminal tab.
✓ Type “Hello World!”

 Figure 5-6 X-CTU software showing COM port selection.

You should see the TX and RX lights fl ashing on both units (if using the AppBee carrier)
and text in your Terminal window. You should see two of each character—what you
typed in blue and what was echoed back and received in red—as shown in Fig. 5-9.

Tip: Having problems? If you don’t see any data returning, be sure the remote
XBee is connected properly. If it is not a new XBee, if may have been confi gured
differently. Turn off both units and swap the XBees. After powering up, “Restore”,
the XBee to default confi guration using the X-CTU button, read the second XBee
using the X-CTU software, and test again.

TESTING AND CONFIGURING THE XBee 199

 Figure 5-7 X-CTU software showing XBee confi guration settings.

200 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-8 Remote XBee connections for loop-back.

 Figure 5-9 X-CTU Terminal window.

Tip: Beyond testing purposes, the X-CTU software is not essential, and any
terminal program or other serial software package may be used, such as the PST
Debug-LITE software used in previous chapters. Just ensure baud rates match
between the software and the devices.

As noted, each character is transmitted as it is typed. The XBee can actually send a string
of characters at once (up to 100), but it only waits so long before assembling a packet to be
transmitted. We type too slowly to get multiple characters quickly enough with the default
confi guration, but we can assemble a packet of characters that will be kept together:

✓ On the X-CTU Terminal window, click Clear screen, and then click Assemble Packet.
✓ Type “Hello World!” in the packet box, and click Send Data.

You’ll notice your text is returned as a single packet.
One last test is the range test. This allows you to monitor the signal strength from

−40 dBm to the XBee’s sensitivity limit of around −100 dBm by having the software
repeatedly send out a packet to be echoed.

✓ Check the check box below the vertical RSSI (receiver signal strength indication).
✓ Click Start.
✓ Monitor the number of good packets received and signal strength.
✓ Block the area between the XBees or move the remote XBee to another room, and

test the effect on RSSI level.

Note: In theory, you should never see a bad packet (malformed data) in the
received data from the XBee, such as in the Terminal window. All data is error-
checked and retried if there is no response or if the error check fails. You should
receive either good data or no data at all. The serial-link issue with the XBee is a
more probable cause than an RF issue with bad data.

Now that we have an RF link going, it’s time to discuss and test some XBee
confi gurations.

XBee CONFIGURATION SETTINGS

As seen, the XBee has numerous settings that can be confi gured. This confi guration
can be performed through the Confi guration window, through the Terminal window,
or through strings sent out from the Propeller. Let’s fi rst take a look at some of the
more important settings shown in Table 5-1 for this chapter (we will use only a few)
and others of interest should you delve deeper with your experiments. Click the
Modem Confi guration tab of the X-CTU software to view the settings. Clicking any
setting will give a brief description and range of values at the bottom of the window.

OK, let’s test out a few things:

✓ Test and verify your loop-back setup by sending a string.
✓ Under Modem Confi guration, change DL to 1.
✓ Click Write.
✓ The XBee should be updated. Click Read and verify.
✓ Go to the Terminal window and type once again. You should get no response, and

the remote RX light on the AppBee should not blink.

TESTING AND CONFIGURING THE XBee 201

202 WIRELESSLY NETWORKING PROPELLER CHIPS

TABLE 5-1 SUMMARY OF PERTINENT XBee SETTINGS

COMMAND
CODE MEANING & USE

Networking & Security

CH Channel: Sets the operating frequency channel within the 2.4 GHz band. This
may be modifi ed to fi nd to a clearer channel or to separate XBee networks.

ID PAN ID: Essentially, the network ID. Different groups of XBee networks can be
separated by setting up different PANs (personal area networks).

DL Destination Low Address: The destination address where the transmitted
packet is to be sent. We will use this often to defi ne which node receives data.
A hexadecimal value of FFFF performs a broadcast and sends data to all
nodes on the PAN. The default value is 0.

MY Source Address: Sets the address of the node itself. This will be used often in
all our confi gurations. The default value is 0.

Sleep Modes

SM Sleep Mode: Allows the sleep mode to be selected for low power consumption
(<10 µA). While we won’t use it, a good choice is 1—Pin Hibernate. This would
allow an output of the Propeller to put the XBee to sleep (using the Sleep
Request pin) when it is not sending or expecting data.

Serial Interfacing

BD Interface Data Rate: Sets baud rate of the serial data into and out of the XBee.

AP API Enable: Switches the XBee from transparent mode (AT) to a framed data version
where the data must be manually framed with other information, such as address
and checksum. This is a powerful mode and will be explored in this chapter.

RO Packetization Timeout: In building a packet to be transmitted, the XBee waits
a set length of time for another character. If not received in the set time, the
packet is sent. This is why as we typed characters, each was sent and echoed
back. This can be important to change if you have multiple units sending data
to one node to ensure that all data sent is received as a single transmission
from one unit; otherwise, you may get data from various nodes intermixed.

I/O Settings

D0 – D8 Sets the function of the I/O pins on the XBee, such as digital output, input,
ADC, RTS, CTS, and others.

IR Sample Rate: The XBee can be confi gured to automatically send data from
digital I/O or ADCs. It requires the receiving node to be in API mode and the
data parsed for the I/O values.

Diagnostics

DB Received Signal Strength: The XBee can be polled to send back the RSSI level
of the last packet received.

EC CCA Failures: The protocol performs clear channel assessment (CCA)—that
is, it listens to the RF levels before it transmits. If it cannot get an opening, the
packet will fail and the CCA counter will be incremented.

By changing DL to 1, data is intended for an XBee at address 1. The default settings
on XBees are a DL of 0 and an MY of 0. Previously, we were sending data to a node
at address 0 from a node at address 0 and vice versa. Be aware, the XBee actually does
receive data, sees it is not the intended node, and then dumps it instead of passing it to
the DOUT pin (to which the RX LED is connected).

Let’s now try confi guring using the Terminal window. Due to timeouts, you may have
to type a little fast, so you may need a few attempts. Enter the following lines—do not
type what is in parentheses. Press enter after each line except for +++.

✓ (Wait three seconds since you typed anything last—this is guard time.)
✓ +++ (Do not press ENTER.)
✓ (Wait a few more seconds and you should see that it is now in command mode.)
✓ ATDL (Requests the current DL value; it should return 1)
✓ ATDL 0 (Sets the DL address to 0)
✓ ATDL (Again requests the DL address, which should be 0)
✓ ATCN (Exits AT command mode)
✓ Hello World?

If all went well, you should once again be getting echoes after changing the destina-
tion address back to 0. The waiting before and after the +++ is called the guard time,
and it ensures that if a string containing +++ is sent, the unit won’t fl ip into command
mode inadvertently.

Tip: Permanent changes? Using the Modem Confi guration feature of the X-CTU
software, all changes are saved to nonvolatile memory and will still be in place
after cycling power. Using the AT commands, the settings will revert to original
values after cycling power, unless the ATWR (write) command is sent to write to
nonvolatile memory.

The important aspect here is that just as we sent data strings to the Xbee for con-
fi guration changes, so can your Propeller confi gure the XBee through code. Multiple
commands can be used in one line by separating them with commas. For example, the
following sets DL to 0 and exits command mode: ATDL 0, CN.

TESTING AND CONFIGURING THE XBee 203

EA ACK Failures: If a packet is transmitted but receives no acknowledgement
that data reached the destination, EA is incremented. The XBee performs two
retries before failure. Additional retries can be added by using the RR setting.

AT Command Options

CT AT Command Timeout: Once in command mode, this sets how long of a delay
before returning to normal operation.

GT Guard Time: When switching into AT command mode, this defi nes how long
the guard times should be (absence of data before the command line) so that
accidental mode change is not performed.

204 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY THESE!

✓ Try changing your MY address to 1 and sending data. You should see the remote
unit receive and transmit, but you get nothing back. Why?

✓ Change your DL to FFFF. This is the broadcast address—any nodes on your
network would receive it. Be sure to set MY back to 0 for the loop-back to
work!

✓ Use the command ATND (Network Discovery). After a few seconds, you
should see a list of other nodes in the network, including their MY address,
two lines of the physical address (like a MAC address), and the RSSI level
in hexadecimal.

✓ Use the command ATED (Energy Detect). You should see a list of about
11 hexadecimal values. This is the energy level seen on the various channels.
Higher values are less noisy—a value such as 5A (hexadecimal), for example,
converts to a level of −90 dBm.

✓ Use the Confi guration tab to restore the XBee to its default values when done testing,
or use the AT command ATRE, followed by ATWR, to save to memory.

UPDATING THE XBee VERSIONS

Just a note about the version of the XBees: In the Modem Confi guration tab, you
can see the version of fi rmware on your XBee, such as 1083, 10A5, or 10CD. Later
versions are more capable. The majority of this chapter requires at least 1083.
The fi rmware on the XBee can be updated by selecting a new version, checking
Always update fi rmware, and clicking Write, but this requires more data lines than
we have available with our confi gurations. A board such as the XBIB-U from Digi
International or the WRL-08687, the XBee Explorer, from www.sparkfun.com
(which can also double as a carrier board) is recommended. These boards can be
used for direct USB access to the XBee as well as changing the fi rmware, and they
supply power to the XBee.

Now that we can send and receive data and confi gure the XBee, we are ready to start
using Spin and the Propeller to communicate via the XBee.

Sending Data from the
Propeller to the PC
In this section we will equip a remote Propeller/XBee system with a couple of sensors
and then transmit the data from the sensors back to the base XBee to send the data to

www.sparkfun.com

the PC for monitoring. The base can be the Propeller using serial pass-through, using
the Prop Plug to the XBee, or using a dedicated XBee-to-PC board, as previously
mentioned. The sensors used for testing are Parallax’s HM55B compass module and
the PING))) ultrasonic range fi nder. These devices will eventually assist in our robot
project, but you are free to modify the code to use any of the sensors previously explored
in this text.

Additional equipment:

■ HM55B Compass Module
■ PING))) Ultrasonic Range Finder
■ Or other sensors as desired, with appropriate code

Figure 5-10 is an image of the nodes. Even though we don’t need to just yet, we will
use this opportunity to set the DL address of the remote unit to 0 to ensure it is sending
data to the base unit.

✓ Connect the PING))) sensor and HM55B compass on the remote unit as shown
in Fig. 5-11. If a different I/O pin is used, update the pin numbers accordingly
in the CON section of the code. Connect the LEDs as well; we will use them
shortly.

✓ For the base unit XBee, open and clear the X-CTU Terminal window. Open the
COM port if closed. Having that port in use will help ensure the correct Propeller is
programmed.

✓ Download Simple_PC Monitoring_from_Remote.spin to the remote unit.
✓ Monitor the remote unit’s LEDs—they should blink rapidly a few times after several

seconds as the XBee is confi gured.
✓ Monitor the base unit’s Terminal window. A “ready” message should be displayed,

then the readings of the sensors should be reported every half-second.
✓ Test the compass bearing. It should read 0 to 8191 (roughly) as you rotate it, with 0

being approximately magnetic north.
✓ Test the range finder by placing an object in front and moving it in and out.

The PING))) sensor will report distances from roughly 30 to 3000 mm (3 cm
to 3 m).

✓ If either sensor fails to respond properly, check your connections and code.

Tip: The range fi nder has a fairly large angle of emission and detection. Test this
by putting an object to the side of range fi nder and going in and out to determine
how wide the angle is at different distances.

After initializing the XBee and compass, there is a three-second delay, +++ is sent
followed by another three-second delay and the string of “ATDL 0, CN.” Finally, a
byte of 13 representing a CR or ENTER key is sent. The destination address is set to
0 and command mode is exited (CN) in exactly the same fashion as you did in the
Terminal window.

SENDING DATA FROM THE PROPELLER TO THE PC 205

206 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-10 Base and remote nodes.

 delay(3000) ' Guard time for AT mode
 XB.str(string("+++")) ' Send AT command request
 delay(3000) ' Guard time
 XB.str(string("ATDL 0,CN")) ' Send code to set DL = 0
 XB.tx(13) ' Send carriage return

The command codes from the Propeller are passed to the XBee using the FullDuplexSerial
object duplicating your serial terminal. Through this method any number of commands may
be sent to the XBee for confi guration changes on initialization or during operation. Those
3-second guard times can cause lag during operation, but we’ll deal with that soon.

In the SendData method, you can see that the range and direction (theta) are read
from the devices. Using a combination of text strings and XB.dec (decimal) methods,
the data is sent to the base XBee, where it is passed through to the PC for monitoring
in the Terminal window. Figure 5-12 is a sample output of received data.

 repeat
 range := Ping.Millimeters(PING_Pin) ' Get range in mm
 theta := HM55B.theta ' Get bearing (0-8191)
 XB.str(string(13,13,"Ping Range(mm): "))' Send string to base
 XB.dec(range) ' Send range as decimal
 XB.str(string(13,"Direction(0-8192): "))' Send string to base
 XB.dec(theta) ' Send bearing as decimal
 delay(500) ' Short delay before repeat

SENDING DATA FROM THE PROPELLER TO THE PC 207

 Figure 5-11 Remote unit with PING))) and compass.

208 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY IT!

✓ Try adding a simple device, such as a pushbutton, and reporting its state back
to the PC. If you are out of I/O, you may remove the LEDs.

Polling Remote Nodes
In an LR-PAN, nodes typically come in one of three fl avors:

■ Coordinators help manage the network, from controlling communications to assign-
ing information to devices.

■ End devices are used to read and control devices on the network.
■ Routers are used to pass data between nodes at distances too far to reach directly.

There is nothing prohibiting end devices from talking to one another, and once a
network is established, the coordinator’s job may come to an end. In this chapter we
will refer to the base unit, the one at the PC, as a coordinator because it will help con-
trol communications and be a common collection point. Our remote nodes will be end
devices that we will monitor and control.

Multinode communications can be tricky. Aspects to be dealt with include: Which node
can send data when? When data arrives, who is it from? Do nodes need permission to talk
or can they do so at any time? We need to ensure that nodes don’t talk over one another

 Figure 5-12 Sample output in Terminal window of range and bearing.

(causing collisions on the network) and that the receiving units know who the data is from
in order to respond appropriately or take some other action. XBee, using IEEE 802.15.4,
works similar to Wi-Fi. A node listens before it transmits to help ensure that no other
node is transmitting at the time (this is Clear Channel Assessment, or CCA). Delivery of
data is verifi ed through acknowledgements. If the sender does not get a response, it tries
again. This method is known as CSMA/CA or Carrier Sense, Multiple Access/Collision
Avoidance. Unlike Ethernet, which uses collision detection (CSMA/CD), a node cannot
listen once it starts transmitting so it cannot detect collisions.

So the data link layer of communications helps ensure data gets passed properly, but
it still doesn’t assist in higher-level functions controlling the who and when of commu-
nications. In the next section we will look at a method of using a Propeller acting as a
coordinator to poll end devices for their data. USB works in much the same way—each
device is polled one at a time to see if they need access or have data to send.

 COORDINATOR MANUALLY POLLING REMOTE END DEVICES

A hardware confi guration similar to the one from the previous section will be used,
but this time, the Propeller needs to be in the communications chain at the base instead
of simply using a Prop Plug for XBee communications. Also, to demonstrate control
action, the two LEDs on the remote end device provide control action. You are welcome
to have as many end points as you desire (well, up to 65,000), or just use one and change
the end point’s address to test. Figure 5-13 is a diagram of our network and hardware.

POLLING REMOTE NODES 209

 Figure 5-13 Hardware for coordinator polling.

210 WIRELESSLY NETWORKING PROPELLER CHIPS

In this example, the coordinator cycles through a range of end-point addresses by
changing the DL value of the coordinator’s XBee. It sends out codes and values to
request data from each end point and to control the LEDs on each. Before allowing the
coordinator to have control, we are going to manually test the control and responses.

✓ Add the LEDs to the remote end device.
✓ Open Acquisition_with_Control_End.spin.
✓ For each end device, number the constant MY_Addr in the CON section of the code

sequentially from 1 up, skipping a few numbers to test “unresponsive nodes.”
✓ Download Acquisition_with_Control_End.spin to each remote end device.
✓ Use the Propeller for serial pass-through or another PC-to-XBee confi guration at the PC.
✓ Change the DL of the coordinator/base XBee to 1.
✓ In the Terminal window, type some p’s and c’s. If your end point at address 1 is

awake, you should get values back for compass bearing and range fi nder distance.
✓ For this next test, use the “Assemble Packet” window. Type and send the following:

Type i3 and then hit Enter.
Type 1 and then hit Enter.
Click Send.

✓ Change the 1 to a 0 and send again.
✓ Test again by using 4 instead of 3.
✓ What you should see is LEDs on P3 and P4 turning on with 1 and off with 0.

Figure 5-14 is an image of our communications test.

 Figure 5-14 End-device responses to requests.

Looking at the end-device’s code, data communications with the XBee is now through
the XBee_Object. This is an object I wrote for easing some data communication and
confi guration issues. It uses FullDuplexSerial but greatly extends it.

Tip: The “XBee_Object” can be downloaded from Parallax’s Object Exchange
(http://obex.parallax.com). If you have previously downloaded it, be sure it is
version 2 or higher. It is also included in the book’s distributed fi les.

XB.AT_Init initialized the XBee to AT mode, allowing for short guard times (using
ATGT), so instead of six seconds to modify a confi guration, it can be done quickly in
code. XB.AT_ConfigVal allows passing an AT command and a value to set confi gura-
tions, such as the DL and MY addresses. The underlying code switches the XBee to com-
mand mode, sends data, and exits using the short guard times.

 " Enable XBee for fast configuration changes
 XB.AT_Init

 " Set MY and DL (destination) address.
 XB.AT_ConfigVal(string("ATMY"), MY_Addr)
 XB.AT_ConfigVal(string("ATDL"), DL_Addr)

In the ProcessData method, XB.rx is used to tell the Propeller to wait for one charac-
ter or byte of data. It then tests this character to determine what set of actions to take:

 dataIn = XB.rx
 Case dataIn
 "p": ' p = PING distance
 range := Ping.Millimeters(PING_Pin) ' Read PING in mm
 XB.dec(range) ' Send range as ASCII decimal value
 XB.cr ' End decimal string with CR

 "c": ' c = Compass
 theta := HM55B.theta ' Read Compass
 XB.dec(theta) ' Send theta of bearing as decimal
 XB.cr ' End with carriage return

 "i": ' i = I/O control
 IO := XB.rxDecTime(timeout) ' Accept IO number w/timeout
 state := XB.rxDecTime(timeout) ' Accept state (1/0) w/timeout
 if state <> -1
 dira[IO]~~ ' Set direction of pin
 outa[IO] := state ' Set state of pin
 XB.dec(outa[IO]) ' Send state back for verification
 XB.cr ' End decimal string with CR

If p, send back the decimal value of the range fi nder.
If c, send back the decimal value of the compass bearing.

POLLING REMOTE NODES 211

http://obex.parallax.com

212 WIRELESSLY NETWORKING PROPELLER CHIPS

If i, accept the next two decimal values and use them for I/O and State, which
sets the I/O direction to be an output and the state of the I/O. RxDecTime is used to
accept the decimal values with a timeout. This allows the program to continue to run
if incorrect data is received following a timeout period. Should a timeout occur, a −1
is returned to the value. In accepting the data, note that each decimal value must end
in an ASCII 13 or CR (or comma, see Sec. Data Acquisition and Control Using API
Mode). Finally, the actual value of the I/O is sent back.

✓ Change the coordinator/base to a nonexisting end-device address (DL) and try again.
You should get no data back.

What we are designing here can be considered a protocol—rules of communica-
tion. If you don’t follow the rules set forth, nothing, or even incorrect things, may
happen. When coding protocols, we attempt to cover all contingencies regarding
what could go wrong and how they will be dealt with, such as i3 and no further data.
What happens if you enter something other than a 1 or 0 for state? That contingency
is not covered!

The data between the units is kept simple—byte codes and decimal strings. This
allows short packets between the units and eases using the data in the code.

Caution: Be aware that currently the code can control any of the Propeller
chip’s I/O pins, so be careful of what you send for your IO values!

AUTOMATIC POLLING WITH THE PROPELLER

In this next exercise the Propeller will operate as the coordinator, polling each of the
end devices in succession.

✓ Ensure you have downloaded Acquisition_with_Control_End.spin to your end
device(s) using F11, with sequential MY_addr values while skipping a few values.

✓ In Acquisition_with_Control_Coor.spin, modify the values of DL_Start and DL_End
in the CON section to match the range of your end-device addresses.

✓ Download Acquisition_with_Control_Coor.spin to the coordinator Propeller.
✓ Once downloaded, open the Terminal window.
✓ Wait and watch… you should see results similar to Fig. 5-15. Note that in this test

only an end device with a MY_addr of 2 is responsive.

In Pub Start, once confi gured, the code loops through the range of defi ned end-
device values, passing the address to the Poll method. Pub Poll accepts the address,
sets the DL address, and informs the user. It then goes through a series of steps for
acquisition and control.

Calling Control_IO, the I/O number and state are passed to turn on the LEDs. This
method will send the correct i-instruction to control the end-device IO. The returning
value with a timeout is accepted, passed back, and displayed.

Pub Control_IO(pin, state) : Value

 XB.tx("i") ' Send i for IO control

 XB.dec(pin) ' Send pin as decimal value

 XB.cr ' Send CR

 XB.dec(state) ' Send state as decimal value

 XB.cr ' Send CR

 Value := XB.rxDecTime(200) ' Accept value with timeout

Next the GetDistance method is called, which sends the p-instruction, accepts return-
ing data, and passes it back for display. Then the GetAngle method is called; sends the

POLLING REMOTE NODES 213

 Figure 5-15 Coordinator responses from automated polling.

214 WIRELESSLY NETWORKING PROPELLER CHIPS

c-instruction; and accepts, returns, and displays data. Finally, the LEDs are again turned
off using Control_IO sending 0s.

Pub GetDistance : mm

 XB.tx("p") ' Send p to get range
 mm := XB.rxDecTime(50) ' Accept data with timeout

The cycle repeats each end-device value, pauses longer, and starts over. In each step
of the way, timeouts are used to ensure nonresponsive end devices do not lock up the
system and that they are reported as being nonresponsive.

In this example we are simply collecting data and controlling LEDs for testing pur-
poses while displaying information for the user. The returned data could be used by
the coordinator for some logical decisions or to control a local output or send data to
another end device for action.

TRY THESE!

✓ Add another sensor and the code to request and respond with data.
✓ Use a returned value in some way at the coordinator, such as lighting an LED

if the distance is within 100 mm (10 cm).
✓ Rapidly collect a remote value and plot it using ViewPort.

Though not used in our code, reading confi guration values from the XBee can be done
by sending the AT command and accepting returning data. The XBee uses hexadecimal
for all values. The receiver is fl ushed to ensure that no data exists in the Propeller’s object
buffer. In this example, the dB level of a recent XBee reception is read and displayed.

 XB.rxFlush
 XB.AT_Config(string("ATDB"))
 dataIn := XB.RxHex
 PC.DEC(-dataIn)

Using the XBee API Mode
API MODE AND DATA FRAMING

Continual polling can take a lot of time and resources to check for data that may change
infrequently. It is good to have the coordinator control the communications, but this requires
the remote units to be awake. Another mode for the XBee is called API mode, for application
programming interface. Instead of sending or receiving the data alone, the entire frame is
manually constructed for transmission and manually parsed on reception. The frame consists of
sender’s address, RSSI level, options, frame IDs, and the data or message itself. Depending on
the frame type, different types of data are carried. Some benefi ts to using API mode include:

■ Pull sender’s address directly from received frame.
■ Pull RSSI level from certain received frame types.
■ Place the destination address for the packet directly in the frame.
■ Use frames for local XBee confi guration as opposed to AT mode.
■ Use frames for REMOTE XBee confi guration (fi rmware version 10CD required).
■ Pass analog and digital data from the XBee’s I/O pins without a controller on the

remote (fi rmware version 10A3 or higher required).
■ Use frames that provide delivery notifi cation to the sender.
■ Data is received in a single frame (up to 100 bytes), ensuring it is from a single

source.

As you can see, using API mode opens many doors to fast and powerful commu-
nications, but it can be a little complex. The XBee Object supports the means for
constructing and retrieving data for many of the API frame types. Let’s look at how a
packet must be framed to be accepted for transmission, as shown in Fig. 5-16, taken
from Digi International’s XBee manual. This frame type is for sending strings between
units, such as our data.

Note: Data is always sent in frames between XBees, but when in AT mode
(transparent mode), the only thing we deal with is the data, or message, itself.

First, all frames start with a start delimiter so the receiving unit can locate where the
start of a frame is as data pours in. Next is a 16-bit length (MSB and LSB), which has
to match the number of bytes from after the length through to the checksum, but not
including it. This is followed by the API identifi er, a unique value telling the receiving
unit what type of message it is.

Next is the identifi er-specifi c data, consisting of the frame ID (if set to 0, it will sup-
press acknowledgement packets back to the controller; we will ignore these packets) and
then the 16-bit destination address as 2 bytes. To send data to a unit at address 1, these
would be values of 00 01. Options are set to disable acknowledgements or to send the
data as a broadcast. Next is the actual data—up to 100 bytes. And fi nally, all the byte

USING THE XBee API MODE 215

MSB (most significant byte) first,
LSB (least significant) last

Source Address (Bytes 5–6) RSSI (Byte 7)

0 × 81

0 × 7E

Start Delimiter Length Frame Data Checksum

MSB LSB API-specific structure 1 Byte

API
identifier

Identifier-
specific Data

cmdData

Options (Byte 8)

Received Signal Strength Indicator-
Hexadecimal equivalent of (–dBm) value
(For example: If RX signal strength = –40
dBm, "0 × 28" (40 decimal) is returned)

bit 0 [reserved]
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3–7 [reserved]

Up to 100 bytes per packet

RF Data (Byte(s) 9 – n)

 Figure 5-16 API packet for transmitting string using 16-bit address. (Reprinted by

permission of Digi International.)

216 WIRELESSLY NETWORKING PROPELLER CHIPS

values up to that point are summed together to create a checksum value. The receiving
unit will perform a summation itself, verifying against this value before using the data.
If the packet is well formed, the XBee will accept this frame and transmit it. If not, it
will be discarded.

Simple huh? Actually, it’s not all that bad, but much more complex than just sending
a string to be transmitted. Let’s look at the Spin code that forms a packet when we send
a string, such as XB.API_Str(String("Hello!")).

From the XBee Object:

Pub API_Str (addy16,stringptr)| Length, chars, csum,ptr
{{
 Transmit a string to a unit using API mode - 16 bit addressing
 XB.API_Str(2,string("Hello number 2")) ' Send data to address 16
 TX response of acknowledgement will be returned if FrameID not 0
 XB.API_RX
 If XB.Status == 0 '0 = Acc, 1 = No Ack

 }}
 ptr := 0
 dataSet[ptr++] := $7E
 Length := strsize(stringptr) + 5 ' API Ident + FrameID + API TX cmd +
 ' AddrHigh + AddrLow + Options
 dataSet[ptr++] := Length >> 8 ' Length MSB
 dataSet[ptr++] := Length ' Length LSB
 dataSet[ptr++] := $01 ' API Ident for 16-bit TX
 dataSet[ptr++] := _FrameID ' Frame ID
 dataSet[ptr++] := addy16 >>8 ' Dest Address MSB
 dataSet[ptr++] := addy16 ' Dest Address LSB
 dataSet[ptr++] := $00 ' Options '$01 = disable ack,
 ' $04 = Broadcast PAN ID
 Repeat strsize(stringptr) ' Add string to packet
 dataSet[ptr++] := byte[stringptr++]
 csum := $FF ' Calculate checksum
 Repeat chars from 3 to ptr-1
 csum := csum - dataSet[chars]
 dataSet[ptr] := csum

 Repeat chars from 0 to ptr
 tx(dataSet[chars]) ' Send bytes to XBee

As you look through the code, you can see how all the individual bytes that make up
a well-formed frame for transmission are combined into an array of bytes, the bytes are
summed (actually subtracted from $FF one at a time) for the checksum, and the array
of bytes is transmitted.

When the data is received by the XBee, the frame is checked. If in API mode, the
frame shown in Fig. 5-17 is sent to the Propeller for processing. Based on the API

identifi er, the XBee Object can decide how to handle the frame data, and the top-level
code can determine what to do with that type of frame data.

We won’t go into the details, but again, specifi c bytes have specifi c meanings. In
API mode, all this data is sent out to the Propeller. The XBee Object accepts the data
and processes it accordingly using the RxPacketNow method. This method is actually
private (PRI). The method called is API_RX or API_RxTime(ms), which looks for the
start delimiter ($7E). Once found, execution is passed to RxDataNow to accept remaining
data. Once accepted, the identifi er is checked to determine the type of packet, which in
the case of our received string, would be $81. Next the packet is parsed, pulling out the
data and placing it into variables that can be accessed from the top-level code, such as
XB.RxRSSI to fi nd out the value of RSSI for the packet, or XB.srcAddr to get the sources
address. Note that the data is actually accessible through XB.rxData—it is not the actual
data, but a pointer to where the data string resides in memory.

Other methods can help us pull decimal data out. After receiving data, calling
XB.ParseDEC(XB.rxData,2) would pass the location of the string and pull out the second
decimal value in the string (values can be separated by ASCII 13—CRs—or by commas).

In sending decimal values, an API_DEC does not exist. Numbers, unless sent as raw
byte values, must be converted to a string and sent that way. The Numbers.spin object
can aid in the conversion, such as sending the range in API mode:

XB.API_str(num.ToStr(range,num#DEC))

But that’s the only thing that could be sent, since once called, the string is transmit-
ted in a frame. To keep our data together, another method is used to assemble a string
(packet) manually before sending it. This will be demonstrated in the example coming
up. In API mode, all data to be sent in one transmission must be assembled fi rst.

Note: Both transmitter and receiver do not need to be in API mode. One side
can be using transparent transmission and the receiver using API reception and
vice versa. This makes our job a little easier.

USING THE XBee API MODE 217

Identifies the UART data frame
for the host to correlate with a
subsequent ACK
(acknowledgement).
Setting Frame ID to ‘0’ will disable
response frame.

Frame ID (Byte 5) Destination Address (Bytes 6–7)

0 × 01

0 × 7E

Start Delimiter Length Frame Data Checksum

MSB LSB API-specific structure 1 Byte

API
identifier

Identifier-
specific Data

cmdData

Options (Byte 8)

MSB first, LSB last.

Broadcast = 0 × FFFF
0 × 01 = Disable ACK

0 × 04 = Send packet with
Broadcast PAN ID
All other bits must be set to 0

Up to 100 bytes per packet

RF Data (Byte(s) 9 – n)

 Figure 5-17 API packet for received string using 16-bit address. (Reprinted by permis-

sion of Digi International.)

218 WIRELESSLY NETWORKING PROPELLER CHIPS

DATA ACQUISITION AND CONTROL USING API MODE

In this example, we will continue using the coordinator and end-device(s) hardware, but use
API mode instead for data reception and transmission on the coordinator. The end devices
have the ability to transmit at any time; while we have it on a delay, another option may be to
use sleep mode for low power consumption and have it wake to transmit, or have it transmit
only when some event takes place, such as a range being too close (someone is near!).

The end device will send a string for the values range and theta without being
prompted. The receiver will accept the string in API mode and pull out the source address,
RSSI level, and data. It will then send back strings to blink the LED on the end device.

✓ Open and modify the DL value in API_Mode_End.spin for each of your end devices.
The value doesn’t matter, as long as it is not more than 255 ($FF). We are sending
only one byte to hold the address in our example. Note that the X-CTU software uses
hexadecimal values when confi guring as opposed to decimal.

✓ Download API_Mode_End.spin to your end device(s).
✓ Download API_Mode_Coor.spin to your coordinator.
✓ Open and monitor the coordinator’s Terminal window.

The resulting data should be similar to that shown in Fig. 5-18.

 Figure 5-18 Example of terminal data from API data at coordinator.

In the end-device’s code, the method SendUpdates is running in a separate cog to
allow GetData to monitor for incoming data continuously. This allows data to be sent
or received independent of the timing. The XBee is not in API mode, and SendUpdates
sends the string values for range, theta every two seconds as decimal strings, such as
the characters “1,” “0,” and “5” for the value of 105—three bytes’ worth of data for one
value. The unit does this endlessly.

Pub SendUpdates | range, theta
 HM55B.start(Enable,Clock,Data)
 XB.Delay(1000)
 repeat
 range := Ping.Millimeters(PING_Pin) ' Read range
 theta := HM55B.theta ' Read Compass
 XB.dec(range) ' Send range as decimal value
 XB.tx(",") ' Send a comma to separate
 XB.dec(theta) ' Send bearing
 XB.Delay(2000) ' Wait 2 seconds and send again

Caution: The XBee only waits so long in assembling a packet for transmission.
If the delay between data sent is too long (send some data, read a sensor and
process new data, then send the new data), it may send it as two different frames.
To increase the time it waits for more data, the RO (Packetization Timeout) value
can be increased.

In the GetData method, the Propeller endlessly awaits data in one cog. Once received, if
the byte is “i,” it accepts the next two bytes and uses them for IO number and state to control
an output pin. This is different from prior examples where we collected a decimal value.

 dataIn := XB.rx ' Wait for incoming byte
 If dataIn == "i" ' i = I/O control
 IO := XB.rx ' Accept IO number as byte value
 value := XB.rx ' Accept state (1/0) as byte value
 dira[IO]~~ ' Set direction of pin
 outa[IO] := value ' Set state of pin

Using bytes instead, the packet is always three bytes long. To control P20 to turn on,
the structure would be

| i | byte value 20 | byte value 1 |

Instead of

| i | string “20” (2 bytes or characters) | string “1” |

By using bytes as values instead of decimal string, the packet size can be com-
pressed. For values greater than 255 (maximum byte value), two bytes can be used
and combined:

Value = byte1 << 8 + byte2

USING THE XBee API MODE 219

220 WIRELESSLY NETWORKING PROPELLER CHIPS

. . . where byte1 (MSB) is shifted over by eight bits and then added to byte2 (LSB).
We used a similar technique in the RxPacketNow methods in the XBee Object to
assemble the 16-bit address from two received bytes.

In the coordinator’s code, XB.AT_Config(string("ATAP 1")) shifts the XBee in API
mode and the Propeller waits for an API packet to be received in ProcessFrame. If the
Identifi er (RxIdent) is $81, the packet is of the message variety, as opposed to a status
or other type. The source address is accessed and displayed.

 XB.API_Rx ' Wait for API data
 if XB.RxIdent == $81 ' If data identifier is a msg string
 ' Display source address
 PC.Str(string(13,"Data Received from address: "))
 PC.DEC(XB.srcAddr)

Since the actual message contained values separated by commas, the ParseDEC
method is used to pull out and display the range and bearing. The signal strength,
RSSI, is accessed and displayed.

 PC.str(string(13,"Ping Distance : "))
 Range := XB.ParseDEC(XB.RxData,1)
 PC.DEC(Range)
 PC.str(string(13,"Compass bearing : "))
 theta := XB.ParseDEC(XB.RxData,2)
 PC.DEC(theta)

 PC.str(string(13,"RF Signal strength: "))
 PC.DEC(-XB.rxRSSI) ' Display RSSI level

The ControlPin method is used to send data back to the end device. It is passed the
address to send the packet to (the source address of the incoming packet), the IO pin
number, and the state (0 or 1). In order to packetize the data, a new packet is constructed
and then passed to be transmitted.

Pub ControlPin(destAddr, pin, state)
 XB.API_NewPacket ' Clean out packet of old data
 XB.API_AddStr(string("i")) ' Add an i to packet
 XB.API_AddByte(pin) ' Add a byte of pin number
 XB.API_AddByte(state) ' Add a byte of pin state
 ' Send the packet
 XB.API_txPacket(destAddr,XB.API_Packet,3)

In ControlPin, the packet string in which the data will be sent is cleared out
(API_NewPacket). All bytes in the packet are set to 0 when cleared. The string and byte
values of i, pin number, and state are added to the packet (API_AddStr or AddByte).
API_txPacket is used to send the data to the correct address, the pointer for the packet
is given, and the number of bytes to be sent is provided.

The difference between the XBee Object’s API_str and API_txPacket is that strings
cannot have byte values of 0—a string ends with a byte value of 0. Our packet has a
byte value of 0 for possibly either pin or state, so we needed to specify that it would be
sent as a packet and then provide the number of bytes in it. Here are some examples of
transmitting API data to address 5:

Sending a simple string:

XB.API_str(address, string)
XB.API_str(5, string("Hello!"))

To send a string with a value, such as “Range = range value” (in objects, declare num:
"numbers"):

XB.API_NewPacket
XB.API_addStr(string("Range = "))
XB.API_addStr(num.ToStr(range,num#dec))
XB.API_str(5, XB.API_Packet)

To send just a byte in the packet:

XB.API_tx(5, 13)

Working in API mode can be intimidating, but its benefi ts are many. The XBee Object
has multiple methods for interfacing with the XBee in both modes with example code. It
would be of benefi t to read through the object documentation as well as the XBee manual.

TRY THESE!

✓ Modify the end-device code so that it sends data only if range < 100 mm.
✓ Add a pushbutton to the coordinator. Have it control an LED on the end device

(it’s not a good idea to have two different cogs trying to send data; comment
out the code to blink the LED on reception of data).

A Three-Node, Tilt-Controlled Robot
with Graphical Display
OVERVIEW AND CONSTRUCTION

A three-node network for controlling and monitoring a robot will be explored for the
last project in this chapter. The system shown in Fig. 5-19 has:

■ A Propeller Demo Board network node (address 0) with an accelerometer to measure
angle of inclination on two axes for the tilt controller

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 221

222 WIRELESSLY NETWORKING PROPELLER CHIPS

■ A robot on the network (address 1) using a Propeller Proto Board on a Boe-Bot robot
chassis with HM55B compass, PING))) range fi nder on a servo bracket, and LEDs

■ A Propeller Demo Board on the network (address 2) driving a TV for video display
of the graphical display

Figure 5-20 shows the wiring connection diagram for each of the nodes. Note that in
switching to the Proto Board we will change the I/O pins used for the XBee.

Hardware construction tips for bot:

✓ If you are not familiar with the Boe-Bot robot, you may want to look through “Robotics
with the Boe-Bot” by Andy Lindsay, available for download at www.parallax.com/
education to familiarize yourself with the basic hardware and servo operation.

 Figure 5-19 3-Node bot network diagram.

www.parallax.com/education
www.parallax.com/education

 Figure 5-20 Hardware wiring diagram for bot system.

223

224 WIRELESSLY NETWORKING PROPELLER CHIPS

✓ For the bot, two 4-AA packs were used with the spare tied under the normal battery pack.
The second battery pack is used only for servo power. Attempts at using a single supply
caused voltage and current spikes affecting the Propeller chip’s operation. The connec-
tor of the battery pack was cut off and soldered to the servo header power and Vss
(see Fig. 5-21). Other sources may be used, but supply voltage should not exceed 7.5 V
or the servos can be damaged. Use coated wire to strap the batteries under the bot.

 Figure 5-21 Supplying separate power for bot’s servo drive.

 Figure 5-20 (Continued)

■ Ensure the HM55B compass is mounted facing forward and that it is away from large
current loads, such as batteries and servos. The magnetic fi elds will cause problems
with proper compass bearing.

■ The PING))) sensor is mounted using the PING))) Mounting Bracket Kit. Manually
rotate the servo to fi nd the center prior to mounting the bracket. Mount the cable
header so that servo rotation does not hit it (the servo turns further manually than
with the code—about 45 degrees each way).

■ A battery supply was used on the tilt controller as well for unfettered operation.

OVERVIEW OF SYSTEM OPERATION

Tilt Controller: This is used to read the Memsic 2125 accelerometer module, calculate
right and left motor drives based on inclination, and then send drive values to the bot.
The tilt controller, shown in Fig. 5-22, also receives data from the bot and uses the
PING))) range measurements to light the eight Demo Board LEDs, showing distances
of 100 mm for local range indication. Pressing the pushbutton will send a panning map
instruction to the bot to map the area in front of it for display by the TV graphics node.
This node has a MY address of 0 and a DL address of 1 (the bot).
Bot: This controls all function of the networked bot shown in Fig. 5-23, including:

■ Accepting drive values for motor drive. Should no data be received for 1.5 s, the bot
will stop and blink the red LED.

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 225

 Figure 5-22 Tilt-controller board with Memsic 2125 Accelerometer.

226 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-23 Networked bot with range fi nder, compass, and XBee.

■ Accepting panning map instruction (p) to perform mapping operation. When this instruc-
tion is received, the bot will stop and pan the PING))) sensor from right to left, measuring
distances and sending map data (m) to the TV graphics node and the tilt controller. When
mapping is complete, the bot will remain steady and blink the green LED until the tilt
controller releases it from mapping mode (user presses button again). The bot will send
a clear (c) code to the video to clear the display when map mode exits.

■ While driving, the bot will transmit updates (u) of right and left drive values, PING)))
range, and direction of travel from the HM55B compass (0-8191).

■ This node has a MY address of 1 and sends data to $ffff—all nodes on the network
for a broadcast.

Bot Graphics: Shown in Fig. 5-24, drives the graphics TV display showing:

■ The bot bearing as a rotating triangle and text
■ Distance to object as a red point in front of the bot and text
■ Yellow range marker circles at 0.25 m, 0.5 m, and 1 m
■ Left and right drives as bar indicators
■ Signal strength for RSSI (dBm) as bar and text

The update packets contain information for much of the display, and the RSSI is pulled
from the received frame through API mode. When the bot is in mapping mode, mapping

packets contain data to plot the range map. It also accepts clear codes from the bot to clear
the mapped display. This node has a MY address of 2 and sends out no data.

The output display of the graphics controller is shown in Fig. 5-25 in both normal
driving and with the bot performing a panning map operation.

Note: The PING))) range fi nder has a wide angle of emission and reception. Do
not expect pinpoint accuracy when mapping.

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 227

 Figure 5-25 TV displays for normal and panning map data.

 Figure 5-24 Bot TV graphics controller.

228 WIRELESSLY NETWORKING PROPELLER CHIPS

BOT NETWORK CODE

Bot Tilt Controller For the tilt controller, in the SendControl method, if the button
is pressed, a series of p’s is transmitted. With the amount of data fl ying, some missed
bytes on reception are normal, and this helps ensure the bot gets a p-instruction for a
panning map operation. If not pressed, the accelerometer is read for the X- and Y-axis
(−90 to 90 degrees, 0 level) and the drive for each servo is calculated by mixing the
two axes of tilt for a fi nal servo value of 1000 to 2000 (the range of servo control) for
each. The data is sent as a “d” packet for drive.

 Forward := (accel.x*90-offset)/scale * -1

 ' Read and calculate -90 to 90 degree for turn
 Turn := (accel.y*90-offset)/scale

 ' Scale and mix channels for drive, 1500 = stopped
 Left_Dr := 1500 + Forward * 3 + Turn * 3
 Right_Dr := 1500 - Forward * 3 + Turn * 3

In the AcceptData method (which is running in a separate cog), incoming packets are
analyzed if update data (u) or map data (m) and the local LEDs are updated. Based on
the range, eight 1s are shifted to the left eight positions, then shifted right again based
on the range/100. This allows one LED to light for every 100 mm or 0.1 m, out to 800
mm or 0.8 m.

outa[16..23] := %11111111 << 8 >> (8 - range/100)

Bot Code For the bot controller, in Start, received bytes are analyzed with a timeout.
If any data is not received for 1500 ms, the red LED will begin to blink. Received data
is analyzed for either “d” for drive data or “p” to begin a mapping scan.

case DataIn ' Test accepted data

 "d": ' If drive data
 Right_dr := XB.RxDEC ' Get right and left drive
 Left_dr := XB.RxDEC
 SERVO.Set(Right, Right_dr) ' Drive servos based on data
 SERVO.Set(Left, Left_Dr)

 "p": ' p = pan and map command
 mapping := true ' Set flag for mapping
 outa[grnLED]~~ ' Turn on green LED
 Map ' Go map

The SendUpdate method is run in a separate cog to continually send out the status of
the range, direction, and drive values led by “u.” The value of theta is subtracted from

8191 to allow the direction of rotation to be correct in the graphics display. If a panning
map is in progress, updates are suspended due to mapping being true.

 Repeat
 if mapping == false ' If not mapping
 XB.Delay(250)
 Range := Ping.Millimeters(PING_Pin) ' Read range
 theta := HM55B.theta ' Read Compass
 XB.TX("u") ' Send "update" command
 XB.DEC(Range) ' Send range as decimal string
 XB.CR
 XB.DEC(8191-theta) ' Send theta of bearing (0-8191)
 XB.CR
 xb.DEC(Right_Dr) ' Send right drive
 XB.CR
 XB.DEC(Left_Dr) ' Send left drive
 XB.CR

When mapping, the value of pan is looped from 1000 to 2000, the range of allow-
able servo values. The range is measured, and the PanOffset is calculated. The value
of the "pan" has 1500 subtracted (recall that 1500 is a centered servo). The result is
multiplied by 2047 (90 degrees, with 8191 being a full 360 degrees) and divided by the
full range of pan. Finally, an “m” is sent followed by range and angle of the servo plus
the pan offset. This repeats for each value of pan, from 1000 to 2000, in increments of
15 steps or 1.35 degrees (15 · 90 degrees/1000 steps = 1.35 degrees). Once mapping is
complete, the system will wait until another “p” is received to exit pan mapping mode
while sending a “c” to clear the video display. The variable “mapping” is used as a
fl ag to prevent the SendUpdates code running in a separate cog from sending updates
while mapping.

Pub Map | panValue
 " Method turns servo from -45 to + 45 degrees from center in increments
 " and gets ping range and returns m value at each increment

 SERVO.Set(Right, 1500) ' Stop servos
 SERVO.Set(Left, 1500)

 SERVO.Set(Pan, 1000) ' Pan full right
 XB.Delay(1000)
 ' Pan right to left
 repeat pan from 1000 to 2000 step 15
 SERVO.Set(Pan,panValue)
 Range := Ping.Millimeters(PING_Pin) ' Get range calculated
 ' based on compass
 ' and pan
 PanOffset := ((panValue-1500) * 2047/1000)

A THREE-NODE, TILT-CONTROLLED ROBOT WITH GRAPHICAL DISPLAY 229

230 WIRELESSLY NETWORKING PROPELLER CHIPS

 XB.TX("m") ' Send map data command
 XB.DEC(Range) ' Send range as decimal
 XB.CR
 XB.DEC((8191-Theta) + PanOffset) ' Send theta of bearing
 XB.CR
 XB.delay(50)
 XB.delay(1000)

 SERVO.SET(Pan,1500) ' Re-center pan servo

TRY IT!

✓ Add another device, such as speaker, to your bot. Add a button on the tilt
controller and modify code to control the device from the tilt controller.

Bot Graphics The bot graphics code is responsible for accepting the data and dis-
playing it graphically on a TV screen. Note that this XBee is in API mode so that the
RSSI level may be pulled out of the received frame. The code looks for one of three
incoming byte instructions: “u,” “m,” and “c.” Updates, “u,” are messages with update
data as the data moves, with range, bearing, and drive values (limited between 1000
and 2000), and it retrieves RSSI level for display creation.

 Repeat
 XB.API_rx ' Accept data
 If XB.RxIdent == $81 ' If msg packet...
 if byte[XB.RxData] == "u" ' If updates, pull out data
 ' Get DEC data skipping 1st byte (u)
 range := XB.ParseDEC(XB.RxData+1,1)
 bearing := XB.ParseDEC(XB.RxData+1,2)
 rDrive := XB.ParseDEC(XB.RxData+1,3) <#2000 #>1000
 lDrive := XB.ParseDEC(XB.RxData+1,4) <#2000 #>1000
 RSSI := XB.RxRSSI
 Update

Mapping (m) strings are used to map what the bot “sees” without clearing off old
data while a mapping pan is in progress. Clear, “c,” is received once the bot switches
back into drive mode after mapping.

We aren’t going to delve too deeply into the graphics creation here, as it’s not
a major subject for this chapter. One point of interest is in that many graphic pro-
grams the video data is written into one part of memory (such as bitmap_base),
and when the complete display change is ready, it is copied into the section of
memory that the graphics driver uses to display the actual display. It is effectively
double-buffered to prevent flicker on the screen. We do not have the luxury of
the memory needed for that operation. Instead, to reduce flicker, values of the
old data are saved. When updating, the graphics are redrawn in the background

color to “erase” them, then the new data is used to draw the graphics in the cor-
rect color, such as in this code:

 ' Draw bot vector image
 gr.width(2)
 gr.color(0) ' White
 gr.vec(120,120, 100, (bearing_l), @bot) ' Erase last image
 gr.color(1) ' Black
 gr.vec(120,120, 100, (bearing), @bot) ' Draw new image

Many features of graphics.spin are used, including text, lines, arcs, and vector-based
graphics. The code is fairly well commented for adaptation.

TRY IT!

✓ Add another sensor to your bot. Modify both the bot and graphics code to send
and display the value.

Summary
In this chapter we looked at what the XBee is and how it can be confi gured and used in
a wireless sensor network. Using AT codes sent from the controller, the XBee can be
confi gured for specifi c applications, such as unique addresses used in polling operations.
In API mode, frames are sent and received with specifi c data. Using the networking
capabilities, a three-node bot system was developed for control and monitoring using
the graphics ability of the Propeller chip.

The ability to confi gure the device and send data between Propeller chips effi -
ciently and with addressing leads to a wide array of projects that can be implemented.
Allowing different Propeller chips to perform their own processing and easily com-
municating with each other brings the excitement of parallel processing to a whole
new level.

In my research with institutions, such as Southern Illinois University, University
of Florida, USDA in Texas, and the University of Sassari, Italy, I have been involved
in many XBee/Propeller (and some other controller) projects. These projects include
monitoring corn irrigation needs, biological monitoring, and monitoring the vibration
of citrus fruit as it’s shaken from the tree.

Wireless sensor networks are a powerful and quickly expanding fi eld for remote
monitoring and control. They are fi nding use in research and in building, plant, and
home automation. The Propeller, with its ability to perform parallel processing, is
an outstanding choice for monitoring and control. As mentioned at the outset of this
chapter, whether you build the projects in this chapter or simply gain an understand-
ing of the material, I hope you can use the base code and principles in projects of
your own invention.

SUMMARY 231

Exercise
A FINAL PROJECT FOR YOU—DIRECT XBee ADC/DIGITAL DATA

For our fi nal exploration into the Propeller/XBee combination, let’s exercise the XBee’s
ability to measure and transmit analog and digital data without a controller. The received
data has a packet identifi er of $83 (the XBee needs to have fi rmware version 10A3 or
higher to be able to this).

✓ Apply an analog voltage of up to 3.3 V (using a potentiometer or other device) to
ADC 0 (pin 20) and ADC 2 (pin 19) and a pushbutton to DIO2 (pin 18).

✓ Using X-CTU software, starting from the default settings, confi gure for a MY of
6 and for I/O settings, such as:
D0 = mode 2: ADC
D1 = mode 2: ADC
D3 = mode 3: DIN (Digital Input)
IR = 3E8 (sample rate of 1 second. $3E8 = 1000 decimal or 1000 ms of time).

✓ Connect the Vcc (pin 1) and the Vref pin (pin 14) of the XBee to 3.3 V. Connect Vss
to GND (pin 10). Do not connect anything else, including the Propeller.

✓ Download ADC-Dig Output Sample.spin to your coordinator board.
✓ Open the Terminal window and monitor. You should see something similar to Fig. 5-26.

 Figure 5-26 Displaying data from an XBee sending raw
ADC/digital data.

232 WIRELESSLY NETWORKING PROPELLER CHIPS

The remote XBee is reading the ADC and digital channels specifi ed and sending a
packet containing the data. You will not see the LED blink on the sending XBee because
no communication enters or exits it through the serial port.

On the coordinator, when a frame with an identifi er of $83 (ADC/Digital data) arrives,
valid data is pulled out and displayed (nonenabled channels are −1).

PUB Start | channel
 ' Configure XBee & PC Comms
 XB.start(XB_Rx, XB_Tx, 0,9600)
 PC.start(PC_Rx, PC_Tx, 0, 9600)

 XB.AT_Init ' Fast config
 XB.AT_ConfigVal(string("ATMY"), MY_Addr)
 XB.AT_Config(string("ATAP 1"))' Switch to API mode

 PC.str(string("Coordinator in API mode ready at address:"))
 PC.dec(MY_Addr)
 PC.Tx(13)

 Repeat
 XB.API_Rx ' Wait for API data
 if XB.RxIdent == $83 ' If data identifier is a ADC/Dig data
 PC.Str(string(13,"Data Received from address: "))
 PC.DEC(XB.srcAddr)
 repeat channel from 0 to 6 ' Cycle through ADC channels
 if XB.rxADC(Channel) <> -1 ' Display if not -1
 PC.str(string(13,"ADC Ch:"))
 PC.dec(channel)
 PC.tx("=")
 PC.DEC(XB.rxADC(Channel))

 repeat channel from 0 to 7 ' Cycle through Digital channels
 if XB.rxBit(Channel) <> -1 ' Display if not -1
 PC.str(string(13,"Dig Ch:"))
 PC.dec(channel)
 PC.tx("=")
 PC.DEC(XB.rxBit(Channel))

 PC.str(string(13,"---------------------------------"))

If you were to use an analog accelerometer, you could read the accelerometer and a
digital pushbutton on the tilt controller and have the XBee send those values automati-
cally. Then the Propeller could accept data at the bot and process it for control action.
Or you may have an array of sensors in the area and collect data from them as they
wake, sample, send, and go back to sleep.

EXERCISE 233

	Contents
	About the Authors
	Foreword
	Introduction
	Chapter 1 The Propeller Chip Multicore Microcontroller
	Introduction
	Multicore Defined
	Why Multicore?
	Multicore Propeller Microcontroller
	Summary
	Exercises

	Chapter 2 Introduction to Propeller Programming
	Introduction
	What's the Secret?
	Ready to Dive In?
	Let's Get Connected!
	Your First Propeller Application
	A Blinking LED
	RAM versus EEPROM
	A More Powerful Blink
	All Together Now
	Wrapping It Up
	Timing Is Everything
	Sizing the Stack
	Propeller Objects and Resources
	Summary
	Exercises

	Chapter 3 Debugging Code for Multiple Cores
	Propeller Features That Simplify Debugging
	Object Design Guidelines
	Common Multiprocessor Coding Mistakes
	Survey of Propeller Debugging Tools
	Debugging Tools Applied to a Multiprocessing Problem
	Summary
	Exercises

	Chapter 4 Sensor Basics and Multicore Sensor Examples
	Introducing Sensors by Their Microcontroller Interfaces
	On/Off Sensors
	Resistive, Capacitive, Diode, Transistor, and Other
	Pulse and Duty Cycle Outputs
	Frequency Output
	Voltage Output
	Synchronous Serial
	Asynchronous Serial
	Questions about Processing and Storing Sensor Data
	Summary
	Exercises

	Chapter 5 Wirelessly Networking Propeller Chips
	Introduction
	Overview of Networking and XBee Transceivers
	Hardware Used in This Chapter
	Testing and Configuring the XBee
	Sending Data from the Propeller to the PC
	Polling Remote Nodes
	Using the XBee API Mode
	A Three-Node, Tilt-Controlled Robot with Graphical Display
	Summary
	Exercise

	Chapter 6 DanceBot, a Balancing Robot
	Introduction
	The Challenge
	Building the DanceBot
	Controlling the DanceBot
	Summary
	Exercises

	Chapter 7 Controlling a Robot with Computer Vision
	Introduction
	Understanding Computer Vision
	PropCV: A Computer Vision System for the Propeller
	Apply Filters and Track a Bright Spot in Real Time
	Following a Line with a Camera
	Track a Pattern
	State-of-the-Art Computer Vision with OpenCV
	OpenCV and Propeller Integration
	Summary
	Exercises

	Chapter 8 Using Multicore for Networking Applications
	Introduction
	Ethernet and Internet Protocols
	EtherX Add-in Card for the Propeller-Powered HYDRA
	Creating a Simple Networked Game
	Summary
	Exercises

	Chapter 9 Portable Multivariable GPS Tracking and Data Logger
	Introduction
	Overview of the Sensors
	Main Spin Object
	Experiment
	Summary
	Exercises

	Chapter 10 Using the Propeller as a Virtual Peripheral for Media Applications
	Introduction
	Overview, Setup, and Demo
	System Architecture and Constructing the Prototype
	Remote Procedure Call Primer
	Virtual Peripheral Driver Overview
	Client/Host Console Development
	Exploring the Command Library to the Slave/Server
	Enhancing and Adding Features to the System
	Exploring Other Communications Protocols
	Summary
	Exercises

	Chapter 11 The HVAC Green House Model
	Introduction
	Exploring the Problem
	The HVAC Green House Model
	Summary
	Exercises

	Chapter 12 Synthesizing Speech with the Propeller
	Introduction
	Using Spectrographs to "See" Speech
	Exploring the VocalTract Object
	Summary
	Exercises

	Appendix A: Propeller Language Reference
	Categorical Listing of Propeller Spin Language Elements
	Categorical Listing of Propeller Assembly Language
	Reserved Word List

	Appendix B: Unit Abbreviations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	2113447 Sample Chapter.pdf
	Chapter 5 Wirelessly Networking Propeller Chips
	Introduction
	Overview of Networking and XBee Transceivers
	Hardware Used in This Chapter
	Testing and Configuring the XBee
	Sending Data from the Propeller to the PC
	Polling Remote Nodes
	Using the XBee API Mode
	A Three-Node, Tilt-Controlled Robot with Graphical Display
	Summary

