What's a Microcontroller?

Student Guide

VERSION 2.2



WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2003-2004 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education and SumoBot are registered trademarks of Parallax, Inc.
HomeWork Board, Boe-Bot and Toddler are trademarks of Parallax Inc. If you decide to use the words BASIC
Stamp, Stamps in Class, Board of Education, HomeWork Board, Boe-Bot or Toddler on your web page or in printed
material, you must state that "BASIC Stamp is a registered trademark of Parallax Inc.”, “Stamps in Class is a
registered trademark of Parallax Inc.”, “Board of Education is a registered trademark of Parallax Inc.”, “SumoBot is
a registered trademark of Parallax Inc.” “HomeWork Board is a trademark of Parallax Inc.”, “Boe-Bot is a
trademark of Parallax Inc.”, or “Toddler is a trademark of Parallax Inc.” respectively, upon the first appearance of
the trademark name. Other brand and product names are trademarks or registered trademarks of their respective
holders.

ISBN 1-928982-02-6

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with



Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

WEB SITE AND DISCUSSION LISTS

The Parallax Inc. web site (www.parallax.com) has many downloads, products, customer applications and on-line
ordering for the components used in this text. We also maintain several e-mail discussion lists for people interested in
using Parallax products. These lists are accessible from www.parallax.com via the Support — Discussion Groups
menu. These are the lists that we operate:

. BASIC Stamps — With over 4,000 subscribers, this list is widely utilized by engineers, hobbyists and
students who share their BASIC Stamp projects and ask questions.

. Stamps in Class — Created for educators and students, this list has about 650 subscribers who discuss the
use of the Stamps in Class curriculum in their courses. The list provides an opportunity for both students
and educators to ask questions and get answers.

. Parallax Educators —Exclusively for educators and those who contribute to the development of Stamps in
Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for educators
to develop and obtain Teacher’s Guides.

. Parallax Translators — Consisting of about 40 people, the purpose of this list is to provide a conduit
between Parallax and those who translate our documentation to languages other than English. Parallax
provides editable Word documents to our translating partners and attempts to time the translations to
coordinate with our publications.

. Toddler Robot — A customer created this discussion list to discuss applications and programming of the
Parallax Toddler robot.

. SX Tech — Discussion of programming the SX microcontroller with Parallax assembly language tools and
3" party BASIC and C compilers. Approximately 600 members.

L] Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language. Approximately 250
members.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.



Table of Contents - Page i

Table of Contents

PrEIACE .. e e \%
AUGIENCE ...ttt e e e e e et e e e e s s e b bbb e e e e e e e s aanbbeeeeaaeeeaaanes \Y
Support and DiSCUSSION GroUPS ........cccooiiiiiiiiiiieeeeeeee e v
BICT= Lo =Y o U T [ SR Vi
The Stamps in Class CUrriCUIUM ............ooiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeaeaees Vi
Foreign TransIatioNS ............ueiiiiii e viii
Special Contributors ... viii

Chapter #1: Getting STart@d ...........ueeeiiiiiiiiieie e 1
How Many Microcontrollers Did You Use TOday? .........cooiiiiriiiiiee e 1
The BASIC Stamp 2 - Your New Microcontroller...............oooovieiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeees 1
Amazing Inventions with BASIC Stamp Microcontrollers ............ccoocooeeiiiiienicieeeeeen. 2
Hardware and SOftWaAre ..........ooo i 5
Activity #1: Getting the SOftWare...........cooi i 5
Activity #2: Installing the Software ..........cccccv i 10
Activity #3: Setting Up the Hardware and Testing the System ...........cccccooeviiiieeneen. 13
ACLIVity #4: FirSt Program........cooii oot a e e e e 20
Activity #5: LOOKING UP ANSWETS ....nniiiiiiiiie ettt e e e e 27
Activity #6: Introducing ASCII COE........coiieiiiiiiiiiiiee e 30
Activity #7: WHeN YOU'TE DONE ........coiiiiiiiiiiie ettt 31
SUMMIAIY .ottt e et e e e e e e s s et e e e e e e s aaa st eaeetaaeesaassttaneeaaessaasssnnneeaeeeeannnnnnnes 33

Chapter #2: Lights On — Lights Off ......coiuiiiiiiiiiii e 37
INAICALOr LIGNTS ..o e e 37
Making a Light Emitting Diode (LED) Emit Light..........cooiiiiiiieiiiiiee e 37
Activity #1: Building and Testing the LED CirCuit...........ccccooeiriiiinieenie e 38
Activity #2: On/Off Control with the BASIC Stamp........ccccceiiviee i 46
Activity #3: Counting and Repeating..........cccooiiiiiiiiiiiiiee e 52
Activity #4: Building and Testing a Second LED Circuit ........cccccccovecviiiiiieeiiiiciiieeeeee 56
Activity #5: Using Current Direction to Control a Bi-Color LED ...........cccccccveevcieeennnee. 60
SUMMIATY .eeeteiiee et e et e et e e e s s et et aeeesaaa st tae et aaeesaassttaeeeaaeesaasssnnneaaeeeeannnnnnnes 67

Chapter #3: Digital Input - PUShDBUTIONS ......cooiiiiiiiiii e 71
Found on Calculators, Hand Held Games, and ApplianCes ..........cccccceeeeiiniiiiieenneennn, 71
Receiving vs. Sending High and Low Signals ...........cccoooiiiiiiiiieiiiicieece e 71
Activity #1: Testing a Pushbutton with an LED Circuit..........cccocveiiiiieiiieiiieeec, 71
Activity #2: Reading a Pushbutton with the BASIC Stamp ...........cccccvivveiiiiiciiieeeeee 75
Activity #3: Pushbutton Control of an LED CirCuit ...........ccocceriiiinieenie e 80
Activity #4: Two Pushbuttons Controlling Two LED Circuits...........ccccccevveeeviiciiiieneeeenn. 83
Activity #5: Reaction TIMer TeSt........cccuiiiiiiiiiiiie s 88

SUMMIATY .eeeteiiee ettt et e e e s s ettt eeae e e s aaa st eaeeeaaeesaassttaneeaaeesannssnnneaaeeeeannnnnnnes 97



Page ii - What’s a Microcontroller?

Chapter #4: Controlling MOTION .....ccooiiiiiiiiec e 103
Microcontrolled MOLION .........ooiiiiiiiee e 103
On/Off Signals and Motor MOTION .........cooiiiiiiiiiiie e 103
Activity #1: Connecting and Testing the Servo.........coocoii i 103
Activity #2: Controlling Position with Your Computer ...........ccccccceiiiiiiiieenee e, 119
Activity #3: Converting Position 10 Motion ... 125
Activity #4: Pushbutton Controlled Servo ..o 128
ST 410 T S 134

Chapter #5: Measuring ROTATION ........ocuviiiiiiiiie e 139
Adjusting Dials and Monitoring Machines............ccueveeiiiiiiiiii e 139
The Variable Resistor under the Dial — A Potentiometer...........ccccooiiiiiiinniiinee. 139
Activity #1: Building and Testing the Potentiometer Circuit............occcoiieeiieiiiiiiinnen. 141
Activity #2: Measuring Resistance by Measuring Time ..........ccooocoiiiiiiiiiiieeeee 143
Activity #3: Reading the Dial with the BASIC Stamp .........ccccoiieiiiiii e, 149
Activity #4: Controlling a Servo with a Potentiometer.............cccocooiiiiiiiiiicie, 152
SUMMIGTIY ettt e et r e e e e e s s e bbbttt e e e e s s aa bt be e e e ae e e s s s bbeeeeeeeeeennnssneeeeaaens 160

Chapter #6: Digital DiSPlay.....cc.uueiiiiiiiiiiiiiiii e e 165
The Every-Day Digital DiSPIay .......ccouiuiiiiiiiieiiiiieee e 165
What's @ 7-Segment DiSPIay? .......coo i 165
Activity #1: Building and Testing the 7-Segment LED Display ..........ccccceeeiieeenieenn. 167
Activity #2: Controlling the 7-Segment LED Display..........ccccuveeeeiiiiiiiiiieeee e 171
Activity #3: Displaying DigitS........ciouiiii i 174
Activity #4: Displaying the Position of a Dial.............cccceeeiiiiiiiiiiii e, 181
ST 410 T S 186

Chapter #7: Measuring Light........cccooiiiiii e 189
Devices that Contain Light SENSOIS .........ccvviiiiiie e 189
Introducing the PhotOoreSiStor...........ooiiiiiiiiii e 189
Activity #1: Building and Testing the Light Meter...........ccooiiiiiiiiii e, 190
Activity #2: Graphing Light Measurements.............cccooiii i 193
Activity #3: Tracking Light EVENtS........ceviiiiii e 197
Activity #4: Simple Light Meter ... 203
SUMMIGTY ettt e et e e e e e e s e ettt et e e e s s aab b te e e e e e e e s s s tbeaeeaeeeeeannsnneeeeaaens 215

Chapter #8: Frequency and SOUNG ...........ooiiiiiiiiiiiiiieee i 219
Your Day and EIectroniC BEEPS.........ccuuiiiiiiiiiiiiiieee et 219
Microcontrollers, Speakers, Beeps and On/Off Signals .........ccccccceveeiiiiiiiiieene s 219
Activity #1: Building and Testing the Speaker ..o, 220
Activity #2: ACHON SOUNGS ...t 222
Activity #3: Musical Notes and Simple SONGS .........oooviiiiiiiiiee e 227
Activity #4: Microcontroller MUSIC ..........uvviiiiieeeiiiiee e 233

Activity #5: Cell Phone RINGTONES .......cceiiiiiiiiiiiiie ettt 245



Table of Contents - Page iii

101010 T S 258
Chapter #9: Electronic Building BIOCKS .......coccuuiiiiiiiiiii e 263
Those Little BIack ChipPS .......cooiiiiiiiiiiiiiiiiiieiieee ettt eveeeeeeaeeaeeseesssssssssssssssssssnenes 263
Expand Your Projects with Peripheral Integrated Circuits ............ccoccociiiiiiii e 264
Activity #1: Control Current Flow with @ Transistor............cccccooiiiiiiiiin e 265
Activity #2: Introducing the Digital Potentiometer ..............cocoi i, 267
S T0 001 0= YT PREPR 278
Chapter #10: Running the Whole ShOW .......cccccooviiiiiiiiiiiie e 281
Subsystem INtegration ........ ..o 281
Activity #1: Building and Testing Each Pushbutton Circuit.............cccccceiiiiiiiiennnennn. 282
Activity #2: Building and Testing Each RC-Time Circuit............ccccoiiiiiiiiiiiieiieees 285
Activity #3: Subsystem Integration Example........cccccoooiiiiiiiiiiii e 287
Activity #4: Developing and Adding a Software Subsystem .............cccccviiiiiiiiiees 291
S T0 a0 0= YO RUPR 297
Appendix A: USB to Serial Adapter ... 301
Appendix B: Equipment and Parts LiStS.......cccoouiiiiiiiiiiiiiiiice e 303
Appendix C: BASIC Stamp and Carrier Board Components and Functions....307
Appendix D: Batteries and Power SUPPlIES. ... 311
Appendix E: Trouble-ShoOtiNg.......coociiiiiiiiiie e 315
Appendix F: More about EIECEIICITY ..oouuvviiiieieeiieiiiieeee e 319
Appendix G: RTTTL FOrmat SUMMAIY .......cceeiiiiiiiieiiiiiee i 327



Preface - Pagev

Preface

This text answers the question “What’s a microcontroller?” by showing students how
they can design their own customized, intelligent inventions with Parallax, Inc.’s BASIC
Stamp® microcontroller module. The activities in this text incorporate a variety of fun
and interesting experiments designed to appeal to a student’s imagination by using
motion, light, sound, and tactile feedback to introduce new concepts. These activities
introduce students to a variety of basic principles in the fields of computer programming,
electricity and electronics, mathematics and physics. Many of the activities facilitate
hands-on presentation of design practices used by engineers and technicians in the
creation of modern machines and appliances, using common inexpensive parts.

AUDIENCE

This text is organized so that it can be used by the widest possible variety of students as
well as independent learners. Middle school students can try the examples in this text in
a guided tour fashion by simply following the check-marked instructions and instructor
supervision. At the other end of the spectrum, pre-engineering students’ comprehension
and problem-solving skills can be tested with the questions, exercises and projects (with
solutions) in each chapter summary. The independent learner can work at his or her own
pace, and obtain assistance through the Stamps in Class® Yahoo Group forum cited
below.

SUPPORT AND DISCUSSION GROUPS

The following two Yahoo! Discussion Groups are available for those who would like
support in using this text. These groups are accessible from www.parallax.com under
Discussion Groups on the Support menu.

Stamps In Class Group: Open to students, educators, and independent learners, this forum
allows members to ask each other questions and share answers as they work through the
activities, exercises and projects in this text.

Parallax Educator’s Group: This moderated forum provides support for educators and
welcomes feedback as we continue to develop our Stamps in Class curriculum. To join
this group you must have proof of your status as an educator verified by Parallax. The
Teacher’s Guide for this text is available as a free download through this forum.




Page vi - What's a Microcontroller?

Educational Support: stampsinclass@parallax.com Contact the Parallax Stamps in Class
Team directly if you are having difficulty subscribing to either of these Yahoo! Groups,
or have questions about the material in this text, our Stamps in Class Curriculum, our
Educator’s Courses, or any of our educational services.

Educational Sales: sales@parallax.com Contact our Sales Team for information about
educational discount pricing and classroom packs for our Stamps in Class kits and other
selected products.

Technical Support: support@parallax.com Contact our Tech Support Team for general
questions regarding the set-up and use of any of our hardware or software products.

TEACHER'’S GUIDE

Each chapter summary contains a set of questions, exercises and projects with solutions
provided. A Teacher’s Guide is also available for this text. It contains an additional set
of solved questions, exercises and projects, as well as some expanded and alternative
solutions to the material in the text. The Teacher’s Guide is available free in both Word
and PDF file formats by joining the Parallax Educators Yahoo Group or by emailing
stampsinclass@parallax.com. To obtain these files, you must provide proof of your status
as an educator.

THE STAMPS IN CLASS CURRICULUM

What’s a Microcontroller? is the gateway text to our Stamps in Class curriculum. After
completing this text, you can continue your studies with any of the Student Guides listed
below. All of the books listed are available for free download from www.parallax.com.
The versions cited below were current at the time of this printing. Please check our web
sites www.parallax.com or www.stampsinclass.com for the latest revisions; we
continually strive to improve our educational program.

Stamps in Class Student Guides:

For a well-rounded introduction to the design practices that go into modern devices and
machinery, working through the activities and projects in the following Student Guides is
highly recommended.



Preface - Page vii

“Applied Sensors’, Student Guide, Version 1.3, Parallax Inc., 2003

“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
“Industrial Control”, Student Guide, Version 1.1, Parallax Inc., 1999
“Robotics with the Boe-Bot”, Student Guide, Version 2.0, Parallax Inc., 2003

More Robotics Kits:

Some enter the Stamps in Class curriculum through the Robotics with the Boe-Bot
Student Guide. After completing it, you will be ready for either or both of these more
advanced robotics texts and kits:

“ Advanced Robotics; with the Toddler”, Student Guide, Version 1.2, Parallax
Inc., 2003
“SumoBot”, Manual, Version 2.0, Parallax Inc., 2004

Educational Project Kits:

Elements of Digital Logic, Understanding Signals and Experiments with Renewable
Energy focus more closely on topics in electronics, while StampWorks provides a variety
of projects that are useful to hobbyists, inventors and product designers interested in
trying a variety of projects.

“ Elements of Digital Logic”, Student Guide, Version 1.0, Parallax Inc., 2003
“ Experiments with Renewable Energy”, Student Guide, Version 1.0, Parallax
Inc., 2004

“ StampWorks’, Manual, Version 1.2, Parallax Inc., 2001

“Understanding Signals’, Student Guide, Version 1.0, Parallax Inc., 2003

Reference

This book is an essential reference for all Stamps in Class Student Guides. It is packed
with information on the BASIC Stamp series of microcontroller modules, our BASIC
Stamp Editor, and our PBASIC programming language.

“BASIC Stamp Manual”, Version 2.0c, Parallax Inc., 2000



Page viii - What's a Microcontroller?

FOREIGN TRANSLATIONS

Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators that you may join. It’s called the
Parallax Translators Yahoo-group, and directions for finding it are included on the inside
cover of this text. See section entitled: WEB SITE AND DISCUSSION LISTS after the
Title page.

SPECIAL CONTRIBUTORS

The Parallax team assembled to write this text includes: curriculum design and technical
writing by Andy Lindsay, illustration by Rich Allred, cover design by Jen Jacobs and
Larissa Crittenden, general consulting by Aristides Alvarez and Jeff Martin,
electromechanical consulting by John Barrowman, technical review and solutions by Kris
Magri, technical editing by Stephanie Lindsay, and committee review by Rich Allred,
Gabe Duran, Stephanie Lindsay, and Kris Magri.

What’s a Microcontroller? Student Guide Version 2.2 was written by Andy Lindsay after
collecting observations and educator feedback while traveling the nation teaching
Parallax Educators Courses. Andy studied Electrical and Electronic Engineering at
California State University, Sacramento, and this is his third Stamps in Class Student
Guide. He is also a contributing author of several papers that address the topic of
microcontrollers in pre-engineering curricula. When he’s not writing educational
material, Andy does product engineering for Parallax.

Parallax wishes to thank StampsInClass Yahoo Group member Robert Ang for his
thorough draft review and detailed input, and veteran engineer and esteemed customer
Sid Weaver for his insightful review. Thanks also to Stamps in Class authors Tracy
Allen (Applied Sensors), and Martin Hebel (Industrial Control) for their review and
recommendations. Andy Lindsay wishes to thank his father Marshall and brother-in-law
Kubilay for their expert musical advice and suggestions. Stamps in Class was founded
by Ken Gracey, and Ken wishes to thank the Parallax staff for the great job they do.
Each and every Parallaxian has made contributions to this and every Stamps in Class text.



Chapter #1: Getting Started - Page 1

Chapter #1. Getting Started

HOW MANY MICROCONTROLLERS DID YOU USE TODAY?

A microcontroller is a kind of miniature computer that you can find in all kinds of
gizmos. Some examples of common, every-day products that have microcontrollers
built-in are shown in Figure 1-1. If it has buttons and a digital display, chances are it also
has a programmable microcontroller brain.

Figure 1-1

: Every-Day Examples of
Devices that Contain
i Microcontrollers

-

Try making a list and counting how many devices with microcontrollers you use in a
typical day. Here are some examples: if your clock radio goes off, and you hit the snooze
button a few times in the morning, the first thing you do in your day is interact with a
microcontroller. Heating up some food in the microwave oven and making a call on a
cell phone also involve operating microcontrollers. That’s just the beginning. Here are a
few more examples: turning on the television with a handheld remote, playing a handheld
game, using a calculator, and checking your digital wristwatch. All those devices have
microcontrollers inside them that interact with you.

THE BASIC STAMP 2 - YOUR NEW MICROCONTROLLER

Parallax, Inc.’s BASIC Stamp® 2 module shown in Figure 1-2 has a microcontroller built
onto it. It’s the black chip with lettering on it that reads “PIC16C57”. The rest of the
components on the BASIC Stamp module are also found in consumer appliances you use
every day. All together, they are correctly called an embedded computer system. This
name is almost always shortened to just “embedded system”. Frequently, such modules
are commonly just called “microcontrollers.”

The activities in this text will guide you through building circuits similar to the ones
found in consumer appliances and high-tech gizmos. You will also write computer
programs that the BASIC Stamp module will run. These programs will make the BASIC
Stamp module monitor and control these circuits so that they perform useful functions.



Page 2 - What’s a Microcontroller?

Figure 1-2
The BASIC Stamp® 2
Microcontroller Module

BASIC Stamp 2
modules are the most
popular
microcontrollers made
by Parallax, Inc.

In this text, “BASIC Stamp” refers to Parallax Inc.’s BASIC Stamp® 2 microcontroller
module. There are other BASIC Stamp modules, some of which are shown in Figure 1-3.
Each BASIC Stamp module is color coded. The BASIC Stamp 2 is green. The BASIC
Stamp 2e is red. The BASIC Stamp 2SX is blue, and the BASIC Stamp 2p is gold. Each
variation on the BASIC Stamp 2 is slightly different, featuring higher speed, more memory,
additional functionality, or some combination of these extra features.

(1) Figure 1-3
- BASIC Stamp®

Modules

From Left to Right:
BASIC Stamp® 2, 2e,
2SX, and 2p

AMAZING INVENTIONS WITH BASIC STAMP MICROCONTROLLERS

Consumer appliances aren’t the only things that contain microcontrollers. Robots,
machinery, aerospace designs and other high-tech devices are also built with
microcontrollers. Let’s take a look at some examples that were created with BASIC
Stamp modules.

Robots have been designed to do everything from helping students learn more about
microcontrollers, to mowing the lawn, to solving complex mechanical problems. Figure
1-4 shows two example robots. On each of these robots, students use the BASIC Stamp 2
to read sensors, control motors, and communicate with other computers. The robot on



Chapter #1: Getting Started - Page 3

the left is Parallax Inc.’s Boe-Bot™. The projects in the Robotics with the Boe-Bot text
can be tackled using the Boe-Bot after you’ve worked through the activities in this one.
The robot on the right was built by a group of students and entered into a First Robotics
competition. The goal of the contest is different each year. In the example shown, the
goal was to see which group’s robot could sort colored hoops the fastest.

Figure 1-4
Educational Robots

Parallax Boe-Bot™ (left)
First Competition Robot

(right)

Other robots solve complex problems, such as the autonomous remote flight robot shown
at the left of Figure 1-5. This robot was built and tested by mechanical engineering
students at the University of California, Irvine. They used a BASIC Stamp module to
help it communicate with a satellite global positioning system (GPS) so that the robot
could know its position and altitude. The BASIC Stamp also read level sensors and
controlled the motor settings to keep the robot flying properly. The mechanical millipede
robot on the right was developed by a professor at Nanyang Technical University,
Singapore. It has more than 50 BASIC Stamp modules, and they all communicate with
each other in an elaborate network that helped control and orchestrate the motion of each
set of legs. Robots like this not only help us better understand designs in nature, but they
may eventually be used to explore remote locations, or even other planets.

Figure 1-5

Examples of Research
Robots that Contain
Microcontrollers

Autonomous flying
robot at UC Irvine (left)
and Millipede Project at
Nanyang University
(right)



Page 4 - What’s a Microcontroller?

With the help of microcontrollers, robots will also take on day-to-day tasks, such as
mowing the lawn. The BASIC Stamp module inside the robotic lawn mower shown in
Figure 1-6 helps it stay inside the boundaries of the lawn, and it also reads sensors that
detect obstacles and controls the motors that make it move.

Figure 1-6
Robotic Lawn Mower

Prototype by the Robot
Shop

Microcontrollers are also used in scientific, high technology, and aerospace projects.
The weather station shown on the left of Figure 1-7 is used to collect environmental data
related to coral reef decay. The BASIC Stamp module inside it gathers this data from a
variety of sensors and stores it for later retrieval by scientists. The submarine in the
center is an undersea exploration vehicle, and its thrusters, cameras and lights are all
controlled by BASIC Stamp microcontrollers. The rocket shown on the right is one that
was part of a competition to launch a privately owned rocket into space. Nobody won the
competition, but this rocket almost made it! The BASIC Stamp controlled just about
every aspect of the launch sequence.

Figure 1-7
High-tech and Aerospace
Microcontroller Examples

Ecological data collection
by EME Systems (left),
i undersea research by
Harbor Branch Institute
(center), and JP Aerospace
test launch (right)

From common household appliances all the way through scientific and aerospace
applications, the microcontroller basics you will need to get started on projects like these
are introduced here. By working through the activities in this book, you will get to



Chapter #1: Getting Started - Page 5

experiment with and learn how to use a variety of building blocks found in all these high-
tech inventions. You will build circuits for displays, sensors, and motion controllers.
You will learn how to connect these circuits to the BASIC Stamp 2 module, and then
write computer programs that make it control displays, collect data from the sensors, and
control motion. Along the way, you will learn many important electronic and computer
programming concepts and techniques. By the time you’re done, you might find yourself
well on the way to inventing a gizmo of your own design.

HARDWARE AND SOFTWARE

Getting started with BASIC Stamp microcontroller modules is similar to getting started
with a brand-new PC or laptop. The first things that most people have to do when they
get a new PC or laptop is take it out of the box, plug it in, install and test some software,
and maybe even write some software of their own using a programming language. If this
is your first time using a BASIC Stamp module, you will be doing all these same
activities. If you are in a class, your hardware may already be all set up for you. If this is
the case, your teacher may have other instructions. If not, this chapter will take you
through all the steps of getting your new BASIC Stamp microcontroller up and running.

ACTIVITY #1: GETTING THE SOFTWARE

The BASIC Stamp Editor (version 2.0 or higher) is the software you will use in most of
the activities and projects in this text. You will use this software to write programs that
the BASIC Stamp module will run. You can also use this software to display messages
sent by the BASIC Stamp that help you understand what it senses.

The BASIC Stamp Editor is free software, and the two easiest ways to get it are:

. Download from the Internet: Look for “BASIC Stamp Windows Editor version
2.0...” on the www.parallax.com — Downloads — BASIC Stamp Software page.

. Included on the Parallax CD: Follow the Software link on the Welcome page.
Make sure the date printed on the CD is May 2003 or newer.

‘&’ InaHurry? Get your copy of the BASIC Stamp Windows Editor version 2.0 (or higher) and
install it on your PC or laptop. Then, skip to: Activity #3: Setting Up the Hardware and
Testing the System.

If you have questions along the way, Activity #1 can be used as a step-by-step reference
for getting the software, and Activity #2 can be used as a reference for the installation
procedure.




Page 6 - What’s a Microcontroller?

Computer System Requirements

You will need either a PC or laptop computer to run the BASIC Stamp Editor software.
Getting started with BASIC Stamp programming is easiest if your PC or laptop has the
following features:

e Microsoft Windows 95® or newer operating system
e A serial or USB port
e A CD-ROM drive, World Wide Web access, or both

) USB Port Adapter If your computer only has USB ports, you will need a USB to Serial
\é/ Adapter. See Appendix A: USB to Serial Adapter for details and installation instructions.

Downloading the Software from the Internet

It’s easy to download the BASIC Stamp Editor software from the Parallax web site. The
web page shown in Figure 1-8 may look different from the web page you see when you
visit the site. Nonetheless, the steps for downloading the software should still be similar
to these:

V' Using a web browser, go to www.parallax.com (shown in Figure 1-8).
\' Point at the Downloads menu to display the options.
V' Point at the BASIC Stamp Software link and click to select it.

Figure 1-8
The Parallax Web Site:

www.parallax.com



Chapter #1: Getting Started - Page 7

v When you get to the BASIC Stamp Software page, find the most recent
version of the BASIC Stamp Windows Editor download, with a version
number of 2.0 or higher.

V' Click the Download icon. In Figure 1-9, the download icon looks like a file
folder to the right of the description: “BASIC Stamp Windows Editor version
2.0 Beta 1 (6MB)”.

Figure 1-9
The Parallax Web Site
Downloads Page

V' When the File Download window shown in Figure 1-10 appears, select: Save
this program to disk.
V' Click the OK button.

File Download x|
*rou have chosen to download & file from this location.

Editor_v2 0_Beta_1_EMB.sxe from i, parallas. com

what would pou ke to do with this file?

€ Bun this program from its current location

Figure 1-10
File Download Window

& Save this pioaram e disk

I¥ | Aluasys ask before apening this type of fie

0 | Cancel | Moelnio |

Figure 1-11 shows the Save As window that appears next. You can use the Save in field
to browse your computer’s hard drives to find a convenient place to save the file.

V' After choosing where to save the file you are downloading, click the Save
Button.



Page 8 - What's a Microcontroller?

2l
Savain [[] Deskiop x| « & crER-
[ZMy Documents
=L My Computer
{ZE My Network Places )
Figure 1-11
Save As Window
il Bt Selecting a place to
= save the file
B
File name: I v, E j Save I
0 Save &3 tupe: |Applicahun j Cancel J,
)

V' Wait while the BASIC Stamp Editor installation program downloads (shown in
Figure 1-12). This may take a while if you are using a modem connection.

V' When the download is complete, leave the window shown in Figure 1-13 open
while you skip to the next section - Activity #2: Installing the Software.

53% of Setup_Stamp_E ditor_v2.0_Beta_1_6MB_exe _. M =] 3 Download complete - [E]x]
o 3
Download Complete
Saving: Saved:

we from wiw. parallas. com
EEENENENNNENNNNNNNENENEER

.. .exe from v, parallas.com

(1] [LIT1]1]
Estimated time lsft: 1 min 59 sec [79.4 KB of 6.01 MB copied) Downloaded: B.01 MB in 5 sec
D ownload to: \Setup_Stamp_E ditor_v2.0_Beta_1_EMB exe Downlaad to: “Setup_Stamp_Editor_v20_Beta_1_GMB exe
Transter rate: 51.3KB/Sec Transfer rate: 1.20MB/Sec
™ Close this dialog box when download completes ™ Close this dislog box when download completes
et | (i e Eolder | Cancel I Open | Open Ealder | Cloze I
Figure 1-12: Download Progress Window Figure 1-13: Download Complete

Finding the Software on the Parallax CD

You can also install the BASIC Stamp Editor from the Parallax CD, but it has to be May
2003 or newer so that you can get the version of the BASIC Stamp Editor that is
compatible with the examples in this text. You can find the Parallax CD’s Year and
Month by examining the labeling on the front of the CD.

V' Place the Parallax CD into your computer’s CD drive. The Parallax CD
Welcome application shown in Figure 1-14 should run as soon as you load the
CD into your computer’s CD drive.



Chapter #1: Getting Started - Page 9

\If the Welcome application does not automatically run, double-click My
Computer, then double-click your CD drive, then double-click Welcome.

Figure 1-14
The Parallax CD
Browser

Click the Software link shown in Figure 1-14.

Click the + next to the BASIC Stamps folder shown in Figure 1-15.

Click the + next to the Windows folder.

Click the floppy diskette icon labeled “Stamp 2/2e/2sx/2p/2pe (stampw.exe)”.
Move on to Activity #2: Installing the Software.

2L 2 2 2 2



Page 10 - What's a Microcontroller?

Figure 1-15
The Parallax CD
Browser

Select the BASIC
Stamp Editor installation
program from the
Software page.

Free downloads at the Parallax web site are included in the Parallax CD, but only up to the

~7=™,  date the CD was created. The date on the front of the CD indicates when it was created. If

1 | the CDis just a few months old, you will probably have the most up-to-date material. If it's

\v/ an older CD, consider requesting a new one from Parallax or downloading the files you need
from the Parallax web site.

ACTIVITY #2: INSTALLING THE SOFTWARE

By now, you have either downloaded the BASIC Stamp Editor Installer from the Parallax
web site or located it on the Parallax CD. Now let’s run the BASIC Stamp Editor
Installer.

Installing the Software Step by Step

\' If you downloaded the BASIC Stamp Editor Installer from the Internet, click
the Open button on the Download Complete window shown in Figure 1-16.



Chapter #1: Getting Started - Page 11

Download complete =]

@ Bl Eamplee Figure 1-16
Download Complete Window

Saved:
...Editor_v2.0_Beta_1_BMB.exe from v, parallax. com

Sttt B OB A S If you skipped here from the
Dowrioad to \Setup_ Stemp_Exditor_v2.0_Beta 1_6ME.=e “Downloading the Software
Transferrate:  120MB/Sec h .

T Einee s dhalos b v Aol eompisies from the Internet” section, click

the Open button.
Open | UpenEo\derl Close I

\' If you located the software on the Parallax CD, click the Install button shown
in Figure 1-17.

Figure 1-17
The Parallax CD Browser

Install button located near
bottom of window.

V' When the BASIC Stamp Editor InstallShield Wizard window opens, click the
Next button shown in Figure 1-18.

Figure 1-18
InstallShield Wizard for
the BASIC Stamp Editor

Click Next.

\' Select Typical for your setup type as shown in Figure 1-19.



Page 12 - What's a Microcontroller?

v Click the Next button.

Figure 1-19
Setup Type

Click Typical, then click
the Next button.

V' When the InstallShield Wizard tells you it is “Ready to Install the Program”,
click the /nstall button shown in Figure 1-20.

Figure 1-20
Ready to Install.

Click the Install button.

V' When the InstallShield Wizard window tells you “InstallShield Wizard
Completed”, as shown in Figure 1-21, click Finish.



Chapter #1: Getting Started - Page 13

Figure 1-21
InstallShield Wizard
Completed:

Click the Finish button.

ACTIVITY #3: SETTING UP THE HARDWARE AND TESTING THE
SYSTEM

The BASIC Stamp module needs to be connected to power for it to run. It also needs to
be connected to a PC so it can be programmed. After making these connections, you can
use the BASIC Stamp Editor to test the system. This activity will show you how.

Introducing the BASIC Stamp®, Board of Education®, and HomeWork Board™

Parallax Inc.’s Board of Education® carrier board shown in Figure 1-22 next to a BASIC
Stamp module. As mentioned earlier, the BASIC Stamp is a type of very small
computer. This very small computer plugs into the Board of Education carrier board. As
you will soon see, the Board of Education makes it easy to connect a power supply and
serial cable to the BASIC Stamp module. In later activities, you will also see how the
Board of Education makes it easy to build circuits and connect them to your BASIC
Stamp module.

Figure 1-22

BASIC Stamp® 2
Microcontroller Module (left)
and Board of Education ®
Carrier Board (right)



Page 14 - What's a Microcontroller?

Parallax, Inc.’s BASIC Stamp HomeWork Board™ is shown in Figure 1-23. This board
is like a Board of Education with the BASIC Stamp 2 module built-in. Its surface-
mounted components are visible to the left of the white breadboard area. You can use
either the Board of Education with a BASIC Stamp module or the BASIC Stamp
HomeWork Board as your project platform for the activities in this text.

Figure 1-23
BASIC
Stamp®
HomeWork
Board™
Project
Platform.

f/‘:*\‘ Learn more about the features, parts and functions of BASIC Stamp modules, Board of
( 1 ) Education carrier boards, and the HomeWork Board project platform. See Appendix C:
BASIC Stamp and Carrier Board Components and Functions on page 307.

Required Hardware

(1) BASIC Stamp 2 module AND
(1) Board of Education

- Or -
(1) BASIC Stamp HomeWork Board

(1) 9 V battery
(1) strip of 4 adhesive rubber feet
(1) Serial cable

/’.“\ Start with a new or fully charged 9 V battery. Avoid all the confusion a dead battery can
[ 1 | -cause. Start with a new alkaline battery or a rechargeable battery that has recently been
fully recharged.




Chapter #1: Getting Started - Page 15

L~ CAUTION! Before using an AC adapter, “battery replacer”, or DC supply:

PO N Consult Appendix D: Batteries and Power Supplies on page 311 to make sure the
supply you use is appropriate for the activities in this text.

Connecting the Hardware

Both the Board of Education and the BASIC Stamp HomeWork Board come with a strip
that has four adhesive rubber feet. These rubber feet are shown in Figure 1-24, and they
should be affixed to the underside of your Board of Education or BASIC Stamp
HomeWork Board.

Figure 1-24
Rubber Feet

V' Remove each rubber foot from the adhesive strip and affix it to the underside
of your board as shown in Figure 1-25. If you are using the Board of
Education, it has circles on its underside that show where each rubber foot
should be attached. For the HomeWork Board, just place a rubber foot next to
each plated hole at each corner.

Figure 1-25
Rubber Foot
Affixed to
Underside of Board
of Education (left)
and HomeWork
Board (right)

Next, the Board of Education or BASIC Stamp HomeWork Board should be connected to
your PC or laptop by a serial cable.

V' Connect your serial cable to an available COM port on the back of your
computer as shown in Figure 1-26.



Page 16 - What's a Microcontroller?

USB Port Adapter If you are using a USB to Serial Adapter:

‘f i \‘ \ Connect the USB end to your PC’s USB port.
- \  Connect the COM port adapter either directly to your Board of Education or

HomeWork Board, or connect it to the serial cable as shown in Figure 1-26.

Reset

Figure 1-26: PC or Laptop COM Port Figure 1-27: 3-position Switch

Plug the serial cable into an available COM port Set to the 0 position to turn off the
on your PC or laptop. power.

If you are using the BASIC Stamp 2 module and Board of Education:

V' Set the 3-position switch on the Board of Education to position-0 as shown in
Figure 1-27.

/.\ Only the Board of Education Rev C has a 3-position switch. To turn off power on a Board
[ 1 | of Education Rev B, simply disconnect the power source by either unplugging the DC supply
\-/ or the battery These are shown in Figure 1-28, step 3 or 4.

\OIf your BASIC Stamp module is not already plugged into your Board of
Education, insert it into the socket, oriented as shown in Figure 1-28, step-1.
Make sure the pins are lined up properly with the holes in the socket and not
folded under, then press down firmly.

\' Plug the serial cable into the Board of Education as shown in step-2.



Chapter #1: Getting Started - Page 17

V' Plug a DC power supply into the 6-9 VDC jack as shown in step-3, or plug a

9-V battery into the 9 VDC battery jack as shown in step-4.

V' Move the 3-position switch from position-0 to position-1. The green light

labeled Pwr on the Board of Education should now be on.

Powercell

i3 Alkaline Battery

Kieneg
J0JSISUBIL A 6

Q

__ Battery +

6-9VDC == 15 14 _Vdd 13 12 @
="
5 @ Red
= Black
X4 X5
Vss

-
o
= O v vin

I‘_LI
= =
% % ro P
p2 [P3 P19
ps LIPS P14
@ PARALLAX 3™ il - - S o
A Z™ ps

1 L . S
Soutf] vin  pr p13 P10
sin [ I Vss  piaEYp15 PO
ATN G bRt vadffvin P8

vss [ [lvad ~ 5
Po [ [lris P6
Z= i P5
P2 [ 3k P4
r3 [ Blpi2 s P3
P4 e Resety P2
ps [ ™ 0 P1
Pe [} Pos PO

F7 [rs -\]
N N
~

. (Board of Education
N ©2000-2003 @

If you are using the BASIC Stamp HomeWork Board:

Figure 1-28
Board of
Education,
BASIC Stamp
Module,
Battery and
Serial Cable.

Connect
components in
the order
shown in the
diagram.
Make sure to
properly orient
your BASIC
Stamp module
right side up,
matching the
notch on its
top edge to
notch on the
socket.

V' Connect the serial cable to the HomeWork Board (Figure 1-29, step-1).

V' Connect a 9 V battery to the battery clip as shown in step-2.



Page 18 - What's a Microcontroller?

Figure 1-29
HomeWork Board and
Serial Cable

Plug the serial cable
and 9 V battery into the
HomeWork Board.

9V Transistor

9 V Transistor
Battery

—>
v

Reset ©2002

amp® HomeWork Board(©)

Kiepeg auljey|

|[@218Mm0d

Testing for Communication

The BASIC Stamp Editor has a feature for testing to make sure your PC or laptop can
communicate with your BASIC Stamp module.

V' Double-click the BASIC Stamp Editor shortcut on your desktop. It should
look similar to the one shown in Figure 1-30.

Figure 1-30
BASIC Stamp Editor Shortcut

e e e e L00k for a ShortCUt SImIIar to
iBASIC Stampi  this one on your computer’s
i Editor 2.0 ¢ desktop.



Chapter #1: Getting Started - Page 19

The Windows Start Menu can also be used to run the BASIC Stamp Editor. Click your
1 | Windows Start button, then select Programs — Parallax, Inc. — BASIC Stamp Editor 2...,
&’ then click the BASIC Stamp Editor icon.

.
|

Your BASIC Stamp Editor window should look similar to the one shown in Figure 1-31.

lf =) The first time you run your BASIC Stamp Editor, it may display some messages and a
\&/ list of your COM ports found by the software.

V' To make sure your BASIC Stamp module is communicating with your
computer, click the Run menu, then select Identify.

#7BASIC Stamp - C:\Program Files'Parallax InctStamp Editor ¥2.0 Beta 1852 \FirstProgram.bsz (O] x|

File Edit Directive | Run Help

D = -’\ E Run Chr+R o ok @ m »> i

E"jl[ Check Synbax  Ch4T d‘&i@ | SEPIH GBI LILE Y LI, Flgure 1-31
Defaull BSZDIEC  pamory Map... chrl+1

meEE .00 = BASIC Stamp
; 7 cbug .
g o Editor
. Daesz

o :

s r Select Identify

DTMFOUT bs2 = from the Run

FirstProgram.bs2 —

FORNEXT.bs2 = = menu.

BASIC Stamp fles [*.bs2” bee;” baw " bsp 1 ) LIJ

|ttty irrane rsvision of the BAS T, Stamp 7

An Identification window similar to the one shown in Figure 1-32 will appear. The
example in the figure shows that a BASIC Stamp 2 has been detected on COM2.

V' Check the Identification window to make sure a BASIC Stamp 2 module has
been detected on one of the COM ports. If it has been detected, then you are
ready for Activity #4: First Program.

N If the Identification window does not detect a BASIC Stamp 2 module on any of
the COM ports, go to Appendix E: Trouble-Shooting on page 315.

Identification

Port Status: Figure 1-32

Port: | Device Type: [wersion: [Loopback: [Eche: | Identification Window
COM: o s

COM2Z: [BASIC Stamp 2 v1.0 Yes ey Examp/e_ BA SIC Stamp

Edit Part List Befresh | Close I 2 found on COM2




Page 20 - What's a Microcontroller?

ACTIVITY #4: FIRST PROGRAM

The first program you will write and test will tell the BASIC Stamp to send a message to
your PC or laptop. Figure 1-33 shows how it sends a stream of ones and zeros to
communicate the text characters displayed by the PC or laptop. These ones and zeros are
called binary numbers. The BASIC Stamp Editor software has the ability to detect and
display these messages as you will soon see.

Figure 1-33
Messages from the
BASIC Stamp module
to your Computer

The BASIC Stamp
module sends
characters to your PC

Alkaline Battery

Powercell

Kiopeg

or laptop by
transmitting a stream
v of binary ones and
2 zeros. The BASIC
“SaLigy Stamp Editor can
= b detect and convert

these binary codes to
characters and display
[ them.

www.stampsinclass.com

First Program

The program listings that you will type into the BASIC Stamp Editor and download to
the BASIC Stamp module will always be shown with a gray background like this:

Example Program: FirstProgram.bs2

' What's a Microcontroller - FirstProgram.bs2
' BASIC Stamp sends message to Debug Terminal.

' {s$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Hello, it's me, your BASIC Stamp!"
END



Chapter #1: Getting Started - Page 21

You will enter this program into the BASIC Stamp Editor. Some lines of the program are
made automatically by clicking buttons on the toolbar. Other lines are made by typing
them in from the keyboard.

\ Begin by clicking the BS2 icon (the green diagonal chip) on the toolbar,
shown highlighted in Figure 1-34. If you hold your cursor over this button, its
flyover help description “Stamp Mode: BS2” will appear.

V' Next, click on the gear icon labeled “2.5” shown highlighted in Figure 1-35.
It’s flyover help description is “PBASIC Language: 2.5”.

LYYt E Y3 aan | DRE .

led L PEASIC Language: 2.5]
Stamp Mode: BSZ )—

Figure 1-34 Figure 1-35

BS2 Icon PBASIC 2.5 Icon

Clicking on this button will Clicking on this button will automatically

automatically place “ * {$STAMP BS2}” place “ ‘' {$PBASIC 2.5}" at the beginning

at the beginning of your program. of your program.

ALWAYS use these toolbar buttons to add these two lines as the beginning of every

‘/ ) \‘ program! Compiler directives use braces { } If you try to type in these parts of your

*
- program, you may accidentally use parentheses ( ) or square brackets [ ] If you do
this, your program will not work.

\ Type in the remaining 4 lines of the program exactly as shown in Figure 1-36.



Page 22 - What's a Microcontroller?

7 BASIC Stamp - C:\Program Files',Parallax Inc\Stamp Editor 2.0 Beta 1,852\ FirstProgram. i =[] F
igure 1-36

Fie Edit Directive Bun Help

NEerlas t =an|0 @ sfdess | an mpEFRK|a#ia @ FirstProgram

e [Detautt B52 Diectory =] FirstProgram.bsZ | Entered into

E (2] Stamp Editor v2.0 Bela ] ' What's & Microcontroller - FirstProgram.bs2 - Editor
i BAZIC Stamp sends wessage to Debuy Terminal.

{$STAMP BS2)

G 6oy Enter your first
program into the
BASIC Stamp
_»lj Editor as shown
here.

DATA.bs2
DTMFOUT.bs2
FirstProgram.bs2
FORNEXT bs2

BASIC Stamp files [* bs2,% bse " bsw b 2 0] |
714 NS | | 4

DEBUG "Hello, it's|me, wour BASIC Stamp!™

‘ LILILI;L

END

ki

V' Save your work by clicking File and selecting Save as shown in Figure 1-37.

V' Enter the name FirstProgram into the File name field near the bottom of the
Save As window as shown in Figure 1-38.

V' Click the Save button.

<3 BASIC Stamp - Untitled1 Save As 7] x|
Ele Edt Diectve Bun Help A Save jn; Iﬁ Wy Documents j QI
e &£
Open... Clrl+0 F iy Fictures
Open From. »
i troller
ave As.
Save To.. » message

Generate Obiect Code

File name:  [FirstProgrant Save |
Save as lype IBAS\E Stamp 2 files [~ bs2) j Cancel

Figure 1-37: Saving the First Program Figure 1-38: Entering the File Name

The next time you save, the BASIC Stamp Editor will automatically save to the same
( 1 /) filename (FirstProgram.bs2) unless you tell it to save to a different filename by clicking File
& and selecting Save As (instead of just Save).

V' Click Run, and select Run from the menu that appears (by clicking it) as shown
in Figure 1-39.



Chapter #1: Getting Started - Page 23

#3% BASIC Stamp - C:"Program Files' Parallax In
File Edit Directive | Fun  Help

[ = o &4 | A Figure 1-39
: Check syntax  CErl+T Running Your First
EII Default BS2 Dites  memory Map,., ChrlM Program

—-{_] 5t
EDC Debiug 3

. Identify... Zkrl+I

A Download Progress window will appear briefly as the program is transmitted from the
PC or laptop to your BASIC Stamp module. Figure 1-40 shows the Debug Terminal that
should appear when the download is complete. You can prove to yourself that this is a
message from the BASIC Stamp by pressing and releasing the Reset button on your
board. Every time you press and release it, the program will re-run, and you will see
another copy of the message displayed in the Debug Terminal.

V' Press and release the Reset button. Did you see a second “Hello...” message
appear in the Debug Terminal?

#Debug Terminal #1 o [m] |
Corm Port Baud Rate: Parity:
|CDM5 = 9600 = Mane 'I
Data Bits: Flows Control .
@ ™ [ DTR [T RTS
lo =1 [or =l emx wosh ecrs Figure 1-40 )
Debug Terminal

4

o] e

The Debug Terminal
displays messages sent
to the PC/laptop by the
BASIC Stamp module.

Hello, 1t's me, your BASTIC Stamp!

e | Masos. | Pase | e | Oose | I Echoof




Page 24 - What's a Microcontroller?

The BASIC Stamp Editor has shortcuts for most common tasks. For example, to run a

program, you can press the ‘Ctrl’ and ‘R’ keys at the same time. You can also click the Run

button. It's the blue triangle shown in Figure 1-41 that looks like a CD player’s Play button.

The flyover help (the Run hint) will appear if you point at the Run button with your mouse.
A~ You can get similar hints to find out what the other buttons do by pointing at them too.

Figure 1-41
| @ m > ‘a | BASIC Stamp Editor

Shortcut Buttons

Run

How FirstProgram.bs2 Works

The first two lines in the example are called comments. A comment is a line of text that
gets ignored by the BASIC Stamp Editor, because it’s meant for a human reading the
program, not for the BASIC Stamp module. In PBASIC, everything to the right of an
apostrophe is normally considered to be a comment by the BASIC Stamp Editor. The
first comment tells which book the example program is from, and the program’s
filename. The second comment contains a handy, one-line description that explains what
the program does.

' What's a Microcontroller - FirstProgram.bs2
' BASIC Stamp sends message to Debug Terminal.

Although comments are ignored most of the time, the BASIC Stamp Editor does search
through comments for special directives. Every program in this text will use these two
directives:

' {$sTAMP BS2}
' {$PBASIC 2.5}

The first directive is called the SSTAMP Directive, and it tells the BASIC Stamp Editor
that you will be downloading the program specifically to a BASIC Stamp 2 module. The
second directive is called the SPBASIC directive, and it tells the BASIC Stamp Editor
that you are using version 2.5 of the PBASIC programming language. Note that these
compiler directives are enclosed in braces { } not parentheses ( ). You should always use
the toolbar icons to place these compiler directives in your program to avoid typing
errors. Also, entering the compiler directives by hand may not activate the syntax
highlighting in the BASIC Stamp Editor. That function is what causes various letters,
characters and words in your program to appear in different colors and capitalizations.
Syntax highlighting makes your programs easier to read, understand, and correct if there
are any bugs in them.



Chapter #1: Getting Started - Page 25

A command is a word you can use to tell the BASIC Stamp do a certain job. The first of
the two commands in this program is called the bEBuG command:

DEBUG "Hello, it's me, your BASIC Stamp!"

This is the command that tells the BASIC Stamp to send a message to the PC using the
serial cable.

The second command is called the END command:

END

This command is handy because it puts the BASIC Stamp into low power mode when it’s
done running the program. In low power mode, the BASIC Stamp waits for either the
Reset button to be pressed (and released), or for a new program to be loaded into it by the
BASIC Stamp Editor. If the Reset button on your board is pressed, the BASIC Stamp
will re-run the program you loaded into it. If a new program is loaded into it, the old one
is erased, and the new program begins to run.

Your Turn — DEBUG Formatters and Control Characters

A pEBUG formatter is a code-word you can use to make the message the BASIC Stamp
sends look a certain way in the Debug Terminal. DEC is an example of a formatter that
makes the Debug Terminal display a decimal value. An example of a control character is
CR, which is used to send a carriage return to the Debug Terminal. The text or numbers
that come after a cr will appear on the line below characters that came before it. You can
modify your program so that it contains more DEBUG commands along with some
formatters and control characters. Here’s an example of how to do it:

\' First, save the program under a new name by clicking File and selecting Save
As. A good new name for the file would be FirstProgramY ourTurn.bs2
V' Modify the comments at the beginning of the program so that they read:

' What's a Microcontroller - FirstProgramYourTurn.bs2
' BASIC Stamp sends messages to Debug Terminal.

vV Add these three lines between the first pEBue command and the END
command:
DEBUG CR, "What's 7 X 112"

DEBUG CR, "The answer is: "
DEBUG DEC 7 * 11



Page 26 - What's a Microcontroller?

V' Save the changes you made by clicking File and selecting Save.

Your program should now look like the one shown in Figure 1-42.

V' Run your modified program. You will have to either select Run from the Run
menu again, like in Figure 1-39 or click the Run button, like in Figure 1-41.

£} BASIC Stamp - C:\Program Files'Parallax InciStamp Editor ¥2.0 Beta 1152} FirstProgramye =10l x|
Elle Edit Directive Run Help
D@0 +ebBn 0 & L4204 40 DRErPR AALE | @ Figure 1-42
B [Detaul 352 Directory =| FistProgrambs2 FirstProgramivourTumbs2 | Modified
=[] Stamp Editor v2 0Beta « " Uhat's a NMicrocontroller - FirstProgramyourTurn.bs2 - .
§ L BDSW - ' BASIC Stamp sends messages to DEbuggTermlnal. FII'StPl’OgI'am
! £3[Bsz |
i es2e - ! {§STAMP ESZ}
[ ' {SFBASIC 2.5 Check your work
E:::ﬁ:zg::mjnummz ﬂ DEBUG "Hello, it's me, your BASIC Stawp!" against the
DEBUG CR, "That's 7 X 112"
T e example
BOSU bs? DEBUG DEC 7 ¥ 11 program shown
ey | e o8 here.
BASIC Stamp files [* bs2” bze;” bsx* bsp™ Ij 1 3
CEEN| [ins | [ 4
Where did my Debug Terminal go? Sometimes the Debug Terminal gets hidden behind
the BASIC Stamp Editor window. You can bring it back to the front by using the Run menu
as shown at the left of Figure 1-43, the Debug Terminal 1 shortcut button shown at the right
of the figure, or the F12 key on your keyboard.
N Figure 1-43

oL/ [Bun Help
Bun

Debug

H dentify..

= Check Syntas  Chl+T
Memory Map._.. Chrl+hd

Chil+l

EU I R e A N

g HNew. cikp FOC

Debug Terminal 1 Cti+1

R S
[ebug Terminal 1

Debug Terminal 1 to
Foreground

Using the menu (left)
and using the shortcut
button (right).

Your Debug Terminal should now resemble Figure 1-44.




Chapter #1: Getting Started - Page 27

-"‘:/'Debug Terminal #1 . i
ComPort_ Baud Rats: Pt DasBie  FowCok 1w [ TR I ATS Flgu.r.e 1-44
| L IE'{:, | || @ Rx @ DSR @ C15 Modified
Hello, it's me, your BASIC Stamp! ﬂ FirstProgram.bs2

What's 7 X 117 Debug Terminal Output
The answer 1s5: 77
Make sure that when
- you re-run your
K I~ program, you get the
[Eaptirre. | Macros..l Pause | Clear | Clase | resUltS you expect.

ACTIVITY #5: LOOKING UP ANSWERS

The two activities you just finished introduced two PBASIC commands: bEBUG and END.
You can find out more about these commands and how they are used by looking them up,
either in the BASIC Stamp Editor’s Help or in the BASIC Stamp Manual. This activity
guides you through an example of looking up pEBUG using the BASIC Stamp Editor’s
Help and the BASIC Stamp Manual.

Using the BASIC Stamp Editor’s Help
V' In the BASIC Stamp Editor, Click Help, then select Index (Figure 1-45).

/5 BASIC Stamp
File Edit Directive Run | Help

D@ig"i‘ Cantents. . | 5 | #
_|

Y
| be.|[Detaul BS Direstory

D0 Poslering | B =0 Figure 1-45
¢ B0 Javelin 5 visit Parallax Web Site. .. 9

! 500 StepEC Email Parallax Support... Selecting Index
P et ————

: Abat... from the Help
Menu

7 B2

o] SXKepv20Betads v
4 B

BRANCH bs2
BUTTON bs2

V' Type DEBUG in the field labeled Type in the keyword to find: ( Figure 1-46).
N When the word DEBUG appears in the list below where you are typing, click it,
then click the Display button.



Page 28 - What's a Microcontroller?

E? PBASIC Syntax Guide (=] ]
& s
Hide: Back Frint  Options
Lontents  |ndex |§earch| il
Type in the keyword to find: DE BUG
LEeEs Figure 1-46
1 2 €'2E WZSK V2P WEPE Example LOOking up
DEC
ol v the DEBUG
DIRS yntax: DEBUG OutputData {,OutputData)
oo = Command
DTMFOUT . .
EEPROM Function Usmg Help.
Eh%E Display information on the PC screen within the BASIC Starmp
ENDIF editor prograrn, This command can be used to display text or
ENDSELECT numbers in various formats on the PC screen in order to
EXIT =l follow program flow (called debugging) or as part of the
functionality of the BASIC Stamp application.
4] | 3
Your Turn

V' Use the scrollbar to review the DEBUG command’s write-up. Notice that it has
lots of explanations and example programs you can try.

Click the Contents tab, and find DEBUG there.

Click the Search tab, and run a search for the word DEBUG.

Repeat this process for the END command.

e

Getting and Using the BASIC Stamp Manual

The BASIC Stamp Manual is available for free download from the Parallax web site, and
it’s also included on the Parallax CD. It can also be purchased as a printed book.

Downloading the BASIC Stamp Manual from the Parallax Web Site

Using a web browser, go to www.parallax.com.
Point at the Downloads menu to display the options.
Point at the Documentation link and click to select it.

On the BASIC Stamp Documentation page, find The BASIC Stamp Users
Manual.

Click the Download icon that looks like a file folder to the right of the
description: “BASIC Stamp User’'s Manual Version 2.0 (3.2 MB)”.

9
2 222 =2




Chapter #1: Getting Started - Page 29

Viewing the BASIC Stamp Manual on the Parallax CD

A~~~ \/ Click the Documentation link.

1) \' Click the + next to the BASIC Stamps folder.

w \/ Click the BASIC Stamp Manual book icon.
\' Click the View button.

V' Figure 1-47 shows an excerpt from the BASIC Stamp Manual v2.0 Contents
section, showing that information on the DEBUG command is found on page 97.

Figure 1-47
Finding the
DEBUG
Command in
the Table of
Contents

Figure 1-48 shows an excerpt from page 97 in the BASIC Stamp Manual v2.0. The
DEBUG command is explained in detail here along with example programs to demonstrate
how the bEBUG command can be used.

V' Look over the BASIC Stamp Manual’s explanation of the DEBUG command.

V' Count the number of example programs in the DEBUG section. How many are
there?

5: BASIC Stamp Command Reference - DEBUG

Figure 1-48

Reviewing
DEBUG | Bs1 | Bs2 | Bsze [Bs2sx|Bs2p | the DEBUG
DEBUG OutputData {, OutputData) Command

in the
Function ggi'lg'
Display information on the PC screen within the BASIC Stamp editor Manual

program. This command can be used to display text or numbers in

various formats on the PC screen in order to follow program flow (called
uggi as pe mctionality ASIC Stz application.

debugging) or as part of the functionality of the BASIC Stamp application



Page 30 - What's a Microcontroller?

Your Turn
V' Use the BASIC Stamp Manual’s Index to look up the DEBUG command.
v Look up the END command in the BASIC Stamp Manual.

ACTIVITY #6: INTRODUCING ASCII CODE

In Activity #4, you used the DEc formatter with the DEBUG command to display a decimal
number in the Debug Terminal. But what happens if you don’t use the pEc formatter
with a number? If you use the DEBUG command followed by a number with no formatter,
the BASIC Stamp will read that number as an ASCII code.

Programming with ASCII Code

ASCII is short for American Standard Code for Information Interchange. Most
microcontrollers and PC computers use this code to assign a number to each keyboard
function. Some numbers correspond to keyboard actions, such as cursor up, cursor down,
space, and delete. Other numbers correspond to printed characters and symbols. The
numbers 32 through 126 correspond to those characters and symbols that the BASIC
Stamp can display in the Debug Terminal. The following program will use ACSII code to
display the words “BASIC Stamp 2” in the Debug Terminal.

Example Program — ASCIlIName.bs2
v Enter and run ASCIIName.bs2.

Remember to use the toolbar icons to place Compiler Directives into your programs!

= '{$STAMP BS2} - Use the diagonal green electronic chip icon.
&’ '{$PBASIC 2.5} - Use the gearicon labeled 2.5.

You can see a picture of these icons again on page 21.

'What's a Microcontroller - ASCIIName.bs2
'Use ASCII code in a DEBUG command to display the words BASIC Stamp 2.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG 66,65,83,73,67,32,83,116,97,109,112,32,50

END



Chapter #1: Getting Started - Page 31

How ASCIlIName.bs2 Works

Each letter in the bEBUG command corresponds to one ASCII code symbol that appeared
in the Debug Terminal.

DEBUG 66,65,83,73,67,32,83,116,97,109,112,32,50

66 is the ASCII code for capital “B”, 65 is the code for capital “A” and so on. 32 is the
code for a space between characters. Notice that each code number was separated with a
comma. The commas allow the one instance of DEBUG to execute each symbol as a
separate command. This is much easier to type than 12 separate DEBUG commands.

Your Turn — Exploring ASCII Code

V' Save ASCIIName.bs2 as ASCIIRandom.bs2

V' Pick 12 random numbers between 32 and 127.

V' Replace the ASCII code numbers in the program with the numbers you chose.
V' Run your modified program to see what you get!

The BASIC Stamp Manual Appendix A has a chart of ASCII code numbers and their
corresponding symbols. You can look up the corresponding code numbers to spell your
own name.

V' Save ASCIIRandom.bs2 as YourASCIIName.bs2

V' Look up the ASCII Chart in the BASIC Stamp Manual.

V' Modify the program to spell your own name.

V' Run the program to see if you spelled your name correctly.
V' Ifyou did, good job, and save your program!

ACTIVITY #7: WHEN YOU'RE DONE

It’s important to disconnect the power from your BASIC Stamp and Board of Education
(or HomeWork Board). First, your batteries will last longer if the system is not drawing
power when you’re not using it. Second, soon you will build circuits on the Board of
Education or HomeWork Board prototyping area.

/A\ Circuit prototypes should never be left unattended with a battery or power supply
\ ! , connected. Always disconnect the power from your Board of Education or HomeWork
- Board before you walk away, even if you only plan on leaving it alone for a minute or two.




Page 32 - What's a Microcontroller?

Disconnecting Power

With the Board of Education Rev C, disconnecting power is easy. If you are using the
Board of Education Rev C, power is disconnected by moving the 3-position switch to
position-0 by pushing it to the left as shown in Figure 1-49.

]
a Figure 1-49
] Turning the Power off
» Board of Education Board of Education
O —— e ®|  poart,
-«

f\ Do not remove the BASIC Stamp module from its socket in the Board of Education!
1 Every time the BASIC Stamp is removed and re-inserted into the socket on the Board of
Education, you risk damaging it. You do not need to remove it for storage.

Disconnecting the BASIC Stamp HomeWork Board’s power is easy too. If you are using
the BASIC Stamp HomeWork Board, disconnect the battery as shown in Figure 1-50.

- g = 88 _Vvad Vin Vss
= = i i iiaiuingl
- + EE
9V Trdnsistor =] Ei Ei%
— - s’ Figure 1-50
] e Disconnecting the
9V Transistor - b power to the HomeWork
e O Board
> P1 .
§o X
3 eset ©2002
()
-3 amp° HomeWork Board(O)
2o

If you are using a Board of Education Rev B, you will not have a 3-position switch.
Either unplug power supply, or remove the 9 V battery, whichever you are using.

Your Turn

V' Disconnect the power to your board now.



Chapter #1: Getting Started - Page 33

SUMMARY
This chapter guided you through the following:

An introduction to some devices that contain microcontrollers

An introduction to the BASIC Stamp module

A tour of some interesting inventions made with BASIC Stamp modules.

Where to get the free BASIC Stamp Editor software you will use in just about all
of the experiments in this text

How to install the BASIC Stamp Editor software

An introduction to the BASIC Stamp module, Board of Education, and
HomeWork Board

How to set up your BASIC Stamp hardware

How to test your software and hardware

How to write and run a PBASIC program

Using the DEBUG and END commands

Using the cr control character and DEc formatter

How to use the BASIC Stamp Editor’s Help and the BASIC Stamp Manual

A brief introduction to ASCII code

How to disconnect the power to your Board of Education or HomeWork Board
when you’re done.

Questions

1.

3.

What is a microcontroller?
Is the BASIC Stamp module a microcontroller, or does it contain one?

What clues would you look for to figure out whether or not an appliance like a
clock radio or a cell phone contains a microcontroller?

4. What does an apostrophe at the beginning of a line of PBASIC program code
signify?

5. What PBASIC commands did you learn in this chapter?

6. Let’s say you want to take a break from your BASIC Stamp project to go get a
snack, or maybe you want to take a longer break and return to the project in a
couple days. What should you always do before you take your break?

Exercises
1. Explain what the asterisk does in this command:

DEBUG DEC 7 * 11



Page 34

- What's a Microcontroller?

Guess what the Debug Terminal would display if you ran this command:

DEBUG DEC 7 + 11

3. There is a problem with these two commands. When you run the code, the
numbers they display are stuck together so that it looks like one large number
instead of two small ones. Modify these two commands so that the answers
appear on different lines in the Debug Terminal.

DEBUG DEC 7 * 11
DEBUG DEC 7 + 11
Projects

1. Use DEBUG to display the solution to the math problem: 1 +2 + 3 + 4.

2. Which lines can you delete in FirstProgramYourTurn.bs2 if you place the
command shown below on the line just before the END command in the program?
Test your hypothesis (your prediction of what will happen). Make sure to save
FirstProgramYourTurn.bs2 with a new name, like
FirstProgramChO1Project05.bs2. Then make your modification, save and run
your program.

DEBUG "What's 7 X 112", CR, "The answer is: ", DEC 7 * 11
Solutions

Q1. A microcontroller is a kind of miniature computer found in electronic products.

Q2. The BASIC Stamp module contains a microcontroller called the PIC16C57.

Q3. If the appliance has buttons and a digital display, these are good clues that it has
a microcontroller inside.

Q4. A comment.

Q5. pEBUG and END

Q6. Disconnect the power from the BASIC Stamp project.

E1. It multiplies the two operands 7 and 11, resulting in a product of 77. The asterisk
is the multiply operator.

E2. The Debug Terminal would display: 18

E3. To fix the problem, add a carriage return, the cr, control character.

DEBUG DEC 7 * 11
DEBUG CR, DEC 7 + 11
P1. Here is a program to display a solution to the math problem: 1+2+3+4

'{$sTAMP BS2}
' {$PBASIC 2.5}



P2.

Chapter #1: Getting Started - Page 35

DEBUG "What's 1+2+3+4°?"
DEBUG CR, "The answer is: "
DEBUG DEC 1+2+3+4

END

The last three DEBUG lines can be deleted. An additional cr is needed after the
"Hello" message.

' What's a Microcontroller - FirstProgramYourTurn.bs2
' BASIC Stamp sends message to Debug Terminal.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Hello, it's me, your BASIC Stamp!", CR
DEBUG "What's 7 X 112", CR, "The answer is: ", DEC 7 * 11
END

The output from the Debug Terminal is:

Hello, it's me, your BASIC Stamp!

What's 7 X 11°?

The answer is: 77

This output is the same as it was with the previous code. This is an example of

using commas to output a lot of information, using only one DEBUG statement.

Further Investigation

In this chapter, you visited the Software section of either the Parallax web site or the
Parallax CD to get a copy of the BASIC Stamp Editor. You can go to the Documentation
sections of either the Parallax web site or the Parallax CD to get a free copy of this text
and of the BASIC Stamp Manual. Printed copies can also be purchased from Parallax.

“BASIC Stamp Manual”, Users Manual, Version 2.0c, Parallax Inc., 2000

You can learn much more about the DEBUG and END commands by looking them
up in the BASIC Stamp Manual. You can find them using the Table of Contents.
The BASIC Stamp Manual has many more examples you can try, along with
lessons similar to those in the Projects section you just completed.



Chapter #2: Lights On — Lights Off - Page 37

Chapter #2: Lights On — Lights Off

INDICATOR LIGHTS

Indicator lights are so common that most people tend not to give them much thought.
Figure 2-1 shows three indicator lights on a laser printer. Depending on which light is
on, the person using the printer knows if it is running properly or needs attention. Here
are just a few examples of devices with indicator lights: car stereos, televisions, VCRs,
disk drives, printers, and alarm system control panels.

Figure 2-1
Indicator
Lights

Turning an indicator light on and off is a simple matter of connecting and disconnecting
it from a power source. In some cases, the indicator light is connected directly to the
battery or power supply, like the power indicator light on the Board of Education. Other
indicator lights are switched on and off by a microcontroller inside the device. These are
usually status indicator lights that tell you what the device is up to.

MAKING A LIGHT EMITTING DIODE (LED) EMIT LIGHT

Most of the indicator lights you see on devices are called light emitting diodes. You will
often see a light emitting diode referred to in books and circuit diagrams by the letters
LED. The name is usually pronounced as three letters: “L-E-D”. You can build an LED
circuit and connect power to it, and the LED emits light. You can disconnect the power
from an LED circuit, and the LED stops emitting light.



Page 38 - What's a Microcontroller?

An LED circuit can be connected to the BASIC Stamp, and the BASIC Stamp can be
programmed to connect and disconnect the LED circuit’s power. This is much easier
than manually changing the circuit’s wiring or connecting and disconnecting the battery.
The BASIC Stamp can also be programmed to do the following:

e Turn an LED circuit on and off at different rates

e Turn an LED circuit on and off a certain number of times
o  Control more than one LED circuit

o  Control the color of a bi-color (two color) LED circuit

ACTIVITY #1: BUILDING AND TESTING THE LED CIRCUIT

It’s important to test components individually before building them into a larger system.
This activity focuses on building and testing two different LED circuits. The first circuit
is the one that makes the LED emit light. The second circuit is the one that makes it not
emit light. In the activity that comes after this one, you will build the LED circuit into a
larger system by connecting it to the BASIC Stamp. You will then write programs that
make the BASIC Stamp cause the LED to emit light, then not emit light. By first testing
each LED circuit to make sure it works, you can be more confident that it will work when
you connect it to a BASIC Stamp.

Introducing the Resistor

A resistor is a component that ‘resists’ the flow of electricity. This flow of electricity is
called current. Each resistor has a value that tells how strongly it resists current flow.
This resistance value is called the ohm, and the sign for the ohm is the Greek letter
omega: Q. The resistor you will be working with in this activity is the 470 Q resistor
shown in Figure 2-2. The resistor has two wires (called leads and pronounced “leeds”),
one coming out of each end. There is a ceramic case between the two leads, and it’s the
part that resists current flow. Most circuit diagrams that show resistors use the jagged
line symbol on the left to tell the person building the circuit that he or she must use a 470
Q resistor. This is called a schematic symbol. The drawing on the right is a part drawing
used in some beginner level Stamps in Class texts to help you identify the resistor in your
kit.



Chapter #2: Lights On — Lights Off - Page 39

Gold Figure 2-2
Siver 470 O Resistor Part

—MA— KQD\ gliank Drawing
e R

Yellow Violet Brown Schematic symbol (left)

and Part Drawing (right)

Resistors like the ones we are using in this activity have colored stripes that tell you what
their resistance values are. There is a different color combination for each resistance
value. For example, the color code for the 470 Q resistor is yellow-violet-brown.

There may be a fourth stripe that indicates the resistor’s tolerance. Tolerance is measured
in percent, and it tells how far off the part’s true resistance might be from the labeled
resistance. The fourth stripe could be gold (5%), silver (10%) or no stripe (20%). For the
activities in this book, a resistor’s tolerance does not matter, but its value does.

Each color bar that tells you the resistor’s value corresponds to a digit, and these
colors/digits are listed in Table 2-1. Figure 2-3 shows how to use each color bar with the
table to determine the value of a resistor.

Table 2-1:

Resistor Color

Code Values

Digit | Color
0 | Black T Qerance
L Brown Figure 2-3
2 Red /' \ Resistor Color
3 Orange AT Codes
First Digit Number of Zeros

4 Yellow o
5 Green Second Digit
6 Blue
7 Violet
8 Gray
9 White

Here is an example that shows how Table 2-1 and Figure 2-3 can be used to figure out a
resistor value by proving that yellow-violet-brown is really 470 €:



Page 40 - What's a Microcontroller?

o The first stripe is yellow, which means the leftmost digit is a 4.

o The second stripe is violet, which means the next digit is a 7.

o The third stripe is brown. Since brown is 1, it means add one zero to the right of
the first two digits.

Yellow-Violet-Brown = 4-7-0.

Introducing the LED

A diode is a one-way current valve, and a light emitting diode (LED) emits light when
current passes through it. Unlike the color codes on a resistor, the color of the LED
usually just tells you what color it will glow when current passes through it. The
important markings on an LED are contained in its shape. Since an LED is a one-way
current valve, you have to make sure to connect it the right way, or it won’t work as
intended.

Figure 2-4 shows an LED’s schematic symbol and part drawing. An LED has two
terminals. One is called the anode, and the other is called the cathode. In this activity,
you will have to build the LED into a circuit, paying attention to make sure the leads
connected to the anode and cathode are connected to the circuit properly. On the part
drawing, the anode lead is labeled with the plus-sign (+). On the schematic symbol, the
anode is the wide part of the triangle. In the part drawing, the cathode lead is the
unlabeled pin, and on the schematic symbol, the cathode is the line across the point of the
triangle.

Figure 2-4

LED Part Drawing
and Schematic
Symbol

Part Drawing (above)
and schematic symbol

(below).
+
The LED’s part
drawings in later
’I pictures will have a +
AN

next to the anode leg.
LED



Chapter #2: Lights On — Lights Off - Page 41

When you start building your circuit, make sure to check it against the schematic symbol
and part drawing. For the part drawing, note that the LED’s leads are different lengths.
The longer lead is connected to the LED’s anode, and the shorter lead is connected to its
cathode. Also, if you look closely at the LED’s plastic case, it’s mostly round, but there
is a small flat spot right near the shorter lead that that tells you it’s the cathode. This
really comes in handy if the leads have been clipped to the same length.

LED Test Circuit Parts

(1) LED — Green
(1) Resistor — 470 Q (yellow-violet-brown)

Identifying the parts: In addition to the part drawings in Figure 2-2 and Figure 2-4, you can

* "\ use the photo on the last page of the book to help identify the parts in the kit needed for this

\&/ and all other activities. For more information on the parts in this photo, see Appendix B:
Equipment and Parts Lists.

Building the LED Test Circuit

You will build a circuit by plugging the LED and resistor leads into small holes called
sockets on the prototyping area shown in Figure 2-5. This prototyping area has black
sockets along the top and along the left. The black sockets along the top have labels
above them: Vdd, Vin, and Vss. These are called the power terminals, and they will be
used to supply your circuits with electricity. The black sockets on the left have labels
like PO, P1, up through P15. These are sockets that you can use to connect your circuit to
the BASIC Stamp module’s input/output pins. The white board with lots of holes in it is
called a solderless breadboard. You will use this breadboard to connect components to
each other and build circuits.



Page 42 - What's a Microcontroller?

X3

p1af | OO0 | OO0 Figure 2-5
pof] | PEEEH| (DO prototyping Area

P9 OO0 OO0 Power terminals (black

CHRHO| | OO0 sockets along top), I/O pin
P6 OOO00) | OOCd access (black sockets along
P5 | | oo the side), and solderless

p; M| COC00|  |OOO0O breadboard (white sockets)

PO o o0 o0

’/:\ Input/output pins are usually called I/O pins, and after connecting your circuit to one or
(1 |/ more of these I/O pins, you can program your BASIC Stamp to monitor the circuit (input) or
send on or off signals to the circuit (output). You will try this in the next activity.

Figure 2-6 shows a circuit schematic, and a picture of how that circuit will look when it is
built on the prototyping area. The breadboard is separated into rows of five sockets.
Each row can connect up to five leads, or wires, to each other. For this circuit, the
resistor and the LED are connected because each one has a lead plugged into the same 5-
socket row. Note that one lead of the resistor is plugged into Vdd so the circuit can draw
power. The other resistor lead connects to the LED’s anode lead. The LED’s cathode lead
is connected to Vss, or ground, completing the circuit.

You are now ready to build the circuit shown in Figure 2-6 (below) by plugging the LED
and resistor leads into sockets on the prototyping area. Follow these steps:

Disconnect power from your Board of Education or HomeWork Board.

Use Figure 2-4 to decide which lead is connected to the LED’s cathode. Look
for the shorter lead and the flat spot on the plastic part of the LED.

Plug the LED’s cathode into one of the black sockets labeled Vss on the
prototyping area.

Plug the LED’s anode (the other, longer lead) into the socket shown on the
breadboard portion of the prototyping area.

Plug one of the resistor’s leads into the same breadboard row as the LED’s
anode. This will connect those two leads together.

A N .



Chapter #2: Lights On — Lights Off - Page 43

Plug the resistor’s other lead into one of the sockets labeled Vdd.

Direction does matter for the LED, but not for the resistor. If you plug the LED in
backward, the LED will not emit light when you connect power. The resistor just resists the
flow of current. There is no backwards or forwards for a resistor.

< <2

Vdd
ooo
0 DDD&
FeM| ooooo
470 Q FoM| ooooo
F°W ooooo
FH| ooooo
ri°HW| coooo
N
Vss

Reconnect power to your Board of Education or HomeWork Board.
Check to make sure your green LED is emitting light. It should glow green.

Vdd Vin

==
14

X3

F

Figure 2-6
LED On

Schematic (left) and

50000 Wiring Diagram (right)

LED ;) M| o0oo0oo

0ooo0o0
0ooo0o0
0ooo0o0
0ooo0o0
0ooo0o0
0ooo0o0
0ooo0o0
%2/ 00000

DDDDDDDDDDDDDDD‘SD
Oo0o0ooooooooooooo
Oo0ooooooooooooo

Oo0o0ooooooooooooo
Oo0o0oooooooooooooo

If your green LED does not emit light when you connect power to the board:

\/
\/

Some LEDs are brightest when viewed from above. Try looking straight down
onto the dome part of the LED’s plastic case from above.

If the room is bright, try turning off some of the lights, or use your hands to
cast a shadow on the LED.

If you still do not see any green glow, try these steps:

\/

Double check to make sure your cathode and anode are connected properly. If
not, simply remove the LED, give it a half-turn, and plug it back in. It will not
hurt the LED if you plug it in backwards, it just doesn’t emit light. When you
have it plugged in the right direction, it should emit light.



Page 44 - What's a Microcontroller?

V' Double check to make sure you built your circuit exactly as shown in Figure 2-
6.

V' If you are using a What’s a Microcontroller kit that somebody used before you,
the LED may be damaged, so try a different one.
If you are in a lab class, check with your instructor.

Still stuck? If you don’t have an instructor or friend who can help, you can always check
A~ Wwith the Stamps in Class discussion group. The first pages of this book has Internet Access
[ 1 ) information on where to find the Stamps in Class discussion group. If the group is unable to
\-/ help you solve the problem, you can contact the Parallax Technical Support department by
following the Support link at www.parallax.com.

How the LED Test Circuit Works

The Vdd and Vss terminals supply electrical pressure in the same way that a battery
would. The Vdd sockets are like the battery’s positive terminal, and the Vss sockets are
like the battery’s negative terminal. Figure 2-7 shows how applying electrical pressure to
a circuit using a battery causes electrons to flow through it. This flow of electrons is
called electric current, or often just current. Electric current is limited by the resistor.
This current is what causes the diode to emit light.

Figure 2-7
LED On Circuit Electron
Flow

The minus signs with
the circles around them
are used to show
electrons flowing from
the battery’s negative
terminal to its positive
terminal.




Chapter #2: Lights On — Lights Off - Page 45

Chemical reactions inside the battery supply the circuit with current. The battery’s negative
terminal contains a compound that has molecules with extra electrons (shown in Figure 2-7
by minus-signs). The battery’s positive terminal has a chemical compound with molecules
that are missing electrons (shown by plus-signs). When an electron leaves a molecule in
the negative terminal and travels through the wire, it is called a free electron (also shown by
minus-signs). The molecule that lost that extra electron no longer has an extra negative
charge; it is now called neutral (shown by an N). When an electron gets to the positive
terminal, it joins a molecule that was missing an electron, and now that molecule is neutral
too.

Figure 2-8 shows how the flow of electricity through the LED circuit is described using
schematic notation. The electric pressure across the circuit is called voltage. The + and —
signs are used to show the voltage applied to a circuit. The arrow shows the current
flowing through the circuit. This arrow is almost always shown pointing the opposite
direction of the actual flow of electrons. Benjamin Franklin is credited with not having
been aware of electrons when he decided to represent current flow as charge passing from
the positive to negative terminal of a circuit. By the time physicists discovered the true
nature of electric current, the convention was already well established.

Figure 2-8

Voltage + Vdd
LED-On Circuit
Schematic Showing
Resistance Conventional Voltage
l and Current Flow
N
V;s

Current
LED The + and —lsigns show
voltage applied to the
circuit, and the arrow
shows current flow

Voltage - through the circuit.

A schematic drawing (like Figure 2-8) is a picture that explains how one or more circuits
are connected. Schematics are used by students, electronics hobbyists, electricians,
engineers, and just about everybody else who works with circuits.

Appendix F: More about Electricity: This appendix contains some glossary terms and an
activity you can try to get more familiar with measurements of voltage, current and
resistance.




Page 46 - What's a Microcontroller?

Your Turn — Modifying the LED Test Circuit

In the next activity, you will program the BASIC Stamp to turn the LED on, then off,
then on again. The BASIC Stamp will do this by switching the LED circuit between two
different connections, Vdd and Vss. You just finished working with the circuit where the
resistor is connected to Vdd, and the LED emits light. Make the changes shown in Figure
2-9 to verify that the LED will turn off (not emit light) when the resistor’s lead is
disconnected from Vdd and connected to Vss.

V' Disconnect power from your Board of Education or HomeWork Board.

V' Unplug the resistor lead that’s plugged into the Vdd socket, and plug it into a
socket labeled Vss as shown in Figure 2-9.

V' Reconnect power to your Board of Education or HomeWork Board.

V' Check to make sure your green LED is not emitting light. It should not glow

green.
IIII-II'. N
ooooo AMoohoo
Pl ooooo Y modioo ,
p1aff| COOOO[ YOOOOO Figure 2-9
Oooooo| |ooooo -
E112 ooooo! |ooooo LED Off Circuit
. riol| DOOOO| |COOOO
Wy po [l BEEE0| {00001 Schematic (left) and
470 0 "MW ooooo| |ooooo | wiring diagram (right).
3 LED 6 ooooo| |ooood
i Oooooo| |ooooo
o Oooooo| |ooooo
— — s Oooooo| |ooooo
Vs Vs 0 Oooooo| |ooooo
ss ss o 0ooooo| |ooooo
o ooooo  ooooo
00000 00000

ACTIVITY #2: ON/OFF CONTROL WITH THE BASIC STAMP

In Activity #1, two different circuits were built and tested. One circuit made the LED
emit light while the other did not. Figure 2-10 shows how the BASIC Stamp can do the
same thing if you connect an LED circuit to one if its I/O pins. In this activity, you will
connect the LED circuit to the BASIC Stamp and program it to turn the LED on and off.



Chapter #2: Lights On — Lights Off - Page 47

You will also experiment with programs that make the BASIC Stamp do this at different
speeds.

Figure 2-10
BASIC Stamp
Switching

(+5V)
The BASIC
Stamp can be
programmed to
internally
connect the
LED circuit’s
input to Vdd or
Vss.

There are two big differences between changing the connection manually and having the
BASIC Stamp do it. First, the BASIC Stamp doesn’t have to cut the power when it
changes the LED circuit’s supply from Vdd to Vss. Second, while a human can make
that change several times a minute, the BASIC Stamp can do it thousands of times per
second!

LED Test Circuit Parts

Same as Activity #1.

Connecting the LED Circuit to the BASIC Stamp

The LED circuit shown in Figure 2-11 is wired almost the same as the circuit in the
previous exercise. The difference is that the resistor’s lead that was manually switched
between Vdd and Vss is now plugged into a BASIC Stamp /O pin.

V' Disconnect power from your Board of Education or HomeWork Board.
V' Modify the circuit you were working with in Activity #1 so that it matches
Figure 2-11.



Page 48 - What's a Microcontroller?

<
o)
a
=
5

|s Figure 2-11
BASIC Stamp

P14

470 Q - gohoo
3 LED iﬁ ooooo . modioo CpMdeLED
P13 ooooo ooooo Circuit
pofl| DOO00| (00000
— r1M| OOO00D0| (00000 L
Vss piofl| COCOO ooooo The LED circuit’s
0ooooo| |oooog ; ;
P Wl coooo| |ooooo || MPutis now
i ooooo ooooo connected to a
P6 ooooor 1ggooo BASIC Stamp I/0
0ooooo| |oooog e
PS ooooo! |ooooo pin instead of Vdd
PiM| coooo| |ooooo|l orVss.
o 0ooooo| |oooog
- 0oooo|_|joooog
0 Oooooo  0oo0ood
x| 00000 00000

f\ Resistors are essential. Always remember to use a resistor. Without it, too much current
! will flow through the circuit, and it could damage any number of parts in your circuit, BASIC
Stamp, or Board of Education or HomeWork Board.

Turning the LED On/Off with a Program

The example program makes the LED blink on and off one time per second. It
introduces several new programming techniques at once. After running it, you will
experiment with different parts of the program to better understand how it works.

Example Program: LedOnOff.bs2

\' Enter the LedOnOff.bs2 code into the BASIC Stamp Editor.

V' Reconnect power to your Board of Education or HomeWork Board.
v Run the program.

V' Verify that the LED flashes on and off once per second.

\' Disconnect power when you are done with the program.

'What's a Microcontroller - LedOnOff.bs2
'Turn an LED on and off. Repeat 1 time per second indefinitely.

'{$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "The LED connected to Pin 14 is blinking!"



Chapter #2: Lights On — Lights Off - Page 49

DO

HIGH 14
PAUSE 500
LOW 14
PAUSE 500

LOOP

How LedOnOff.bs2 Works

The command DEBUG "The LED connected to Pin 14 is blinking!" makes this
statement appear in the Debug Terminal. The command HIGH 14 causes the BASIC
Stamp to internally connect I/O pin P14 to Vdd. This turns the LED on.

The command pause 500 causes the BASIC Stamp to do nothing for 4 a second while
the LED stays on. The number 500 tells the PAUSE command to wait for 500/1000 of a
second. The number that follows PAUSE is called an argument. If you look up PAUSE in
the BASIC Stamp Manual, you will discover that it calls this number the Duration
argument. The name duration was chosen for this argument to show that the PAUSE
command pauses for a certain ‘duration’ of time, in milliseconds.

\  What's a Millisecond? A millisecond is 1/1000 of a second. It is abbreviated as ms. It
\é} takes 1000 ms to equal one second.

The command r.ow 14 causes the BASIC Stamp to internally connect I/O pin P14 to Vss.
This turns the LED off. Since now 14 is followed by another PAUSE 500, the LED stays
off for half a second.

The reason the code repeats itself over and over again is because it is nested between the
PBASIC keywords po and noop. Figure 2-12 shows how a po..Loop works. By placing
the code segment that turns the LED on and off with pauses between po and Loop, it tells
the BASIC Stamp to execute those four commands over and over again. The result is
that the LED flashes on and off, over and over again. It will keep flashing until you
disconnect power, press and hold the Reset button, or until the battery runs out.



Page 50 - What's a Microcontroller?

DO
HIGH 14 Figure 2-12
DO...LOOP
PAUSE 250
LOW 14 The code between the

keywords DO and
PAUSE 250 LOORP get executed

LOOP over and over again.

A Diagnostic Test for your Computer

A very few computers, such as some laptops, will halt the PBASIC program after the first
time through a po. . .LooP loop. These computers have a non-standard serial port design.
By placing a bpEBuG command the program LedOnOff.bs2, the open Debug Terminal
prevents this from possibly happening. You will next re-run this program without the
DEBUG command to see if your computer has this non-standard serial port problem. It is
not likely, but it would be important for you to know.

V' Open LedOnOff.bs2.
V' Delete the entire DEBUG instruction.
V' Run the modified program while you observe your LED.

If the LED blinks on and off continuously, just as it did when you ran the original
program with the DEBUG command, your computer will not have this problem.

If the LED blinked on and off only once and then stopped, you have a computer with a
non-standard serial port design. If you disconnect the serial cable from your board and
press the Reset button, the BASIC Stamp will run the program properly without freezing.
In programs you write yourself, you should add a single command:

DEBUG "Program Running!"

right after the compiler directives. This will open the Debug Terminal and keep the
COM port open. This will prevent your programs from freezing after one pass through
the po..Loop, or any of the other looping commands you will be learning in later
chapters. You will see this command in some of the example programs that would not



Chapter #2: Lights On — Lights Off - Page 51

otherwise need a DEBUG instruction. So, you should be able to run all of the remaining
programs in this book even if your computer failed the diagnostic test.

Your Turn — Timing and Repetitions

By changing the PAUSE command’s Duration argument you can change the amount of
time the LED stays on and off. For example, by changing both the buration arguments
to 250, it will cause the LED to flash on and off twice per second. The Do..L.ooP in your
program will now look like this:

DO

HIGH 14
PAUSE 250
LOW 14
PAUSE 250

LOOP

V' Open LedOnOff.bs2
V' Change the PAUSE command’s Duration arguments from 500 to 250, and re-
run the program.

If you want to make the LED blink on and off once every three seconds, with the low
time twice as long as the high time, you can program the PAUSE command after the HIGH
14 command so that it takes one second using PAUSE 1000. The pAUSE command after
the Low 14 command will have to be PAUSE 2000.

DO
HIGH 14
PAUSE 1000
LOW 14
PAUSE 2000
LOOP

V' Modify and re-run the program using the code snippet above.

A fun experiment is to see how short you can make the pauses and still see that the LED
is flashing. When the LED is flashing very fast, but it looks like it’s just on, it’s called



Page 52 - What's a Microcontroller?

persistence of vision. Here is how to test to see what your persistence of vision threshold

1S:

<L 2 2 <

Try modifying both of your PAUSE command’s Duration arguments so that
they are 100.

Re-run your program and check for flicker.

Reduce both buration arguments by 5 and try again.

Keep reducing the buration arguments until the LED appears to be on all the
time with no flicker. It will be dimmer than normal, but it should not appear to
flicker.

One last thing to try is to create a one-shot LED flasher. When the program runs, the
LED flashes only once. This is a way to look at the functionality of the po..LooP. You
can temporarily remove the po..LooP from the program by placing an apostrophe to the
left of both the po and Loop keywords as shown below.

DO

HIGH 14
PAUSE 1000
LOW 14
PAUSE 2000

LOOP

V' Modify and re-run the program using the code snippet above.
V' Explain what happened, why did the LED only flash once?
P Commenting a line of code: Placing an apostrophe to the left of a command changes it
() into a comment. This is a useful tool because you don’t actually have to delete the
\b‘ command to see what happens if you remove it from the program. It is much easier to add
and remove an apostrophe than it is to delete and re-type the commands.

ACTIVITY #3: COUNTING AND REPEATING

In the previous activity, the LED circuit either flashed on and off all the time, or it
flashed once and then stopped. What if you only want the LED to flash on and off ten
times? Computers (including the BASIC Stamp) are great at keeping running totals of
how many times something happens. Computers can also be programmed to make



Chapter #2: Lights On — Lights Off - Page 53

decisions based on a variety of conditions. In this activity, you will program the BASIC
Stamp to stop flashing the LED on and off after ten repetitions.

Counting Parts and Test Circuit

Use the example circuit shown in Figure 2-11 on page 48.

How Many Times?

There are many ways to make the LED blink on and off ten times. The simplest way is to
use a FOR.NEXT loop. The FOR..NEXT loop is similar to the po..Loop. Although either
loop can be used to repeat commands a fixed number of times, FOR..NEXT is easier to use.

The For..NEXT loop depends on a variable to track how many times the LED has blinked
on and off. A variable is a word of your choosing that is used to store a value. The next
example program uses the word counter to ‘count’ how many times the LED has been
turned on and off.

Picking words for variable names has several rules:

1. The name cannot be a word that is already used by PBASIC. These words are
called reserved words, and some examples that you should already be familiar with
/J;\ are: DEBUG, PAUSE, HIGH, LOW, DO, and LOOP.

\é/‘ 2. The name cannot contain a space.

3. Even though the name can contain letters, numbers, or underscores, it must begin
with a character.

4. The name must be less than 33 characters long.

Example Program: LedOnOffTenTimes.bs2

The program LedOnOffTenTimes.bs2 demonstrates how to use a FOR..NEXT loop to blink
an LED on and off ten times.

Your test circuit from Activity #2 should be built (or rebuilt) and ready to use.
Enter the LedOnOffTenTimes.bs2 code into the BASIC Stamp Editor.
Connect power to your Board of Education or HomeWork Board.

Run the program.

Verify that the LED flashes on and off ten times.

2L 2 2 2 2



Page 54 - What's a Microcontroller?

V' Run the program a second time, and verify that the value of counter shown in
the Debug Terminal accurately tracks how many times the LED blinked. Hint:
instead of clicking Run a second time, you can press and release the Reset
button on your Board of Education or HomeWork Board.

' What's a Microcontroller - LedOnOffTenTimes.bs2
' Turn an LED on and off. Repeat 10 times.

' {s$sTAMP BS2}
' {$PBASIC 2.5}

counter VAR Byte

FOR counter = 1 TO 10
DEBUG ? counter
HIGH 14
PAUSE 500
LOW 14
PAUSE 500

NEXT

DEBUG "All done!™"

END

How LedOnOffTenTimes.bs2 Works
This PBASIC statement

counter VAR Byte

tells the BASIC Stamp Editor that your program will use the word counter as a variable
that can store a byte’s worth of information.



Chapter #2: Lights On — Lights Off - Page 55

What's a Byte? A byte is enough memory to store a number between 0 and 255. The
BASIC Stamp has four different types of variables, and each can store a different range of

numbers:
Table 2-2: Variable Types and Values They Can Store
‘/‘:;\\ Variable type Range of Values
-’ Bit 0to 1
Nib 0to 15
Byte 0 to 255
Word 0 to 65535

The question mark formatter before a variable in a DEBuG command tells the Debug
Terminal to display the name of the variable and its value. This is how the command

DEBUG ? counter

displays both the name and the value of the counter variable in the Debug Terminal.

The For..NEXT loop and all the commands inside it are shown below. The statement FOR
counter = 1 to 10 tells the BASIC Stamp that it will have to set the counter variable
to 1, then keep executing commands until it gets to the NEXT statement. When the
BASIC Stamp gets to the NEXT statement, it jumps back to the For statement. The For
statement adds one to the value of counter. Then, it checks to see if counter is greater
than ten yet. If not, it repeats the process. When the value of counter finally reaches
eleven, the program skips the commands between the FOR and NEXT statements and
moves on to the command that comes after the NEXT statement.

FOR counter = 1 to 10
DEBUG ? counter, CR
HIGH 14
PAUSE 500
LOW 14
PAUSE 500

NEXT

The command that comes after the NEXT statement is:



Page 56 - What's a Microcontroller?

DEBUG "All done!™"

This command is included just to show what the program does after ten times through the
FOR..NEXT loop. It moves on to the command that comes after the NEXT statement.

Your Turn — Other Ways to Count
V' Replace the statement

FOR counter = 1 to 10 with this: FOR counter = 1 to 20

in LedOnOffTenTimes.bs2 and re-run the program. What did the program do
differently, and was this expected?

V' Try a second modification to the FOr statement. This time, change it to

FOR counter = 20 to 120 STEP 10

How many times did the LED flash? What values displayed in the Debug
Terminal?

ACTIVITY #4: BUILDING AND TESTING A SECOND LED CIRCUIT

Indicator LEDs can be used to tell the machine’s user many things. Many devices need
two, three, or more LEDs to tell the user if the machine is ready or not, if there is a
malfunction, if it’s done with a task, and so on.

In this activity, you will repeat the LED circuit test in Activity #1 for a second LED
circuit. Then you will adjust the example program from Activity #2 to make sure the
LED circuit is properly connected to the BASIC Stamp. After that, you will modify the
example program from Activity #2 to make the LEDs operate in tandem.

Extra Parts

In addition to the parts you used in Activities 1 and 2, you will need these parts:

(1) LED - yellow
(1) Resistor — 470 Q (yellow-violet-brown)



Chapter #2: Lights On — Lights Off - Page 57

Building and Testing the Second LED Circuit

In Activity #1, you manually tested the first LED circuit to make sure it worked before
connecting it to the BASIC Stamp. Before connecting the second LED circuit to the
BASIC Stamp, it’s important to test it too.

V' Disconnect power from your Board of Education or HomeWork Board.

V' Construct the second LED circuit as shown in Figure 2-13.

V' Reconnect power to your Board of Education or HomeWork Board.

V' Did the LED circuit you just added turn on? If yes, then continue. If no,
Activity #1 has some trouble-shooting suggestions that you can repeat for this
circuit.

\UelslWa(l¢
X3 CICICEC l? ®lIN
b5 HER oog
vdd paff| DODOO  mOdOO
hisM| DOOOO[ |00000 Ei .13
poM| O00000| |00000 lgure 2-
el ooooo| |oooop || Manual Test
470 Q Ego ooooo! |ooooo Circuit for
s 0oooo| |ooooo Second LED
P14 /> M| O000O0O0| |ooooo
rs M| OOOOO| |ooooo
470 Q N . M| O0OOOO| |ocoooo
N N r, M| O0OOO| |ocoooo
X LED p3 ooood ooooo
LED r, M| 0OCOOO| |Doooo
0 00000| Jooooo
= = o M| coooo — ooooo
Vss Vss x| 00000 oooog

V' Disconnect power to your Board of Education or HomeWork Board.
V' Modify the second LED circuit you just tested by connecting the LED circuit’s
resistor lead (input) to P15 as shown in Figure 2-14.



Page 58 - What's a Microcontroller?

_Vdd__ Vin_ Figure 2-14
(T Sl Connecting
15 the Second
0oooo
P15 D ANV P13l coooo[o LED to the
rof| OOOO00| |O BASIC
470 Q r17M| 0OOOo Stamp
P14 roM| DooOoo
ro M| DOOOO| |ooooo ]
470 Q < N s oooog ooooo Schematic
0o0o00| (00000
X X MW coooo| |ooooo (left) and
LED LED . M| OD0O0O0O| (00000 wiring
= = p4 [| 0000} 100000 diagram
¥ Vas b; M| 000OO0| |ooooo ht
ss > M| coooo| |ooooo || (right).
o 00000 |0o0ooo
o M| boooo — ooooo
| 00000 00000

Using a Program to Test the Second LED Circuit

In Activity #2, you used an example program and the HIGH and Low commands to control
the LED circuit connected to P14. These commands will have to be modified to control
the LED circuit connected to P15. Instead of using HIGH 14 and Low 14, you will use
HIGH 15 and Low 15.

Example Program: TestSecondLed.bs2

Enter TestSecondLed.bs2 into the BASIC Stamp Editor.

Connect power to your Board of Education or HomeWork Board.

Run TestSecondLED.bs2.

Make sure the LED circuit connected to P15 is flashing. If the LED connected
to P15 flashes, move on to the next example (Controlling Both LEDs). If the
LED circuit connected to P15 is not flashing, check your circuit for wiring
errors and your program for typing errors and try again.

2L 2 =2 =2

' What's a Microcontroller - TestSecondLed.bs2
' Turn LED connected to P15 on and off.
' Repeat 1 time per second indefinitely.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"



Chapter #2: Lights On — Lights Off - Page 59

DO
HIGH 15
PAUSE 500
LOW 15
PAUSE 500

LOOP

Controlling Both LEDs

Yes, you can flash both LEDs at once. One way you can do this is to use two HIGH
commands before the first PAUSE command. One HIGH command sets P14 high, and the
next HIGH command sets P15 high. You will also need two Low commands to turn both
LEDs off. It’s true that both LEDs will not turn on and off at exactly the same time
because one is turned on or off after the other. However, there is no more than a
millisecond’s difference between the two changes, and the human eye will not detect it.

Example Program: FlashBothLeds.bs2

\' Enter the FlashBothLeds.bs2 code into the BASIC Stamp Editor.
v Run the program.
\' Verify that both LEDs appear to flash on and off at the same time.

' What's a Microcontroller - FlashBothLeds.bs2
' Turn LEDs connected to P14 and P15 on and off.

' {s$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"
DO

HIGH 14
HIGH 15
PAUSE 500
LOW 14
LOW 15
PAUSE 500

LOOP



Page 60 - What's a Microcontroller?

Your Turn — Alternate LEDs

You can cause the LEDs to alternate by swapping the HIGH and Low commands that
control one of the I/O pins. This means that while one LED is on, the other will be off.

\' Modify FlashBothLeds.bs2 so that the commands between the Do and Loop
keywords look like this:

HIGH 14
LOW 15
PAUSE 500
LOW 14
HIGH 15
PAUSE 500

V' Run the modified version of FlashBothLeds.bs2 and verify that the LEDs flash
alternately on and off.

ACTIVITY #5: USING CURRENT DIRECTION TO CONTROL A BI-COLOR
LED

The device shown in Figure 2-15 is a security monitor for electronic keys. When an
electronic key with the right code is used, the LED changes color, and a door opens. This
kind of LED is called a bi-color LED. This activity answers two questions:

1. How does the LED change color?
2. How can you run one with the BASIC Stamp?



Chapter #2: Lights On — Lights Off - Page 61

Figure 2-15
Bi-color LED in a
Security Device

When the door is
locked, this bi-color
LED glows red.
When the door is
unlocked by an
electronic key with
the right code, the
LED turns green.

Introducing the Bi-Color LED

The bi-color LED’s schematic symbol and part drawing are shown in Figure 2-16.

| Q o

Figure 2-16
)7 % LED- Bi-color LED
Red Green bicolor )
1112 Schematic symbol (left)

and part drawing (right).

The bi-color LED is really just two LEDs in one package. Figure 2-17 shows how you
can apply voltage in one direction and the LED will glow red. By disconnecting the LED
and plugging it back in reversed, the LED will then glow green. As with the other LEDs,
if you connect both terminals of the circuit to Vss, the LED will not emit light.



Page 62 - What's a Microcontroller?

Vdd Vdd
470 Q 470 Q
1 2
23 SRS AN
LED- LED-
Red 2
V;s V;s

Bi-Color LED Circuit Parts
(1) LED - bi-color

(1) Resistor 470 Q (yellow-violet-brown)

(1) Jumper wire

Building and Testing the Bi-Color LED Circuit

1 Green

M\
470 Q 1
s 7
2
Vgs

Figure 2-18 shows the manual test for the bi-color LED.

Reconnect power.

L 2222 2 2 2

Disconnect power.

Verify that the bi-color LED is now emitting green light.

Figure 2-17
Bi-color LED
and Applied
Voltage

Red (left),
green (center)
and no light

(right)

Disconnect power from your Board of Education or HomeWork Board.
Build the circuit shown on the left side of Figure 2-18.
Reconnect power and verify that the bi-color LED is emitting red light.
Disconnect power again.

Modify your circuit so that it matches the right side of Figure 2-18.



Vvdd 1Jin2 Vss
X
P15 OO000g uininin]
P14 QDDD[J_HDDDD[
P13 =200 oo
P12 ooooo ooooo
P11 ooooo ooooo
P10 ooooo ooood
P9 ooooo ooooo
P8 ooooo ooooo
p7 ooooo ooooo
P6 ooooo ooooo
P5 ooooo ooooo
P4 ooooo ooooo
P3 ooooo ooooo
P2 ooooo ooooo
P1 Oooooo| jooooo
PO ooooo ooooo
x2 88000 ooood

Chapter #2: Lights On — Lights Off - Page 63

vad 2 Iin|! _vss
X
psAE0000 YOoOooo
paMKOCOOf  hooog
piaf S®0O0 oo
r1>M| DOOOO| (00000
-1l OO0O0O| |0DoOooO
rof| DO00OO| (00000
po M| OOOOO| (00000
ps M| DOOOO| |O0OO0O
-, M| ooooo| |ooooo
re M| DOOOO| |DO0OO0O
r- M| DOOOO| |O0O00O
/2 M| CODOO| |DOOOO
r; M| DODOO| |DOOOO
- M| DOoOO| |Doooo
-; Ml coooo|_jooooo
ro M| 00000 00000
2 00000 00000

Figure 2-18
Manual bi-
color LED
Test

Bi-color
LED red
(left) and
green

(right).

Controlling a bi-color LED with the BASIC Stamp requires two I/O pins. After you have
manually verified that the bi-color LED works using the manual test, you can connect the
circuit to the BASIC Stamp as shown in Figure 2-19.

V' Connect the bi-color LED circuit to the BASIC Stamp as shown in Figure 2-

19.

P15 ©

P14 O

A\N

My
470 Q

AN

P15
P14
P13
P12
P11
P10

P8
P7
P6
P5
P4
P3
P2
P1
PO

X2

ooo
0ooo
ooooo

ooo

Oooooooooocooo

Ooooooooog
Ooooooooog

t

Oooooooooogoood
O0000oOoooogdoon

O

Oooooooooooooo

Figure 2-19
Bi-color LED Connected
to BASIC Stamp



Page 64 - What's a Microcontroller?

BASIC Stamp Bi-Color LED Control

Figure 2-20 shows how you can use P15 and P14 to control the current flow in the bi-
color LED circuit. The upper schematic shows how current flows through the red LED
when P15 is set to Vdd and P14 is set to Vss. This is because the red LED will let current
flow through it when electrical pressure is applied as shown, but the green LED acts like
a closed valve and does not let current through it. The bi-color LED glows red.

The lower schematic shows what happens when P15 is set to Vss and P14 is set to Vdd.
The electrical pressure is now reversed. The red LED shuts off and does not allow
current through. Meanwhile, the green LED turns on, and current passes through the
circuit in the opposite direction.

Current P
rs

HIGH=Vdd P15 D

%
_ 2 Figure 2-20
LOW=Vss P14 D Wy Manual bi-color
4700 LED Test
Current through
Red LED (above)
LOW =Vss P15 D and Green LED
1 (below).
z ] T Current
2
HIGH =Vvdd P14 AN
470 Q

Figure 2-20 also shows the key to programming the BASIC Stamp to make the bi-color
LED glow two different colors. The upper schematic shows how to make the bi-color
LED red using HIGH 15 and Low 14. The lower schematic shows how to make the bi-
color LED glow green by using Low 15 and HIGH 14. To turn the LED off, send low
signals to both P14 and P15 using Low 15 and Low 14. In other words, use Low on both
pins.



Chapter #2: Lights On — Lights Off - Page 65

The bi-color LED will also turn off if you send high signals to both P14 and P15. Why?
/ e  Because the electrical pressure is the same at P14 and P15 regardless of whether you set

both I/O pins high or low.

Example Program: TestBiColorLED.bs2

1

1

1

1

v Reconnect power.

\' Enter the TestBiColorLed.bs2 code into the BASIC Stamp Editor.

v Runthe program.

\' Verify that the LED cycles through the red, green, and off states.

What's a Microcontroller - TestBiColorLed.bs2

Turn bi-color LED red, then green,

{$sTAMP BS2}
{$pBASIC 2.5}

DEBUG "Program Running!"

DO

HIGH 15 ' Red
LOW 14
PAUSE 500

LOW 15 ' Green
HIGH 14
PAUSE 500

LOW 15 ' Off
LOW 14
PAUSE 500

LOOP

Your Turn — Lights Display

then off in a loop.

In Activity #3, a variable named counter was used to control how many times the LED
blinked. What happens if you use the value counter to control the PAUSE command’s
Duration argument?

V' Rename and save TestBiColorLed.bs2 as TestBiColorLedYourTurn.bs2.
V' Add a counter variable declaration before the Do statement:



Page 66 - What's a Microcontroller?

counter VAR BYTE

V' Nest the FOR.NEXT loop below within the Do..LooP.

FOR counter = 1 to 50
HIGH 15
LOW 14
PAUSE counter
LOW 15
HIGH 14
PAUSE counter

NEXT

When you are done, your code should look like this:
counter VAR BYTE
DO
FOR counter = 1 to 50
HIGH 15
LOW 14
PAUSE counter
LOW 15
HIGH 14
PAUSE counter

NEXT

LOOP

At the beginning of each pass through the FOR..NEXT loop, the PAUSE value (Duration
argument) is only one millisecond. Each time through the FOR..NEXT loop, the pause gets
longer by one millisecond at a time until it gets to 50 milliseconds. The Dpo..L.ooP causes
the FOR..NEXT loop to execute over and over again.

V' Run the modified program and observe the effect.



Chapter #2: Lights On — Lights Off - Page 67

SUMMARY

The BASIC Stamp can be programmed to switch a circuit with a light emitting diode
(LED) indicator light on and off. LED indicators are useful in a variety of places
including many computer monitors, disk drives, and other devices. The LED was
introduced along with a technique to identify its anode and cathode terminals. An LED
circuit must have a resistor to limit the current passing through it. Resistors were
introduced along with one of the more common coding schemes you can use to figure out
a resistor’s value.

The BASIC Stamp switches an LED circuit on and off by internally connecting an 1/O
pin to either Vdd or Vss. The HIGH command can be used to make the BASIC Stamp
internally connect one of its I/O pins to Vdd, and the now command can be used to
internally connect an I/O pin to Vss. The pause command is used to cause the BASIC
Stamp to not execute commands for an amount of time. This was used to make LEDs
stay on and/or off for certain amounts of time. This amount of time is determined by the
number used in the PAUSE command’s Duration argument.

The Do..LooP can be used to create an infinite loop. The commands between the po and
LooP keywords will execute over and over again. Even though this is called an infinite
loop, the program can still be re-started by disconnecting and reconnecting power or
pressing and releasing the Reset button. A new program can also be downloaded to the
BASIC Stamp, and this will erase the program with the infinite loop.

Current direction and voltage polarity were introduced using a bi-color LED. If voltage
is applied across the LED circuit, current will pass through it in one direction, and it
glows a particular color. If the voltage polarity is reversed, current travels through the
circuit in the opposite direction and it glows a different color.

uestions

1. What is the name of this Greek letter: 2, and what measurement does Q2 refer
to?

2. Which resistor would allow more current through the circuit, a 470 Q resistor or
a 1000 Q resistor?

3. How do you connect two wires using a breadboard? Can you use a breadboard
to connect four wires together?



Page 68

- What's a Microcontroller?

4. What do you always have to do before modifying a circuit that you built on a
breadboard?

5. How long would PAUSE 10000 last?

6. How would you cause the BASIC Stamp to do nothing for an entire minute?

7. What are the different types of variables?

8. Can a byte hold the value 500?

9. What will the command x1GE 7 do?

Exercises

1. Draw the schematic of an LED circuit like the one you worked with in Activity
#2, but connect the circuit to P13 instead of P14. Explain how you would modify
LedOnOff.bs2 on Page 48 so that it will make your LED circuit flash on and off
four times per second.

2. Explain how to modify LedOnOffTenTimes.bs2 so that it makes the LED circuit
flash on and off 5000 times before it stops. Hint: you will need to modify just
two lines of code.

Project

1. Make a 10-second countdown using one yellow LED and one bi-color LED.
Make the bi-color LED start out red for 3 seconds. After 3 seconds, change the
bi-color LED to green. When the bi-color LED changes to green, flash the
yellow LED on and off once every second for ten seconds. When the yellow
LED is done flashing, the bi-color LED should switch back to red and stay that
way.

Solutions

Q1. Omega refers to the ohm which measures how strongly something resists current
flow.

Q2. A 470 Q resistor: higher values resist more strongly than lower values, therefore
lower values allow more current to flow.

Q3. To connect 2 wires, plug the 2 wires into the same row of 5 sockets. You can
connect 4 wires by plugging all 4 wires into the same row of 5 sockets.

Q4. Disconnect the power.

Q5. 10 seconds.

Q6. PAUSE 60000

Q7. Bit, Nib, Byte, and Word



Chapter #2: Lights On — Lights Off - Page 69

Q8. No. The largest value a byte can hold is 255. The value 500 is out of range for a
byte.

Q9. 1@H 7 will cause the BASIC Stamp to internally connect I/O pin P7 to Vdd.

El. The PAUSE Duration must be reduced to 500ms / 4 = 125ms. To use I/O pin

P13, HIGH 14 and Low 14 have been replaced with HIGH 13 and Low 13.
P13 -
470 Q HIGH 13
PAUSE 125
LOW 13
— PAUSE 125
Vss LOOP

E2. The counter variable has to be changed to word size, and the FOR statement has
to be modified to count from 1 to 5000).

counter VAR Word

FOR counter = 1 to 5000
DEBUG ? counter, CR
HIGH 14
PAUSE 500
LOW 14
PAUSE 500

NEXT

P1. The bi-color LED schematic, on the left, is unchanged from Figure 2-20 on page
64. The yellow LED schematic is based on Figure 2-11 on page 48. For this
project P14 was changed to P13.

P15 1 P13
Red ~ »# Green 7o N Yellow
LED ¥ 7 Lep LED
2
P14 -
470Q Vss

' What's a Microcontroller - ChO02Prj0l1_ Countdown.bs2
' 10 Second Countdown with Red, Yellow, Green LED

' Red/Green: Bicolor LED on P15, P1l4. Yellow: P13

' {$sTAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

counter VAR Byte



Page 70 - What's a Microcontroller?

' Red for three seconds ' Bi-color LED Red
HIGH 15
LOW 14
PAUSE 3000

' Green for 10 seconds...
LOW 15 ' Bi-color LED Green
HIGH 14

' ...while the yellow LED is flashing
FOR counter = 1 TO 10
HIGH 13 ' Yellow LED on
PAUSE 500
LOW 13 ' Yellow LED off
PAUSE 500
NEXT

' Red stays on ' Bi Color LED Red

HIGH 15
LOW 14

Further Investigation

The resources listed here are available for free download from the Parallax web site and
are also included on the Parallax CD.

“BASIC Stamp Manual”, Users Manual, Version 2.0c, Parallax Inc., 2000
The BASIC Stamp Manual has more examples you can try and information that
further explains the following commands: HIGH, LOW, PAUSE, the DEBUG ?
formatter, and FOR..NEXT.

“Basic Analog and Digital”, Student Guide, Version 2.0, Parallax Inc., 2003
Basic Analog and Digital uses LEDs to describe counting in binary, describes
analog conditions, and it introduces new ways to adjust an LED’s brightness.

“BASI C Stamp Editor Help File”, PBASIC 2.5 Version 2.0 Parallax Inc., 2003
The PBASIC 2.5 Help File has information on po..Loop, which is new to
PBASIC 2.5 and not included in the BASIC Stamp Manual. You can find this
information by clicking the book icon on your BASIC Stamp Editor task bar,
then selecting PBASIC Reference from the menu in the left sidebar window.
This will open the PBASIC Command Reference alphabetical listing in the main
window. Detailed information can be found by clicking on each command.



Chapter #3: Digital Input - Pushbuttons - Page 71

Chapter #3: Digital Input - Pushbuttons

FOUND ON CALCULATORS, HAND HELD GAMES, AND APPLIANCES

How many devices with pushbuttons do you use on a daily basis? Here are a few
examples that might appear in your list: computer, mouse, calculator, microwave oven,
handheld remote, handheld games, and VCR. In each device, there is a microcontroller
scanning the pushbuttons and waiting for the circuit to change. When the circuit changes,
the microcontroller detects the change and takes action. By the end of this chapter, you
will have experience with designing pushbutton circuits and programming the BASIC
Stamp to monitor them and take action when changes occur.

RECEIVING VS. SENDING HIGH AND LOW SIGNALS

In Chapter #2, you programmed the BASIC Stamp to send high and low signals, and you
used LED circuits to display these signals. Sending high and low signals means you used
a BASIC Stamp I/O pin as an output. In this chapter, you will use a BASIC Stamp /O
pin as an input. As an input, an I/O pin listens for high/low signals instead of sending
them. You will send these signals to the BASIC Stamp using a pushbutton circuit, and
you will program the BASIC Stamp to recognize whether the pushbutton is pressed or not
pressed.

P Other terms that mean send, high/low, and receive: Sending high/low signals is

(R described in different ways. You may see sending referred to as transmitting, controlling, or

"¢/ switching. Instead of high/low, you might see it referred to as binary, TTL, CMOS, or
Boolean signals. Another term for receiving is sensing.

ACTIVITY #1: TESTING A PUSHBUTTON WITH AN LED CIRCUIT

If you can use a pushbutton to send a high or low signal to the BASIC Stamp, can you
also control an LED with a pushbutton? The answer is yes, and you will use it to test a
pushbutton in this activity.

Introducing the Pushbutton

Figure 3-1 shows the schematic symbol and the part drawing of a normally open
pushbutton. Two of the pushbutton’s pins are connected to each terminal. This means
that connecting a wire or part lead to pin 1 of the pushbutton is the same as connecting it
to pin 4. The same rule applies with pins 2 and 3. The reason the pushbutton doesn’t just



Page 72 - What's a Microcontroller?

have two pins is because it needs stability. If the pushbutton only had two pins, those
pins would eventually bend and break from all the pressure that the pushbutton receives
when people press it.

Figure 3-1
14 Normally Open

|] 1 (’@' § 4 Pushbutton
2: 3 2 o o
T ( 3 Schematic symbol (left)

and part drawing (right)

The left side of Figure 3-2 shows how a normally open pushbutton looks when it’s not
pressed. When the button is not pressed, there is a gap between the 1,4 and 2,3 terminals.
This gap makes it so that the 1,4 terminal can not conduct current to the 2,3 terminal.
This is called an open circuit. The name “normally open” means that the pushbutton’s
normal state (not pressed) forms an open circuit. When the button is pressed, the gap
between the 1,4 and 2,3 terminals is bridged by a conductive metal. This is called closed,
and current can flow through the pushbutton.

Figure 3-2
14 14 Normally Open
' IJ ' ¢ Pushbutton
2,3 2,3
Not pressed (left) and
pressed (right)

Test Parts for the Pushbutton

(1) LED - pick a color

(1) Resistor - 470 € (yellow-violet-brown)
(1) Pushbutton - normally open

(1) Jumper wire

Building the Pushbutton Test Circuit

Figure 3-3 shows a circuit you can build to manually test the pushbutton.



Chapter #3: Digital Input - Pushbuttons - Page 73

Always disconnect power from your Board of Education or BASIC Stamp HomeWork
Board before making any changes to your test circuit. From here onward, the instructions
will no longer say “Disconnect power...” between each circuit modification. It is up to you to
remember to do this.

Always reconnect power to your Board of Education or BASIC Stamp HomeWork Board
before downloading a program to the BASIC Stamp.

1,4

2,3

Build the circuit shown in Figure 3-3.
Vdd
Vdd Vin Vss fJ +
X3
pisff| DOOOO DDDD[EA
pm" 00000  O&D\d
piafll DOOOO[ |OOGyROo
rofdl DOOOO| |oORpo
il sacze| [aogba | rowreas
470 Q P\| oooo "@’E¥ooo Pushbutton Test Circuit
s 00000, 00000
i 000w 0000
. ooooo| |ooooo
or ooooo| |0oooo
t: LED P4 ooooo ooooo
s ooooo| |ooooo
) ooooo| |Oooooo
o ooooo| _jooooo
L o Oooooo  o0oooo
= | 00000 00000
Vss

Testing the Pushbutton

When the pushbutton is not pressed, the LED will be off. If the wiring is correct, when
the pushbutton is pressed, the LED should be on (emitting light).

(1)
-

Warning signs: If the Pwr LED on the Board of Education flickers, goes dim, or goes out
completely when you plug the power supply back in, it means you have a short circuit. If
this happens to you, disconnect power immediately and find and correct the mistake in your
circuit.

The Power LED on the HomeWork Board is different. It glows only while a program is
running. If a program ends (using the END command), the Power LED will also turn off.

Verity that the LED in your test circuit is off.




Page 74 - What's a Microcontroller?

\ Press and hold the pushbutton, and verify that the LED emits light while you
are holding the pushbutton down.

How the Pushbutton Circuit Works

The left side of Figure 3-4 shows what happens when the pushbutton is not pressed. The
LED circuit is not connected to Vdd. It is an open circuit that cannot conduct current.
By pressing the pushbutton, you close the connection between the terminals with
conductive metal making a pathway for electrons to flow through the circuit.

vad

Vdd
1,4 0 1,4
I] < Figure 3-4
2,30 2,3 Pushbutton Not
Pressed, and
Pressed
Curr:not g 470 Q Current 470 Q
Pushbutton circuit
Vgs

open (left) and

closed (right
} LED X LED (right)

V;s
Your Turn — A Short-Circuit

Figure 3-5 shows a different circuit that will cause the LED to behave differently. When
the button is not pressed, the LED stays on. When the button is pressed, the LED turns
off. The reason the LED turns off when the pushbutton is pressed is because current
always follows the path of least resistance. When the pushbutton is pressed, terminals
1,4 and 2,3, have almost no resistance between them, so all the current passes through the
pushbutton (short circuit) instead of the LED.

V' Build the circuit shown in Figure 3-5.
V' Repeat the tests you performed on the first pushbutton circuit you built with
this new circuit.



Chapter #3: Digital Input - Pushbuttons - Page 75

Vdd Vdd Vin Vss
}e —lululnm = mulis
pisff| 00000 OO
1.4 PM" ooooo . OO
’ p13f]| COOOO oo
sofdl DOooo| (oo .
o Wy P 0oL oopffr e Figuress
L)
h el DDDD%@'E Ao LED that Gets
2,3 ps ENG OO EE=22 000 Shorted by
’ Oo00e o O00@
" W ooooo| |ooooo Pushbutton
o ooooo| |ooooo
470 Q s ooooo ooooo
b3 ooooo| |ooooo
Py ooooo| |ooooo
- ooooo| _jooooo
= 0o Oooooo  o0ooood
/s x| 00000 00000
Vss

Can you really do that with the LED? Up until now, the LED’s cathode has always been
—_— connected to Vss. Now, the LED is in a different place in the circuit, with its anode
( ? : connected to Vdd. People often ask if this breaks any circuit rules, and the answer is no.
‘@’  The electrical pressure supplied by Vdd and Vss is 5 volts. The diode will always use 1.6

volts, and the resistor will always use 3.4 volts, regardless of their order.

ACTIVITY #2: READING A PUSHBUTTON WITH THE BASIC STAMP

In this activity, you will connect a pushbutton circuit to the BASIC Stamp and display
whether or not the pushbutton is pressed. You will do this by writing a PBASIC program
that checks the state of the pushbutton and displays it in the Debug Terminal.

Parts for a Pushbutton Circuit

(1) Pushbutton - normally open

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 10 kQ (brown-black-orange)
(2) Jumper wires

Building a Pushbutton Circuit for the BASIC Stamp

Figure 3-6 shows a pushbutton circuit that is connected to BASIC Stamp I/O pin P3.

V' Build the circuit shown in Figure 3-6.



Page 76 - What's a Microcontroller?

P15
Vdd P14
P13
P12
P11
P10

i
P3 e
P5
2200
10 kQ Pa

Figure 3-6
Pushbutton Circuit
Connected to I/O Pin
P3

On the wiring
diagram, the 220 Q2
resistor is on the left
side connecting the
pushbutton to P3
while the 10 k2
resistor is on the
right, connecting the
pushbutton circuit to
Vss.

Figure 3-7 shows what the BASIC Stamp sees when the button is pressed, and when it’s
not pressed. When the pushbutton is pressed, the BASIC Stamp senses that Vdd is
connected to P3. Inside the BASIC Stamp, this causes it to place the number 1 in a part
of its memory that stores information about its I/O pins. When the pushbutton is not
pressed, the BASIC Stamp cannot sense Vdd, but it can sense Vss through the 10 k€ and
220 Q resistors. This causes it to store the number 0 in that same memory location that

stored a 1 when the pushbutton was pressed.



Chapter #3: Digital Input - Pushbuttons - Page 77

Figure 3-7
BASIC Stamp Reading
a Pushbutton

When the pushbutton is
pressed, the BASIC
Stamp reads a 1
(above). When the
pushbutton is not
pressed, the BASIC
Stamp reads a 0
(below).

Vdd

Vss

Binary and Circuits: The base-2 number system uses only the digits 1 and 0 to make

numbers, and these binary values can be transmitted from one device to another. The
/s %  BASIC Stamp interprets Vdd (5 V) as binary-1 and Vss (0 V) as binary-0. Likewise, when
the BASIC Stamp sets an I/O pin to Vdd using HIGH, it sends a binary-1. When it sets an
1/0 pin to Vss using LOW, it sends a binary-0. This is a very common way of communicating
binary numbers used by many computer chips and other devices.

Programming the BASIC Stamp to Monitor the Pushbutton

The BASIC Stamp stores the one or zero it senses at /O pin P3 in a memory location
called IN3. Here is an example program that shows how this works:

Example Program: ReadPushbuttonState.bs2

This program makes the BASIC Stamp check the pushbutton every Y second and send
the value of 1N3 to the Debug Terminal. Figure 3-8 shows the Debug Terminal while
the program is running. When the pushbutton is pressed, the Debug Terminal displays



Page 78 - What's a Microcontroller?

the number 1, and when the pushbutton is not pressed, the Debug Terminal displays the
number 0.

3 Debug Terminal #1 =1ol x|
Com Poit BaudRate:  Parity: .
coMl @] [sEn =l roe = F|g ure 3-8
Data Bits Flow Contrat f
@ Tx [ DIR [ RIS Debug Terminal
NS [ T -V g

= Displaying
Pushbutton States

The Debug Terminal
displays 1 when the
pushbutton is pressed
and 0 when it is not

s pressed.

Eaplure..l Macrus..l Pause | Clear | Cloge |

Enter the ReadPushbuttonState.bs2 program into the BASIC Stamp Editor.
Run the program.

Verify that the Debug Terminal displays the value 0 when the pushbutton is
not pressed.

Verify that the Debug Terminal displays the value 1 when the pushbutton is
pressed and held.

< 2 2 <2

' What's a Microcontroller - ReadPushbuttonState.bs2
' Check and send pushbutton state to Debug Terminal every 1/4 second.

' {s$sTAMP BS2}
' {$PBASIC 2.5}

DO

DEBUG ? IN3
PAUSE 250

LOOP

How ReadPushbuttonState.bs2 Works

The po..Loop in the program repeats every Y second because of the command PAUSE
250. Each time through the po..oop, the command DEBUG ? IN3 sends the value of
1N3 to the Debug Terminal. The value of 1N3 is the state that I/O pin P3 senses at the
instant the DEBUG command is executed.



Chapter #3: Digital Input - Pushbuttons - Page 79

Your Turn — A Pushbutton with a Pull-up Resistor

The circuit you just finished working with has a resistor connected to Vss. This resistor
is called a pull-down resistor because it pulls the voltage at P3 down to Vss (0 volts)
when the button is not pressed. Figure 3-9 shows a pushbutton circuit that uses a pull-up
resistor. This resistor pulls the voltage up to Vdd (5 volts) when the button is not
pressed. The rules are now reversed. When the button is not pressed, IN3 stores the
number 1, and when the button is pressed, IN3 stores the number 0.

/’.\ The 220 Q resistor is used in the pushbutton example circuits to protect the BASIC Stamp
([ 1 ) VO pin. Although it's a good practice for prototyping, in most products, this resistor is
\./ replaced with a wire (since wires cost less than resistors).

V' Modify your circuit as shown in Figure 3-9.

V' Re-run ReadPushbuttonState.bs2.

V' Using the Debug Terminal, verify that IN3 is 1 when the button is not pressed
and 0 when the button is pressed.

Vdd Vin Vss

Vdd- Oooooao

Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
oooog

10 kQ

Figure 3-9
Modified Pushbutton
Circuit

P3
220 Q

|||—o
-
3

<
»
]
R

Active-low vs. Active-high: This pushbutton Figure 3-9 is called active-low because it
sends the BASIC Stamp a low signal (Vss) when the button is active (pressed). The
pushbutton circuit in Figure 3-6 the main activity is active-high because it sends a high
signal (Vdd) when the button is active (pressed).

e




Page 80 - What's a Microcontroller?

ACTIVITY #3: PUSHBUTTON CONTROL OF AN LED CIRCUIT

Figure 3-10 shows a zoomed in view of a pushbutton and LED used to adjust the settings
on a computer monitor. This is just one of many devices that have a pushbutton that you
can press to adjust the device and an LED to show you the device’s status.

Figure 3-10
Button and LED on
a Computer Monitor

The BASIC Stamp can be programmed to make decisions based on what it senses. For
example, it can be programmed to decide to flash the LED on/off ten times per second
when the button is pressed.

Pushbutton and LED Circuit Parts

(1) Pushbutton — normally open

(1) Resistor - 10 k€ (brown-black-orange)
(1) LED — any color

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 470 Q (yellow-violet-brown)
(2) Jumper wires

Building the Pushbutton and LED Circuits

Figure 3-11 shows the pushbutton circuit used in the activity you just finished along with
the LED circuit used in Chapter #2, Activity #2.



Chapter #3: Digital Input - Pushbuttons - Page 81

V' Build the circuit shown in Figure 3-11.

P14
470 Q
3 LED
V;s
Vdd Figure 3-11
Pushbutton and
LED Circuit
P e Y
P3
220 Q
10 kQ
V;s

Programming Pushbutton Control

The BASIC Stamp can be programmed to make decisions using an IF..THEN..ELSE
statement. The example program you are about to run will flash the LED on and off
when the pushbutton is pressed using an IF..THEN..ELSE statement. Each time through
the po..Loop, the IF..THEN..ELSE statement checks the state of the pushbutton and
decides whether or not to flash the LED.

Example Program: PushbuttonControlledLed.bs2

\' Enter PushbuttonControlledLed.bs2 into the BASIC Stamp Editor and run it.

V' Verify that the LED flashes on and off while the pushbutton is pressed and
held down.

\' Verify that the LED does not flash when the pushbutton is not pressed down.

' What's a Microcontroller - PushbuttonControlledLed.bs2
' Check pushbutton state 10 times per second and blink LED when pressed.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DO



Page 82 - What's a Microcontroller?

DEBUG ? IN3

IF (IN3 = 1) THEN
HIGH 14
PAUSE 50
LOW 14
PAUSE 50

ELSE
PAUSE 100

ENDIF

LOOP

How PushbuttonControlledLed.bs2 Works

This program is a modified version of ReadPushbuttonState.bs2 from the previous
activity. The po..Loor and DEBUG ? IN3 commands are the same. The PAUSE 250 was
replaced with an IF..THEN..ELSE statement. When the condition after the IF is true (IN3
= 1), the commands that come after the THEN statement are executed. They will be
executed until the ELSE statement is reached, at which point the program skips to the
ENDIF and moves on. When the condition after the IF is not true (IN3 = 0), the
commands after the ELSE statement are executed until the ENDIF is reached.

You can make a detailed list of what a program should do, to either help you plan the
program or to describe what it does. This kind of list is called pseudo code, and the
example below uses pseudo code to describe how PushbuttonControlledLed.bs2 works.

e Do the commands between here and the Loop statement over and over again
o Display the value of IN3 in the Debug Terminal
o Ifthe value of IN3 is 1, Then
»  Turn the LED on
»  Wait for 1/20 of a second
»  Turn the LED off
v Wait for 1/20 of a second
o Else, (if the value of IN3 is 0)
*  do nothing, but wait for the same amount of time it would have
taken to briefly flash the LED (1/10 of a second).
e Loop



Chapter #3: Digital Input - Pushbuttons - Page 83

Your Turn — Faster/Slower

\' Save the example program under a different name.

V' Modify the program so that the LED flashes twice as fast when you press and
hold the pushbutton.

V' Modify the program so that the LED flashes half as fast when you press and
hold the pushbutton.

ACTIVITY #4: TWO PUSHBUTTONS CONTROLLING TWO LED CIRCUITS

Let’s add a second pushbutton into the project and see how it works. To make things a
little more interesting, let’s also add a second LED circuit and use the second pushbutton
to control it.

Pushbutton and LED Circuit Parts

(2) Pushbuttons — normally open

(2) Resistors - 10 k2 (brown-black-orange)
(2) Resistors — 470 Q (yellow-violet-brown)
(2) Resistors — 220 Q (red-red-brown)

(2) LEDs — any color

Adding a Pushbutton and LED Circuit

Figure 3-12 shows a second LED and pushbutton circuit added to the circuit you tested in
the previous activity.

V' Build the circuit shown in Figure 3-12. If you need help building the circuit
shown in the schematic, use the wiring diagram in Figure 3-13 as a guide.

V' Modify ReadPushbuttonState.bs2 so that it reads IN4 instead of 1n3, and use it
to test your second pushbutton circuit.



Page 84 - What's a Microcontroller?

P15 D AN
470 Q
P14
470 Q
N N
LED LED
V;s Vgs
Figure 3-12
vdd Schematic: Two
Pushbuttons and
T LEDs
P4 & AN\
220 Q I
P3 & MA O
220 Q
10 kQ 10 kQ
's' Vss

P Connecting wires with dots: There are three places where wires intersect in Figure 3-12,

(R but only two dots. Wires only connect if there is a dot at the intersection. The wire that

\&/ connects the P4 pushbutton to the 10 kQ resistor does not connect to the P3 pushbutton
circuit because there is no dot.




Chapter #3: Digital Input - Pushbuttons - Page 85

Figure 3-13
Wiring Diagram:
Two Pushbuttons
and LEDs

Programming Pushbutton Control

In the previous activity, you experimented with making decisions using an
IF..THEN..ELSE statement. There is also such a thing as an IF..ELSEIF..ELSE statement.
It works great for deciding which LED to flash on and off. The next example program
shows how it works.

Example Program: PushbuttonControlOfTwolLeds.bs2

V' Enter PushbuttonControlOfTwoLeds.bs2 into the BASIC Stamp Editor and
run it.

\ Verify that the LED in the circuit connected to P14 flashes on and off while
the pushbutton in the circuit connected to P3 is held down.

\' Also check to make sure the LED in the circuit connected to P15 flashes while
the pushbutton in the circuit connected to P4 is held down

' What's a Microcontroller - PushbuttonControlOfTwoLeds.bs2
' Blink P14 LED if P3 pushbutton is pressed, and blink P15 LED if
' P4 pushbutton is pressed.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DO



Page 86 - What's a Microcontroller?

DEBUG HOME
DEBUG ? IN4
DEBUG ? IN3

IF (IN3 = 1) THEN
HIGH 14
PAUSE 50

ELSEIF (IN4 = 1) THEN
HIGH 15
PAUSE 50

ELSE
PAUSE 50

ENDIF

LOW 14
LOW 15

PAUSE 50

LOOP

How PushbuttonControlOfTwolLeds.bs2 Works

If the display of IN3 and IN4 scrolled down the Debug Terminal as they did in the
previous example, it would be difficult to read. One way to fix this is to always send the
cursor to the top-left position in the Debug Terminal using the HoME formatter:

DEBUG HOME
By sending the cursor to the home position each time through the po..Loop, the
commands:

DEBUG ? IN4
DEBUG ? IN3

display the values of N4 and IN3 in the same part of the Debug Terminal each time.

The po keyword begins the loop in this program:

DO
These commands in the IF statement are the same as the ones in the example program
from the previous activity:

IF (IN3 = 1) THEN
HIGH 14



Chapter #3: Digital Input - Pushbuttons - Page 87

PAUSE 50
This is where the ELSEIF keyword helps. If IN3 is not 1, but IN4 is 1, we want to turn
the LED connected to P15 on instead of the one connected to P14.

ELSEIF (IN4 = 1) THEN
HIGH 15
PAUSE 50

If neither statement is true, we still want to pause for 50 ms without changing the state of
any LED circuits.

ELSE
PAUSE 50

When you’re finished with all the decisions, don’t forget the ENDIF.
ENDIF

It’s time to turn the LEDs off and pause again. You could try to decide which LED you
turned on and turn it back off. PBASIC commands execute pretty quickly, so why not
just turn them both off and forget about more decision making?

LOW 14
LOW 15

PAUSE 50

The Loop statement sends the program back up to the po statement, and the process of
checking the pushbuttons and changing the states of the LEDs starts all over again.

LOOP

Your Turn —What about Pressing Both Pushbuttons?

The example program has a flaw. Try pressing both pushbuttons at once, and you’ll see
the flaw. You would expect both LEDs to flash on and off, but they don’t because only
one code block in an IF...ELSEIF..ELSE statement gets executed before it skips to the
ENDIF.

Here is how you can fix this problem:

v Save PushbuttonControlOfTwoLeds.bs2 under a new name.
V' Replace this IF statement and code block:

IF (IN3 = 1) THEN



Page 88 - What's a Microcontroller?

HIGH 14
PAUSE 50

with this IF...ELSEIF statement:

IF (IN3 = 1) AND (IN4 = 1) THEN
HIGH 14
HIGH 15
PAUSE 50

ELSEIF (IN3 = 1) THEN
HIGH 14
PAUSE 50

~~ A code block is a group of commands. The IF statement above has a code block with
1 | three commands (HIGH, HIGH, and PAUSE). The ELSEIF statement has a code block
- with two commands (HIGH, PAUSE).

V' Run your modified program and see if it handles both pushbutton and LED
circuits as you would expect.

The AND keyword can be used in an IF..THEN statement to check if more than one
{ 1 ) condition is true. All conditions with AND have to be true for the IF statement to be true.

The OR keyword can also be used to check if at least one of the conditions are true.

You can also modify the program so that the LED that’s flashing stays on for different
amounts of time. For example, you can reduce the Duration of the pause for both
pushbuttons to 10, increase the pause for the P14 LED to 100, and increase the PAUSE
for the P15 LED to 200.

\ Modify the PAUSE commands in the IF and the two ELSEIF statements as
discussed.

V' Run the modified program.

V' Observe the difference in the behavior of each light.

ACTIVITY #5: REACTION TIMER TEST

You are the embedded systems engineer at a video game company. The marketing
department recommends that a circuit to test the player’s reaction time be added to the



Chapter #3: Digital Input - Pushbuttons - Page 89

next hand held game controller. Your next task is to develop a proof of concept for the
reaction timer test.

The solution you will build and test in this activity is an example of how to solve this
problem, but it’s definitely not the only solution. Before continuing, take a moment to
think about how you would design this reaction timer.

Reaction Timer Game Parts

(1) LED - bi-color
(1) Resistor — 470 Q (yellow-violet-brown)

(1) Pushbutton — normally open

(1) Resistor — 10 kQ (brown-black-orange)
(1) Resistor — 220 Q (red-red-brown)

(2) Jumper wires

Building the Reaction Timer Circuit

Figure 3-14 shows a schematic and wiring diagram for a circuit that can be used with the
BASIC Stamp to make a reaction timer game.

V' Build the circuit shown in Figure 3-14.

v Run TestBiColorLED.bs2 from Chapter #2, Activity #5 to test the bi-color
LED circuit and make sure your wiring is correct.

\ If you re-built the pushbutton circuit for this activity, run
ReadPushbuttonState.bs2 from Activity #2 in this chapter to make sure your
pushbutton is working properly.



Page 90 - What's a Microcontroller?

P15 O
1
s Z
¥ Vss
2
P14 D AN ooooo
ooooo
470 Q 00000 _
%%%%% Figure 3-14
Vdd ooooo Reaction
Timer Circuit
-
P3
220 Q
10 kQ
V;s

Programming the Reaction Timer

This next example program will leave the bi-color LED off until the game player presses
and holds the pushbutton. When the pushbutton is held down, the LED will turn red for a
short period of time. When it turns green, the player has to let go of the pushbutton as
fast as he or she can. The time between when the LED turns green and when the
pushbutton is tracked by the program is used as a measure of reaction time.

The example program also demonstrates how polling and counting work. Polling is the
process of checking something over and over again very quickly to see if it has changed.
Counting is the process of adding a number to a variable each time something does (or
does not) happen. In this program, the BASIC Stamp will poll from the time the bi-color
LED turns green until the pushbutton is released. It will wait 1/1000 of a second by using
the command pPAUSE 1. Each time it polls and the pushbutton is not yet released, it will
add 1 to the counting variable named timeCounter. When the pushbutton is released,
the program stops polling and sends a message to the Debug Terminal that displays the
value of the timeCounter variable.

Example Program: ReactionTimer.bs2

V' Enter and run ReactionTimer.bs2.
\' Follow the prompts on the Debug Terminal (see Figure 3-15).



1

1

1

1

ti

DE

DO

Chapter #3: Digital Input - Pushbuttons - Page 91

<3 Debug Terminal #1 =] 3]
Cam Port: Baud Rate: Parit
COM1 = 9E00 = Mone 'I
D ata Bits: Flow Cantral: @ T [ DTR [ ATS
5 Il |0 Tl @ A% @DSR @CTs
1=

i

Press and hold pushbutton.

to make light turn red.

When light turns green,
go as fast as you can.

Your time was 735 ms.

To play again, hold the
button down again.

let

Ll

Copte. | Mecres. | Pawe | Cear | i

3

| = echoon

What's a Microcontroller -

ReactionTimer.bs2

Figure 3-15

Debug Terminal
Reaction Timer Game
Instructions

Test reaction time with a pushbutton and a bi-color LED.

{$sTAMP BS
{$PBASIC 2

meCounter

BUG "Press

"to make light turn red.",

"When
"go as

DO

LOOP UNTIL IN3

LOW 14
HIGH 15

PAUSE 1000

HIGH 14
LOW 15

2}

-5

VAR Word

and hold pushbutton.", CR,

light turns green, let",

[}
=

timeCounter = 0

CR, CR,
CR,
fast as you can.", CR, CR

Declare variable to store time.

Display reaction instructions.

Begin main loop.

Nested loop repeats...
until pushbutton press.

Bi-color LED red.

Delay 1 second.

Bi-color LED green.

Set timeCounter to zero.



Page 92 - What's a Microcontroller?

DO ' Nested loop, count time...

PAUSE 1
timeCounter = timeCounter + 1

LOOP UNTIL IN3 = 0 ' until pushbutton is released.
LOW 14 ' Bi-color LED off.
DEBUG "Your time was ", DEC timeCounter, ' Display time measurement.
"ms.", CR, CR,
"To play again, hold the ", CR, ' Play again instructions.
"button down again.", CR, CR
LOOP ' Back to "Begin main loop".

How ReactionTimer.bs2 Works

Since the program will have to keep track of the number of times the pushbutton was
polled, a variable called timeCounter is declared.

timeCounter VAR Word ' Declare variable to store time.

(R Variables initialize to zero: When a variable is declared in PBASIC, its value is
\-'f automatically zero until a command sets it to a new value.

The pEBUG commands contain instructions for the player of the game.

DEBUG "Press and hold pushbutton.", CR,
"to make light turn red.", CR, CR,
"When light turns green, let", CR,
"go as fast as you can.", CR, CR

DO..LOOP statements can be nested. In other words, you can put one DO..LOOP inside
another.

DO ' Begin main loop.
DO ' Nested loop repeats...
LOOP UNTIL IN3 =1 ' until pushbutton press.

' Rest of program was here.

LOOP ' Back to "Begin main loop".



Chapter #3: Digital Input - Pushbuttons - Page 93

The inner po..Loop deserves a closer look. A Do..LoOP can use a condition to decide
whether or not to break out of the loop and move on to more commands that come
afterwards. This Do..LoopP will repeat itself as long as the button is not pressed (IN3 =
0). The po..Loop will execute over and over again, until IN3 = 1. Then, the program
moves on to the next command after the Loop UNTIL statement. This is an example of
polling. The po..LooP UNTIL polls until the pushbutton is pressed.

DO ' Nested loop repeats...
LOOP UNTIL IN3 = 1 ' until pushbutton press.

The commands that come immediately after the LooP UNTIL statement turn the bi-color
LED red, delay for one second, then turn it green.

LOW 14 ' Bi-color LED red.
HIGH 15

PAUSE 1000 ' Delay 1 second.
HIGH 14 ' Bi-color LED green.
LOW 15

As soon as the bi-color LED turns green, it’s time to start counting to track how long
until the player releases the button. The timeCounter variable is set to zero, then
another Do..LoOP with an UNTIL condition starts repeating itself. It repeats itself until the
player releases the button (IN3 = 0). Each time through the loop, the BASIC Stamp
delays for 1 ms using PAUSE 1, and it also adds 1 to the value of the timeCounter
variable.

timeCounter = 0 ' Set timeCounter to zero.
DO ' Nested loop, count time...

PAUSE 1
timeCounter = timeCounter + 1

LOOP UNTIL IN3 = 0 ' until pushbutton is released.

The bi-color LED is turned off.
LOW 14

The results are displayed in the Debug Terminal.

DEBUG "Your time was ", DEC timeCounter,
" ms.", CR, CR,
"To play again, hold the ", CR,



Page 94 - What's a Microcontroller?

"button down again.", CR, CR

The last statement in the program is Loop, which sends the program back to the very first
Do statement.

Your Turn — Revising the Design

The marketing department gave your prototype to some game testers. When the game
testers were done, the marketing department came back to you with an itemized list of
three problems that have to be fixed before your prototype can be built into the game
controller.

V' Save ReactionTimer.bs2 under a new name (like
ReactionTimerYourTurn.bs2).

The “itemized list” of problems and their solutions are discussed below.

ltem-1

When a player holds the button for 30 seconds, his score is actually 14000 ms, a
measurement of 14 seconds. Thishasto be fixed!

It turns out that executing the loop itself along with adding one to the timeCounter
variable takes about 1 ms without the PAUSE 1 command. This is called code overhead,
and it’s the amount of time it takes for the BASIC Stamp to execute the commands. A
quick fix that will improve the accuracy is to simply comment out the PAUSE 1 command
by deleting it or adding an apostrophe to the left of it.

' PAUSE 1

\ Try commenting PAUSE 1 and test to see how accurate the program is.

Instead of commenting the delay, another way you can fix the program is to multiply
your result by two. For example, just before the DEBUG command that displays the
number of ms, you can insert a command that multiplies the result by two:

timeCounter = timeCounter * 2 ' <- Add this
DEBUG "Your time was ", DEC timeCounter, " ms.", CR, CR

V' Uncomment the PaUSE command by deleting the apostrophe, and try the
multiply by two solution instead.



Chapter #3: Digital Input - Pushbuttons - Page 95

For precision, you can use the */ operator to multiply by a value with a fraction to make
your answer more precise. The */ operator is not hard to use; here’s how:

1) Place the value or variable you want to multiply by a fractional value before the */
operator.

2) Take the fractional value that you want to use and multiply it by 256.
3) Round off to get rid of anything to the right of the decimal point.

4) Place that value after the */ operator.

’@' Example: Let's say you want to multiply the timeCounter variable by 3.69.

1) Start by placing timeCounter to the left of the */ operator:
timeCounter = timeCounter */

2) Multiply your fractional value by 256: 3.69 X 256 = 944.64.

3) Round off: 944.64 = 945.

4) Place that value to the right of the */ operator:
timeCounter = timeCounter */ 945

ltem-2

Player s soon figure out that the delay from red to green is 1 second. After playing it
several times, they get better at predicting when to let go, and their score no longer
reflectstheir truereaction time.

The BASIC Stamp has a rRanDoM command. Here is how to modify your code for a
random number:

\/

At the beginning of your code, add a declaration for a new variable called
value, and set it to 23. The value 23 is called the seed because it starts the
pseudo random number sequence.

timeCounter VAR Word

value VAR Byte ' <- Add this
value = 23 ' <- Add this

Just before the pause command, use the RaNDOM command to give value a
new “random” value from the pseudo random sequence that started with 23.

RANDOM value ' <- Add this.
DEBUG "Delay time ", ? 1000 + value, CR ' <- Add this.



Page 96 - What's a Microcontroller?

V' Modify the PausE command so that the random value is added to 1000 (for
one second) in the PAUSE command’s Duration argument.

PAUSE 1000 + value ' <- Modify this.

What’s an algorithm? An algorithm is a sequence of mathematical operations.

— What's pseudo random? Pseudo random means that it seems random, but it isn’t really.
(D Each time you start the program over again, you will get the same sequence of values.

. /
-

What's a seed? A seed is a value that is used to start the pseudo random sequence. If you
use a different value (change value from 23 to some other number), you will get a different
pseudo random sequence.

ltem-3

A player that lets go of the button before the light turns green gets an unreasonably
good score (1 ms). Your microcontroller needsto figureout if a player ischeating.

Pseudo code was introduced near the end of Activity #3 in this chapter. Here is some
pseudo code to help you apply an IF..THEN..ELSE statement to solve the problem.

o Ifthe value of timeCounter equals 1
o Display a message telling the player he or she has to wait until after the
light turns green to let go of the button.
o Else, (if the value of timeCounter is greater than 1)
o Display the value of timeCounter (just like in ReactionTimer.bs2) time
in ms.

\' Modify your program by implementing this pseudo code in PBASIC to fix the
cheating player problem.



Chapter #3: Digital Input - Pushbuttons - Page 97

SUMMARY

This chapter introduced the pushbutton and common pushbutton circuits. This chapter
also introduced how to build and test a pushbutton circuit and how to use the BASIC
Stamp to read the state of one or more pushbuttons. The BASIC Stamp was programmed
to make decisions based on the state(s) of the pushbutton(s) and this information was
used to control LED(s). A reaction timer game was built using these concepts. In
addition to controlling LEDs, the BASIC Stamp was programmed to poll a pushbutton
and take time measurements.

Reading individual pushbutton circuits using the special 1/O variables built into the
BASIC Stamp (IN3, IN4, etc.) was introduced. Making decisions based on these values
using IF..THEN..ELSE statements, IF..ELSEIF..ELSE statements, and code blocks were
also introduced. For evaluating more than one condition, the AND and OR operators were
introduced. Adding a condition to a po..LooP using the uNTIL keyword was introduced
along with nesting Do..LooP code blocks.

Questions

1. What is the difference between sending and receiving HIGH and Low signals
using the BASIC Stamp?

2. What does “normally open” mean in regards to a pushbutton?

3. What happens between the terminals of a normally open pushbutton when you
press it?

4. What is the value of IN3 when a pushbutton connects it to Vdd? What is the
value of IN3 when a pushbutton connects it to Vss?

5. What does the command bEBUG 2 1IN3 do?

6. What kind of code blocks can be used for making decisions based on the value
of one or more pushbuttons?

7. What does the HoME formatter do in the statement DEBUG HOME?

Exercises

1. Explain how to modify ReadPushbuttonState.bs2 on page 77 so that it reads the
pushbutton every second instead of every %4 second.

2. Explain how to modify ReadPushbuttonState.bs2 so that it reads a normally open
pushbutton circuit with a pull-up resistor connected to I/O pin P6.



Page 98

Project

1.

- What's a Microcontroller?

Modify ReactionTimer.bs2 so that it is a two player game. Add a second button
wired to P4 for the second player.

Solutions

Ql.
Q2.
Q3.
Q4.
Q5.
Q6.
Q7.

El.

E2.

PI1.

Sending uses the BASIC Stamp I/O pin as an output, whereas receiving uses the
I/O pin as an input.

Normally open means the pushbutton's normal state (not pressed) forms an open
circuit.

When pressed, the gap between the terminals is bridged by a conductive metal.
Current can then flow through the pushbutton.

IN3 = 1 when pushbutton connects it to Vdd. N3 = 0 when pushbutton connects
it to Vss.

DEBUG ? IN3 sends the value of IN3 to the Debug Terminal.
IF...THEN...ELSE and IF...ELSEIF...ELSE.

The HOME formatter sends the cursor to the top left position in the Debug
Terminal.

The po. . .LooP in the program repeats every 4 second because of the command
PAUSE 250. To repeat every second, change the PAUSE 250 (250ms = 0.25 s =
Y4 s), to PAUSE 1000 (1000ms = 1 s).

DO
DEBUG ? IN3
PAUSE 1000
LOOP

Replace 1N3 with IN6, to read I/O pin P6. The program only displays the
pushbutton state, and does not use the value to make decisions, it does not matter
whether the resistor is a pull-up or a pull-down. The DEBUG statement will
display the button state either way.

DO
DEBUG ? IN6
PAUSE 250
LOOP

First, a button was added for the second player, wired to Stamp I/O pin P4. The
schematic is based on Figure 3-14 on page 90.



Chapter #3: Digital Input - Pushbuttons - Page 99

Vdd Vdd

P15
P e Y P e Y
P4 P3

220 Q 220 Q
10 kQ 10 kQ

A\
A\Y

P14

470 Q = =
Vss Vss

Snippets from the solution program are included below, but keep in mind
solutions may be coded a variety of different ways. However, most solutions
will include the following modifications:

Use two variables to keep track of two player's times.
timeCounterA VAR Word ' Time score of player A
timeCounterB VAR Word ' Time score of player B

Change instructions to reflect two pushbuttons:
DEBUG "Press and hold pushbuttons", CR,
DEBUG "buttons down again.", CR, CR

Wait for both buttons to be pressed before turning LED red, by using the anD

operator.
LOOP UNTIL (IN3 = 1) AND (IN4 = 1)

Wait for both buttons to be released to end timing, again using the AND operator.
LOOP UNTIL (IN3 = 0) AND (IN4 = 0)

Add logic to decide which player's time is incremented.
IF (IN3 = 1) THEN

timeCounterA = timeCounterA + 1

ENDIF

IF (IN4 = 1) THEN

timeCounterB = timeCounterB + 1

ENDIF

Change time display to show times of both players.
DEBUG "Player A Time: ", DEC timeCounterA, " ms. ", CR
DEBUG "Player B Time: ", DEC timeCounterB, " ms. ", CR, CR

Add logic to show which player had the faster reaction time.
IF (timeCounterA < timeCounterB) THEN



Page 100 - What's a Microcontroller?

DEBUG "Player A is the winner!", CR
ELSEIF (timeCounterB < timeCounterA) THEN

DEBUG "Player B is the winner!", CR
ELSE

DEBUG "It's a tie!", CR

ENDIF

The complete solution is shown below.

' What's a Microcontroller - ChO3Prj03 TwoPlayerReactionTimer.bs2
' Test reaction time with a pushbutton and a bi-color LED.

' Add a second player with a second pushbutton. Both players

' play at once using the same LED. Quickest to release wins.

' Pin P3: Player A Pushbutton, Active High

' Pin P4: Player B Pushbutton, Active High

' {$sTAMP BS2}
' {$PBASIC 2.5}

timeCounterA VAR Word ' Time score of player A
timeCounterB VAR Word ! Time score of player B
DEBUG "Press and hold pushbuttons", CR, ' Display reaction
' instructions.
"to make light turn red.", CR, CR,
"When light turns green, let", CR,
"go as fast as you can.", CR, CR
DO ' Begin main loop.
DO ' Loop until both press
' Nothing

LOOP UNTIL (IN3 = 1) AND (IN4 = 1)

LOW 14 ' Bi-color LED red.
HIGH 15
PAUSE 1000 ' Delay 1 second.
HIGH 14 ' Bi-color LED green.
LOW 15
timeCounterA = 0 ' Set timeCounters to zero
timeCounterB = 0
DO
PAUSE 1

IF (IN3 = 1) THEN ' If button is still down,



timeCounterA = timeCounte
ENDIF
IF (IN4 = 1) THEN

timeCounterB = timeCounterB + 1
ENDIF
LOOP UNTIL (IN3 = 0) AND (IN4 = 0)
LOW 14
DEBUG "Player A Time: ", DEC timeCounterA,
DEBUG "Player B Time: ", DEC timeCounterB,
IF (timeCounterA < timeCounterB) THEN
DEBUG "Player A is the winner!", CR
ELSEIF (timeCounterB < timeCounterA) THEN
DEBUG "Player B is the winner!", CR
ELSE
DEBUG "It's a tie!", CR
ENDIF
DEBUG CR

Chapter #3: Digital Input - Pushbuttons - Page 101

YA + 1

DEBUG "To play again, hold the ", CR

DEBUG "buttons down again.",

LOOP

CR, CR

1

1

1

1

1

increment counter

Loop until both buttons
released.

Bi-color LED off.

"ms. ", CR
"ms. ", CR, CR

A & B times are equal

Play again instructions.

Back to "Begin main



Page 102 - What's a Microcontroller?

Further Investigation

The resources listed here are available for free download from the Parallax web site and
are also included on the Parallax CD.

“BASIC Stamp Manual”, Users Manual, Version 2.0c, Parallax Inc., 2000
The BASIC Stamp Manual has more examples you can try and information that
further explains the following: The pEBUG HOME and cLs formatters, input pin
variables such IN3, IN4, and the RANDOM command.

“Basic Analog and Digital”, Student Guide, Version 2.0, Parallax Inc., 2003
Basic Analog and Digital explains binary counting using pushbuttons. It also
uses pushbuttons to introduce a technique for transmitting numbers from one
system to another called synchronous serial communication.

“BASIC Stamp Editor Help File”, PBASIC 2.5 Version 2.0 Parallax Inc., 2003

The PBASIC 2.5 Help File has information on the wHILE and UNTIL conditions
used with po..L.oop, and information on nesting and IF..THEN..ELSE code blocks,
which is new to PBASIC 2.5. You can find this information by clicking the book
icon on your BASIC Stamp Editor task bar, then selecting PBASIC Reference
from the menu in the left sidebar window. This will open the PBASIC Command
Reference alphabetical listing in the main window. Detailed information can be
found by clicking on each command.



Chapter #4: Controlling Motion - Page 103

Chapter #4. Controlling Motion

MICROCONTROLLED MOTION

Microcontrollers make sure things move to the right place all around you every day. If
you have an inkjet printer, the print head that goes back and forth across the page as it
prints is moved by a stepper motor that is controlled by a microcontroller. The automatic
grocery store doors that you walk through are controlled by microcontrollers, and the
automatic eject feature in your VCR or DVD player is also controlled by a
microcontroller.

ON/OFF SIGNALS AND MOTOR MOTION

Just about all microcontrolled motors receive sequences of high and low signals similar
to the ones you’ve been sending to LEDs. The difference is that the microcontroller has
to send these signals at rates that are usually faster than the eye can detect. The timing
and number of separate high/low signals differ from one motor to the next, but they can
all be controlled by microcontrollers capable of delivering the high/low signals.

Some of these motors require lots of circuitry to help the microcontroller make them
work. Other motors require extra mechanical parts to make them work right in machines.
Of all the different types of motors to start with, the hobby servo that you will experiment
with in this chapter is probably the simplest. As you will soon see, it is easy to control
with the BASIC Stamp, requires little or no additional circuitry, and has a mechanical
output that is easy to connect to things to make them move.

ACTIVITY #1: CONNECTING AND TESTING THE SERVO

In this activity, you will connect a servo to a power supply and the BASIC Stamp. You
will then verify that the servo is functioning properly by programming the BASIC Stamp
to send signals to the servo that will control the servo’s position.

Introducing the Servo

Figure 4-1 shows a drawing of a Parallax Standard Servo. The plug (1) is used to connect
the servo to a power source (Vdd and Vss) and a signal source (a BASIC Stamp 1/O pin).
The cable (2) conducts Vdd, Vss and the signal line from the plug into the servo. The
horn (3) is the part of the servo that looks like a four-pointed star. When the servo is
running, the horn is the moving part that the BASIC Stamp controls. The case (4)



Page 104 - What's a Microcontroller?

contains the servo’s control circuits, a DC motor, and gears. These parts work together to
take high/low signals from the BASIC Stamp and convert them into positions held by the
servo horn.

Figure 4-1
The Parallax
Standard Servo

(1) Plug
(2) Cable
(3) Horn
(4) Case

PARALLAX

www.parallax.com

CAUTION: use only a Parallax Standard Servo for the activities in this text!
\ ! | Do not substitute a Parallax Continuous Rotation Servo, as it may be quickly damaged by
v some of the circuits shown below. Likewise, we do not recommend using other brands or

models of hobby servos, which may not be rated for use with the voltage in these circuits.

Servo and LED Circuit Parts

An LED circuit can be used to monitor the control signal the BASIC Stamp sends to the
servo. Keep in mind that the LED circuit is not required to help the servo operate. It is
just there to help see what’s going on with the control signals.

(1) Parallax Standard Servo



Chapter #4: Controlling Motion - Page 105

(1) Resistor — 470 Q (yellow-violet-brown)
(1) LED — any color

Building the Servo and LED Circuits

It’s really important to be careful when connecting a servo to your BASIC Stamp. How
you connect your servo depends on whether you are using the Board of Education Rev B,
Rev C, or the HomeWork Board. If you are using the Board of Education, but you’re not
sure which Rev it is, Figure 4-2 shows an example of the Rev label on the Board of
Education Rev B.

° | Red Board of
o Black

15 14 13 12
I ey | Figure 4-2

Education

X4 X5 RevB €«—— Rev Label
Vdd Vin Vss

X

V' Examine the labeling on your carrier board and figure out whether you have a
HomeWork Board or a Board of Education Rev B, or Rev C.

V' Skip to instructions for connecting the servo to the BASIC Stamp on your
carrier board:

o Page 105 — Board of Education Rev C
o Page 108 — BASIC Stamp HomeWork Board
o Page 111 — Board of Education Rev B

Board of Education Rev C

Figure 4-3 shows the schematic of the circuit you will build on the Board of Education
Rev C.



Page 106 - What's a Microcontroller?

P14
470 Q
\\: LED
Vss Figure 4-3
Vdd Servo and LED
Indicator
Schematic for
P14 D White Board of Education
Rev C
Red @) Servo
Black

<

SS

\' Turn off the power as shown in Figure 4-4.

Reset Figure 4-4
l:l Disconnect
Power
0 1 2
‘_

Figure 4-5 shows the servo header on the Board of Education Rev C. This is where you
will plug in your servo. This board features a jumper that you can use to connect the
servo’s power supply to either Vin or Vdd. The jumper is the removable black
rectangular piece right between the two servo headers.

V' Set the jumper to Vdd as shown in Figure 4-5. This involves lifting the
rectangular jumper up off of the pins it is currently on, and replacing it on the
two pins closest to the Vdd label.



Chapter #4: Controlling Motion - Page 107

15 14 \Vdd 13 12

X4 X5

Vin

Figure 4-5
@ Servo
Red Header
Black Jumper

Set to vVdd

The jumper allows you to choose the power supply (Vin or Vdd) for the Parallax
Standard Servo. If you are using a 9 V battery, it is best to set it to Vdd. Either setting will
work if you are using a 6 V battery pack. Use only Vdd if you are using a DC supply that
plugs into an AC outlet. Before using a DC supply, make sure to check the specifications for
acceptable DC supplies listed in Appendix D: Batteries and Power Supplies.

Build the circuit shown in Figure 4-6.
Make sure you did not plug the servo in upside-down. The white, red and
black wires should line up as shown in the figure.

White —»
Red —»
Black —»
X]
pisff| COCOO ohoo Figure 4-6
Pl COOOD — MOMOO Servo and LED
P3| OOOOO ooooo .
P*W| ooooo ooooo Indicator on Board
P11 ooooo ooooo of Education Rev C
pioM| DOO0OO ooooo
bg ooooo ooooo
o8 ooooo ooooo
b7 ooooo ooooo
ooooo ooooo
Eg ooooo| |ooooo PARALLAX
-2 W coooo| |ooooo
P3 oooog Oooooao www.parallax.com
0 ooooo ooooo
o ooooo| |ooooo
00 ooooo ooooo
2 00000 ooooo




Page 108 - What's a Microcontroller?
Up until now, you have been using the 3-position switch in the 1 position. Now, you will
move it to the 2 position to turn on the power to the servo header.

\' Supply power to the servo header by adjusting the 3-position switch as shown
in Figure 4-7. Your servo may move a bit when you connect the power.

Reset

Figure 4-7

Power turned on to
(| Board of Education

o 1 2 and Servo Header

v Move on to Programming Servo Control on page 113.

BASIC Stamp HomeWork Board

If you are connecting your servo to a HomeWork Board, you will need these extra parts:

(1) 3-pin male/male header (shown in Figure 4-8).
(4) Jumper wires

Figure 4-8
HomeWork Board or Board of
Education — Extra Parts

(1) 3-pin male/male header (top)

Figure 4-9 shows the schematic of the servo and LED circuits on the HomeWork Board.
The instructions that come after this figure will show you how to safely build this circuit.

WARNING

Use only a 9 V battery when your Parallax Standard Servo is connected to the BASIC
Stamp HomeWork Board. Do not use any kind of DC supply or “battery replacer” that
™ plugs into an AC outlet. Improper use of these devices can cause the activity not to
W work, or even permanently damage the servo.

For best results, make sure your battery is new. If you are using a rechargeable battery,
make sure it is freshly recharged. It should also be rated for 100 mAh (milliamp hours) or
more. See Appendix D: Batteries and Power Supplies for more information.




Chapter #4: Controlling Motion - Page 109

P14
470 Q

Vin Figure 4-9

Schematic for Servo and LED Indicator on

HomeWork Board

P14 D White
Red

O Servo
Black &/

V' Disconnect your 9 V battery from your HomeWork Board.
V' Build the LED indicator and servo header circuit shown in Figure 4-10.

S

<
7]



Page 110 - What's a Microcontroller?

< <2 2 <2

X2

qQ Figure 4-10
\ LED Indicator
oooQol JoNogo and Servo
oooON»| |ogo Header Circuits
oooo I (m)
ooooo [74w &) on HomeWork
ooooo [m]u]?{u] Board
ooooo ooooo
ooooo ooooo
ooooo ooooo PARALLAX
0oooo| |(Dooog
ooooo ooooo www.parallax.com
ooooo ooooo
ooooo ooooo
ooooo ooooo
ooooo ooooo
ooooo ooooo

Connect the servo to the servo header as shown in Figure 4-11.

Make sure that the colors on the servo’s cable align properly with the colors
labeled in the picture.

Double check your wiring.

Reconnect your 9 V battery to your HomeWork Board. The servo may move a
bit when you make the connection.



Chapter #4: Controlling Motion - Page 111

=)
oo

Figure 4-11
Connecting Servo to
Servo Header on a
HomeWork Board

PARALLAX

www.parallax.com

OOo0oOoooooooooooon

Ooooooooooooag

Oooooooooood

v Move on to Programming Servo Control on page 113.

Board of Education Rev B

Figure 4-12 shows the schematic for the servo and LED circuits on the Board of
Education Rev B. The instructions that come after this figure will show you how to
safely build this circuit on your Board of Education Rev B.

WARNING

Use only a 9 V battery when your Parallax Standard Servo is connected to the Board

of Education Rev B. Do not use any kind of DC supply or “battery replacer” that
( t ) plugsinto an AC outlet. Improper use of these devices can cause the activity not to
\é) work, or even permanently damage the servo.

For best results, make sure your battery is new. If you are using a rechargeable battery,
make sure it is freshly recharged. It should also be rated for 100 mAh (milliamp hours) or
more. See Appendix D: Batteries and Power Supplies for more information.




Page 112 - What's a Microcontroller?

P14
470 Q
\\: LED
Vgs
Figure 4-12
Vin Schematic for Servo
and LED Indicator on
) Board of Education
P14 D White Rev B
— i Servo
Black
V;s

V' Disconnect your battery or any other power supply from your board.
V' Build the LED circuit shown in Figure 4-12.
V' Connect the servo to the servo header as shown in Figure 4-13.



Chapter #4: Controlling Motion - Page 113

Red —>»
Black —»
vdd i

X m s Figure 4-13
P15 %DDDD EE“EE Connecting Servo to
P14 —
p1sM| O ooooo Servo Header on the

g gooog Board of Education
P°dl o 00000
pioM| C ooooo Rev B.
bo O ooooo
i O ooooo
by O ooooo
O ooooo

Eg 0 lalalals PARALLAX
ps [/ O 00000
P3 O ooooao www.parallax.com
0 O ooooo
> O | _|ooooo
50 O ooooo

o) O ooooo

\' Make sure that the colors on the servo’s cable align properly with the colors
labeled in the picture.

V' Connect a 9 V battery to Board of Education Rev B. The servo may move a
little bit when you make the connection.

Programming Servo Control

A servo is controlled by very brief high signals. These high signals are sent over and
over again every 20 ms. The high signals last anywhere between 1 and 2 ms. The
puLsouT command can be used to send a pulse (a very brief high signal) using a BASIC
Stamp I/O pin. Here is the command syntax for the puLsouT command:

PULSOUT Pin, Duration

As with HIGH and Low, the Pin argument is a number that tells the BASIC Stamp which
I/O pin the signal is sent on. The Duration argument is not milliseconds, like it is in the
pausSE command. For the BASIC Stamp 2, the Duration is the number of 2-millionth-
of-a-second (Us) time durations that you want the high signal to last.



Page 114 -

What's a Microcontroller?

A millionth of a second is called a microsecond. The Greek letter p is used in place of the
word micro and the letter s is used in place of second. This is handy for writing and taking
notes, because instead of writing 2 microseconds, you can write 2 ps.

Reminder: one thousandth of a second is called a millisecond, and is abbreviated ms.

Fact: 1 ms = 1000 ps. In other words, you can fit one thousand millionths of a second into
one thousandth of a second.

The next example program will use the PuLsouT command to deliver pulses that instruct
the servo on where to position its horn. FOR..NEXT loops are used to deliver a certain
number of pulses, which cause the servo to hold a position for a certain amount of time.

Example Program: ServoTest.bs2

ServoTest.bs2 will make the servo’s horn start at somewhere in the neighborhood of 10
o’clock and hold that position for about three seconds. Then, the program will move the
servo horn clockwise, to about the 2 o’clock position for about three seconds. After that,
the servo will hold its “center position”, which is about 12 o’clock, for about three

seconds.

Figure 4-14
Servo Horn Motion

10 o’clock (left)
2 o’clock (middle)
12 o’clock (right)

What if my servo is different? We recommend that you use a Parallax Standard Servo for
these activities. There are lots of different servos, and many will respond differently to the
signals that TestServo.bs2 sends. Another brand of servo might only rotate to 11 o’clock
then 1 o’clock, or maybe to 9 o’clock and then 3 o’clock. It might even rotate the opposite
direction and start in the clockwise direction before it goes counterclockwise. But if your
servo is rated for use with a 9 V battery, and the motion is easy to observe and consistent, it
will work for these activities. You can modify the example programs to get the servo to
behave the way you want.

Enter ServoTest.bs2 into the BASIC Stamp Editor.
Connect power to your Board of Education or HomeWork Board.
Run the program.



Chapter #4: Controlling Motion - Page 115

V' Observe the servo turns at each of the three steps in the program, and record
where the horn is really pointing.
V' Re-run the program and verify that the LED flickers dimly. It should be
brightest when the BASIC Stamp sends the 10 o’clock signal and dimmest
when the BASIC Stamp sends the 2 o’clock signal. This is because the LED
circuit is only on for half as long (1 out of 21 ms instead of 2 out of 22 ms). n

' What's a Microcontroller - ServoTest.bs2
' Test the servo at three different position signals.

' {$sTAMP BS2}
' {$PBASIC 2.5}

counter VAR Word
DEBUG "Counterclockwise 10 o'clock", CR
FOR counter = 1 TO 150

PULSOUT 14, 1000

PAUSE 20
NEXT
DEBUG "Clockwise 2 o'clock", CR
FOR counter = 1 TO 150

PULSOUT 14, 500

PAUSE 20
NEXT
DEBUG "Center 12 o'clock", CR
FOR counter = 1 TO 150

PULSOUT 14, 750

PAUSE 20
NEXT
DEBUG "All done."

END

How ServoTest.bs2 Works

The first For..NEXT loop delivers 150 pulses, each of which lasts 2.0 ms. These pulses
instruct the servo to go to a position that is roughly 10 o’clock if you think about it in
terms of a clock face.

FOR counter = 1 TO 150



Page 116 - What's a Microcontroller?

PULSOUT 14, 1000
PAUSE 20
NEXT

/

o
( i | PULSOUT 14, 1000 sends a pulse that lasts 1000 x 2 us. That’s 2000 ps or 2 ms.

Figure 4-15 is called a timing diagram. It shows a picture of the high and low signals and
how long they last. The timing diagram does not show how many pulses are delivered,
but it does give you information about how long the high and low signals last. Each
pulse (high signal) lasts for 2.0 ms. Each pulse is separated by a 20 ms delay while the
signal is low.

Figure 4-15
_’| |<_ 2.0ms Timing Diagram for
vdd (5 V) = 2.0 ms Pulses Every
20 ms

Servo horn in 10

Vss (0 V) o’clock position.

[e——— 20ms ——»

The second For..NEXT loop delivers 150 pulses, but this time, each pulse only lasts 1.0
ms. This instructs the servo to turn to the 2 o’clock position for about 3.15 seconds.

FOR COUNTER = 1 TO 150
PULSOUT 14, 500
PAUSE 20

NEXT

f

o™\
( i | PULSOUT 14, 500 sends a pulse that lasts 500 x 2 us. That's 1000 ps or 1 ms.

Figure 4-15 shows the timing diagram for this pulse train. The pauses between pulses
still last 20 ms.



Chapter #4: Controlling Motion - Page 117

_>| |<_ 1.0ms Flgure 4-16
Timing Diagram for 1.0

vdd (5 V) L ms Pulses Every 20 ms

Servo horn in 2 o’clock
Vss (0 V) position.

The last For.NEXT loop delivers 150 pulses, each of which lasts 1.5 ms. This instructs
the servo to go to its center position (12 o’clock) for about 3.23 seconds.

FOR counter = 1 TO 150
PULSOUT 14, 750
PAUSE 20

NEXT

A
( i | PULSOUT 14, 750 sends a pulse that lasts 750 x 2 us. That's 1500 ps or 1.5 ms.

Figure 4-17 shows the timing diagram for these pulses. While the low time is still 20
ms, the pulse now lasts for 1.5 ms.

Figure 4-17

Timing Diagram for
1.5 ms Pulses Every
20 ms

| e 15ms

vdd (5 V)

Servo horn isin 12
Vss (0 V) o’clock position.

e 2ome ——— ]

Do the Math

If you want to convert time from milliseconds to a Duration you can use for PULSOUT,
use this equation.

Duration = number of ms <500



Page 118 - What's a Microcontroller?

For example, if you didn’t already know that the puLsouT argument for 1.5 ms is 750,
here is how you could calculate it.

Duration =1.5x500
=750

You can also figure out the Duration of a mystery PULSoUT command using this
equation.

Duration

number of ms =
500

For example, if you see the command puLSouT 14, 850, how long does that pulse
really last?

number of ms = gms
500

=1.7ms

Your Turn — Adjusting Position and Hold Time

The number of times each FOR.NEXT loop repeats is what controls how long the servo
stays in a given position. The value of the PuLsouT command’s Duration argument
controls where the servo turns to. It’s important to experiment with changing these
values to be sure how they work before moving on to the next experiment.

V' Save ServoTest.bs2 as ServoTestYourTurn.bs2.
V' Modify all the FOR. . .NEXT loops so that they execute half as many times as
the original program:

FOR counter = 1 to 75

v Run the modified program and verify that the servo holds each position for
half as long.

\ Modify all the For. . .NEXT loops so that they execute twice as many times as
the original program:

FOR counter = 1 to 300
V' Run the modified program and verify that the servo holds each position for

twice as long.
V' Modify the PuLSOUT command in the first loop so that it reads:



Chapter #4: Controlling Motion - Page 119

PULSOUT 14,850

V' Modify the PuLSouT command in the second loop so that it reads:

PULSOUT 14,650

V' Run the modified program, and explain the differences in the positions the
servo turns to and holds.

ACTIVITY #2: CONTROLLING POSITION WITH YOUR COMPUTER

Factory automation often involves microcontrollers communicating with larger
computers. The microcontrollers read sensors and transmit that data to the main
computer. The main computer interprets and analyzes the sensor data, then sends position
information back to the microcontroller. The microcontroller might then update a
conveyer belt’s speed, or a sorter’s position, or some other mechanical, motor controlled
task.

You can use the Debug Terminal to send messages from your computer to the BASIC
Stamp as shown in Figure 4-18. The BASIC Stamp has to be programmed to listen for
the messages you send using the Debug Terminal, and it also has to store the data you
send in one or more variables.

4 Debug Terminal #1 1ol x| .
Com Port Baud Rate: Parity: Flg u re 4-18
coMt 5] fseon ] [Noee [ Sending Messages to
Data Bits FlowContol g 1w [~ DTR [~ RTS
Fo Jor =] e 5 om e the BASIC Stamp

Click the white field
above the message
display pane and type
your message. A copy
of the message you
entered appears in the
lower windowpane. This
S | Masos | Pawe | Cex | ce | copy is called an echo.

In this activity, you will program the BASIC Stamp to receive two values from the Debug
Terminal:

1. The number of pulses to send to the servo
2. The puration value used by the PULSOUT command



Page 120 - What's a Microcontroller?

You will also program the BASIC Stamp to use these values to control the servo.

Parts and Circuit

Same as Activity #1

Programming the BASIC Stamp to Receive Messages from Debug

Programming the BASIC Stamp to send messages to the Debug Terminal is done using
the bEBuG command. Programming the BASIC Stamp to receive messages from the
Debug Terminal is done using the bEBuGIN command. When using this command, you
also have to declare one or more variables for the BASIC Stamp to store the information
it receives. Here is an example of a variable you can declare for the BASIC Stamp to
store a value:

pulses VAR Word

Later in the program, you can use this value to store a number received by the DEBUGIN
command:

DEBUGIN DEC pulses

When the BASIC Stamp receives a numeric value from the Debug Terminal, it will store
it in the pulses variable. The pEc formatter tells the DEBUGIN command that the
characters you are sending will be digits that form a decimal number. As soon as you hit
the carriage return, the BASIC Stamp will store the digits it received in the pulses
variable as a decimal number, then move on.

Although it is not included in the example program, you can add a line to verify that the
message was processed by the BASIC Stamp.

DEBUG CR, "You sent the value: ", DEC pulses

Example Program: ServoControlWithDebug.bs2

Figure 4-19 shows a close-up view of the Transmit Windowpane in the Debug Terminal.
Your Transmit Windowpane may be smaller. You can click and drag the separator
between the two panes downward to make the Transmit Windowpane larger. You can
type characters into the Transmit Windowpane to send them to the BASIC Stamp. In this
example, somebody typed in 100, then hit the carriage return, then typed in 850. The
Receive Windowpane displays the “Enter number of pulses:” message sent by the BASIC
Stamp. It also displays an echo of the characters 100 that were typed into the Transmit
Windowpane.



Chapter #4: Controlling Motion - Page 121

D ata Bits: Flaw Contral: @ T< [ OTR [ RTS

E

zl fof =zl e mx @o0sA e Cis Figure 4-19

100
850

= Debug Terminal’s Windowpanes:

_ILI «— Transmit Windowpane
»

«— Receive Windowpane

Echo is when you send a message, and a copy of that message appears in your Receive
Windowpane. You can click the Echo Off checkbox (shown below) to make a checkmark
appear in it. This will make the Debug Terminal stop displaying these echoes.

T

Closs | [ EchoDif

Enter ServoControlWithDebug.bs2 into the BASIC Stamp Editor and run it.

If the Transmit Windowpane is too small, resize it using your mouse to click,
hold, and drag the separator downward. The separator is shown just above the
text message: “Enter number of pulses:” in Figure 4-19.

Click the upper, Transmit Windowpane to place your cursor there for typing
messages.

When the Debug Terminal prompts you to, “Enter number of pulses:”, type the
number 100, then press enter.

When the Debug Terminal prompts you to “Enter PULSOUT duration:” type
the number 850, then press enter.

The PULSOUT Duration should be a number between 500 and 1000. If you enter
numbers outside that range, the servo may try to rotate to a position beyond its own
mechanical limits. Although it will not break the servo, it could shorten the device’s lifespan.

The BASIC Stamp will display the message “Servo is running...” while it is sending
pulses to the servo. When it is done sending pulses to the servo, it will display the
message “Done” for one second. Then, it will prompt you to enter the number of pulses
again. Have fun with it, but make sure to follow the directive in the caution box about
staying between 500 and 1000 for your PuLsouT value.



Page 122 - What's a Microcontroller?

V' Experiment with entering other values between 500 and 1000 for the PULSOUT
Duration and values between 1 and 65534 for the number of pulses.

A
( i | It takes between 40 and 45 pulses to make the servo hold a position for 1 second.

' What's a Microcontroller - ServoControlWithDebug.bs2
' Send messages to the BASIC Stamp to control a servo using
' the Debug Terminal.

' {s$sTAMP BS2}
' {$PBASIC 2.5}

counter Var Word
pulses Var Word
duration Var Word
DO
DEBUG CLS, "Enter number of pulses:", CR

DEBUGIN DEC pulses

DEBUG "Enter PULSOUT duration:", CR
DEBUGIN DEC duration

DEBUG "Servo is running...", CR
FOR counter = 1 TO pulses
PULSOUT 14, duration
PAUSE 20
NEXT

DEBUG "DONE"
PAUSE 1000

LOOP

How ServoControlWithDebug.bs2 Works
Three word variables are declared in this program:
counter Var WORD

pulses Var WORD
duration Var WORD



Chapter #4: Controlling Motion - Page 123

The counter variable is declared for use by a FOR..NEXT loop. See Chapter #2, Activity
#3 for details. The pulses and duration variables are used a couple of different ways.
They are both used to receive and store values sent from the Debug Terminal. The
pulses variable is also used to set the number of repetitions in the FOR..NEXT loop that
delivers pulses to the servo, and the duration variable is used to set the duration for the
PULSOUT command.

The rest of the program is nested inside a Do..L.OOP without a WHILE or UNTIL argument
so that the commands execute over and over again.
DO

' Rest of program not shown.
LOOP

The pEBUG command is used to send you (the “user” of the software) a message to enter
the number of pulses. Then, the DEBUGIN command waits for you to enter digits that
make up the number and press the Enter key on your keyboard. The digits that you enter
are converted to a value that is stored in the pulses variable. This process is repeated
with a second DEBUG and DEBUGIN command that loads a value into the duration
variable too.

DEBUG CLS, "Enter number of pulses:", CR
DEBUGIN DEC pulses

DEBUG "Enter PULSOUT duration:", CR
DEBUGIN DEC duration

After you enter the second value, it’s useful to display a message while the servo is
running so that you don’t try to enter a second value:

DEBUG "Servo is running...", CR

While the servo is running, you can gently try to move the servo horn away from the
position it is holding. The servo resists light pressure applied to the horn.

FOR Counter = StartValue TO EndValue {STEP StepValue}..NEXT

This is the FOR..NEXT loop syntax from the BASIC Stamp Manual. It shows that you need
|1 ) a counter, StartValue and EndValue to control how many times the loop repeats

itself. There is also an optional StepValue if you want to add a number other than 1 to
the value of Counter each time through the loop.




Page 124 - What's a Microcontroller?

As in previous examples, the counter variable is used as an index for the FOR..NEXT
loop. Up until this example, all the FOR..NEXT loops have used constants such as 10 or
150 for Endvalue. In this FOR.NEXT loop, the value of the pulses variable is used to
control the Endvalue of the FOR..NEXT loop. This, in turn, controls how many pulses are
delivered to the servo. The end result is that the pulses variable controls how long the
servo holds a given position. Up until now, constant values such as 500, 750, and 1000
were also used for the PuLsouT command’s Duration argument. Look carefully at this
FOR..NEXT loop to see where and how these variables are used:

FOR counter = 1 to pulses
PULSOUT 14, duration
PAUSE 20

NEXT

A Take some time to understand this FOR..NEXT loop. It is one of the first examples of the
1 / amazing things you can do with variables in PBASIC command arguments, and it also
\w/ highlights how useful a programmable microcontroller like the BASIC Stamp can be.

Your Turn — Setting Limits in Software

The example program doesn’t stop you or anybody else from entering a PULSOUT
duration such as 1500, which is not good for the servo. This is a problem that needs to
be fixed if you are designing this system into a product.

Let’s imagine that this computer servo control system is one that has been developed for
remote-controlling a door. Perhaps a security guard will use this to open a shipping door
that he or she watches on a remote camera. Maybe a college student will use it to control
doors in a maze that mice navigate in search of food. Maybe a military gunner will use it
to point the cannon at a particular target. If you are designing the product for somebody
else to use, the last thing you want is to give the user (security guard, college student,
military gunner) the ability to enter the wrong number and damage the equipment.

To fix this problem, try this:

V' Save the example program ServoControlWithDebug.bs2 under the new name
ServoControlWithDebugY ourTurn.bs2.
V' Replace these two commands:

DEBUG "Enter pulsout duration:", CR
DEBUGIN DEC duration



Chapter #4: Controlling Motion - Page 125

with this code block:

DO
DEBUG "Enter pulsout duration:", CR
DEBUGIN DEC duration
IF duration < 500 THEN
DEBUG "Value of duration must be above 499", CR
PAUSE 1000
ENDIF
IF duration > 1000 THEN
DEBUG "Value of duration must be below 1001", CR
PAUSE 1000
ENDIF
LOOP UNTIL duration > 499 AND duration < 1001

\' Save the program.
V' Run the program and verify that it rejects values outside the appropriate range
for the servo.

ACTIVITY #3: CONVERTING POSITION TO MOTION

In this activity, you will program the servo to change position at different rates. By
changing position at different rates, you will cause your servo horn to rotate at different
speeds. You can use this technique to make the servo control motion instead of position.

Programming a Rate of Change for Position

You can use a FOR.NEXT loop to make a servo sweep through its range of motion like
this:
FOR counter = 500 TO 1000
PULSOUT 14, counter

PAUSE 20
NEXT

The For..NEXT loop causes the servo’s horn to start at around 2 o’clock and then rotate
slowly counterclockwise until it gets to 10 o’clock. Because counter is the index of the
FOR..NEXT loop, it increases by one each time through. The value of counter is also used
in the puLsouT command’s Duration argument, which means the duration of each
pulse gets a little longer each time through the loop. Since the duration changes, so
does the position of the servo’s horn.

FOR..NEXT loops have an optional sTEP argument. The STEP argument can be used to
make the servo rotate faster. For example, you can use the STEP argument to add 8 to



Page 126 - What's a Microcontroller?

counter each time through the loop (instead of 1) by modifying the For statement like
this:
FOR counter = 500 TO 1000 STEP 8

You can also make the servo turn the opposite direction by counting down instead of
counting up. In PBASIC, For..NEXT loops will also count backwards if the Startvalue
argument is larger than the Endvalue argument. Here is an example of how to make a
FOR..NEXT loop count from 1000 to 500:

FOR counter = 1000 TO 500

You can combine counting down with a STEP argument to get the servo to rotate more
quickly in the clockwise direction like this:

FOR counter = 1000 TO 500 STEP 20

The trick to getting the servo to turn at different rates is to use these FOR..NEXT loops to
count up and down with different step sizes. The next example program uses these
techniques to make the servo’s horn rotate back and forth at different rates.

Example Program: ServoVelocities.bs2

\' Enter and run the program.

V' As the program runs, watch how the value of counter changes in the Debug
Terminal.

V' Also, watch how the servo behaves differently through the two different
FOR..NEXT loops. Both the servo’s direction and speed change.

' What's a Microcontroller - ServoVelocities.bs2
' Rotate the servo counterclockwise slowly, then clockwise rapidly.

' {$sTAMP BS2}
' {$PBASIC 2.5}

counter VAR Word
DO
DEBUG "Pulse width increment by 8", CR
FOR counter = 500 TO 1000 STEP 8
PULSOUT 14, counter
PAUSE 7

DEBUG DEC5 counter, CR, CRSRUP
NEXT



Chapter #4: Controlling Motion - Page 127

DEBUG CR, "Pulse width decrement by 20", CR

FOR counter = 1000 TO 500 STEP 20
PULSOUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

DEBUG CR, "Repeat", CR

LOOP

How ServoVelocities.bs2 Works

The first FOR..NEXT loop counts upwards from 500 to 1000 in steps of 8. Since the
counter variable is used as the PULSOUT command’s Duration argument, the servo
horn’s position rotates counterclockwise by steps that are four times the smallest possible
step.

FOR counter = 500 TO 1000 STEP 8
PULSOUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

Why PAUSE 7 instead of PAUSE 20? The command DEBUG DEC5 counter,
/9" CR, CRSRUP takes about 8 ms to execute. This means that PAUSE 12 would maintain
\é/ the 20 ms delay between pulses. A few trial and error experiments showed that PAUSE 7
gave the servo the smoothest motion. Your servo may be different.

More DEBUG formatters and control characters are featured in the DEBUG command
that displays the value of the counter variable. This value is printed using the 5-digit
\  decimal format (DEC5). After the value is printed, there is a carriage return (CR). After the
\-/ carriage return, the formatter CRSRUP (cursor up) sends the cursor back up to the previous

line. This causes the new value of counter to be printed over the old value each time
through the loop.

The second For..NEXT loop counts downwards from 1000 back to 500 in steps of 20. The
counter variable is also used as an argument for the PuLsouT command in this example,
so the servo horn rotates clockwise.

FOR counter = 1000 TO 500 STEP 20
PULSOUT 14, counter



Page 128 - What's a Microcontroller?

PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

Your Turn — Adjusting the Velocities

Try different sTEP values to make the servo turn at different rates.

Re-run the program after each modification.

Observe the effect of each new sTEP value on how fast the servo horn turns.
Experiment with different PAUSE command Duration values (between 3 and
12) to find the value that gives the servo the smoothest motion for each new
STEP value.

2L 2 2 <2

ACTIVITY #4: PUSHBUTTON CONTROLLED SERVO

In this chapter, you have written programs that make the servo go through a pre-recorded
set of motions, and you have controlled the servo using the Debug Terminal. You can
also program the BASIC Stamp to control the servo based on pushbutton inputs. In this
activity you will:

e Build a circuit for a pushbutton controlled servo.
o Program the BASIC Stamp to control the servo based on the pushbutton inputs.

When you are done, you will be able to push one button to get the BASIC Stamp to rotate
the servo in one direction, and another button to get the servo to rotate in the other
direction. When no buttons are pressed, the servo will hold whatever position it moved
to.

Extra Parts for Pushbutton Servo Control

The same parts from the previous activities in this chapter are still used. You will need to
gather the following parts for the pushbutton circuits:

(2) Pushbuttons — normally open

(2) Resistors — 10 k€ (brown-black-orange)
(2) Resistors — 220 € (red-red-brown)

(3) Jumper wires



Chapter #4: Controlling Motion

Adding the Pushbutton Control Circuit

Figure 4-20 shows the pushbutton circuits that you will use to control the servo.

Vdd  Vdd
= ]
P4
220 Q Figure 4-20
— Pushbutton
[ NAA
P3 Y ° Circuits for

220Q Servo Control
10 kQ 10 kQ

Vgs Vss

- Page 129

V' Add this circuit to the servo+LED circuit that you have been using up to this

point. When you are done your circuit should resemble:

o Figure 4-21 if you are using the Board of Education Rev C
o  Figure 4-22 if you are using the HomeWork Board
o Figure 4-23 if you are using the Board of Education Rev B



Page 130 - What's a Microcontroller?

Figure 4-21

Board of Education
Rev C Servo
Circuit with
Pushbutton Circuits
Added

F

ooo0000E

gooooooooooooooon
goooooooacoooon

PARALLAX

www.parallax.com

Figure 4-22
HomeWork Board
Servo Circuit with
Pushbutton Circuits
Added

0o
[
10 O
| O
O
O

2]
]
]
O
]

Y
B
Cj
D
O
O
O

810
O

10
O

810
O

&0

PARALLAX

www.parallax.com




Chapter #4: Controlling Motion - Page 131

Figure 4-23

Board of Education
Rev B Servo
Circuit with
Pushbutton Circuits
Added

PARALLAX

www.parallax.com

V' Test the pushbutton connected to P3 using the original version of
ReadPushbuttonState.bs2.  The section that has this program and the
instructions on how to use it begins on page 77.

V' Modify the program so that it reads P4.

V' Run the modified program to test the pushbutton connected to P4.

Programming Pushbutton Servo Control

Pushbutton servo control is not much different from pushbutton LED control. IF..THEN
code blocks are used to check the pushbutton states and either add or subtract from a
variable called duration. This variable is used in the PULSOUT command’s Duration
argument. If one of the pushbuttons is pressed, the value of duration increases. If the
other pushbutton is pressed, the value of duration decreases. A nested IF..THEN
statement is used to decide if the duration variable is too large (greater than 1000) or
too small (smaller than 500).



Page 132 - What's a Microcontroller?

Example Program: ServoControlWithPushbuttons.bs2

This example program makes the servo’s horn rotate counterclockwise when the
pushbutton connected to P4 is pressed. The servo’s horn will keep rotating so long as the
pushbutton is held down and the value of duration is smaller than 1000. When the
pushbutton connected to P3 is pressed, the servo horn rotates clockwise. The servo also
is limited in its clockwise motion because the duration variable is not allowed to go
below 500. The Debug Terminal displays the value of duration while the program is
running.

\' Enter the ServoControlWithPushbuttons.bs2 program into the BASIC Stamp
Editor and run it.

Verify that the servo turns counterclockwise when you press and hold the
pushbutton connected to P4.

Veritfy that as soon as the limit of duration > 1000 is reached or exceeded
that the servo stops turning any further in the counterclockwise direction.
Verify that the servo turns clockwise when you press and hold the pushbutton
connected to P3.

Verify that as soon as the limit of duration < 500 is reached or exceeded that
the servo stops turning any further in the clockwise direction.

< < < <

' What's a Microcontroller - ServoControlWithPushbuttons.bs2
' Press and hold P4 pushbutton to rotate the servo counterclockwise,
' or press the pushbutton connected to P3 to rotate the servo clockwise.

' {$sTAMP BS2}
' {$PBASIC 2.5}

duration VAR Word
duration = 750
DO
IF IN3 = 1 THEN
IF duration > 500 THEN
duration = duration - 25

ENDIF
ENDIF



Chapter #4: Controlling Motion - Page 133

IF IN4 = 1 THEN
IF duration < 1000 THEN
duration = duration + 25
ENDIF
ENDIF

PULSOUT 14, duration
PAUSE 10

DEBUG HOME, DEC4 duration, " = duration"

LOOP

Your Turn — Software Stoppers

Servos have a built in mechanical stopper that prevents them from turning too far. If you
try to send a command like PULSOUT 14, 2000, the servo will not turn to a position that
corresponds to a Duration argument of 2000. This is because servos have built-in
mechanical stoppers that limit the range of motion. By gently turning the horn, you can
feel when the servo’s internal gears run into this mechanical stopper. You can modify the
example program in this activity so that the BASIC Stamp limits the servo’s motion to a
range that is narrower than the limits imposed by the mechanical stoppers.

Save ServoControlWithPushbuttons.bs2 under a new name.

Adjust the software limits imposed on the servo’s motion so that they are 650
and 850 instead of 500 and 1000.

Adjust the software imposed rate so that the duration variable is incremented
or decremented by 10 instead of 25.

Decide what differences you expect to see in the way the servo behaves when
you press the pushbutton.

Run the program and compare the actual results with your expected results.

< < < <2 <2



Page 134 - What's a Microcontroller?

SUMMARY

This chapter introduced microcontrolled motion using a servo. A servo is a device that
moves to and holds a particular position based on electronic signals it receives. These
signals take the form of pulses that last anywhere between 1 and 2 ms, and they have to
be delivered every 20 ms for the servo to maintain its position.

A programmer can use the PULSOUT command to make the BASIC Stamp send these
signals. Since pulses have to be delivered every 20 ms for the servo to hold its position,
the puLsouT and PAUSE commands are usually placed in some kind of loop. Variables
can be used to store the value used in the punLsouT command’s Duration argument.
This causes the servo’s horn to rotate in steps.

In this chapter, a variety of ways to get the values into the variables were presented. The
variable can receive the value from your Debug Terminal using the DEBUGIN command.
The value of the variable can pass through a sequence of values if the same variable is
used as the index for a FOR.NEXT loop. This technique can be used to cause the servo to
make sweeping motions. IF..THEN statements can be used to monitor pushbuttons and
add or subtract from the variable used in the PULSOUT command’s Duration argument
based on whether or not a certain button is pressed. This allows both position control and
sweeping motions depending on how the program is constructed and how the pushbuttons
are operated.

uestions

1. What are the four external parts on a servo? What are they used for?

2. Is an LED circuit required to make a servo work?

3. What command controls the low time in the signal sent to a servo? What
command controls the high time?

4. What programming element can you use to control the amount of time that a
servo holds a particular position?

5. How do you use the Debug Terminal to send messages to the BASIC Stamp?
What programming command is used to make the BASIC Stamp receive
messages from the Debug Terminal?

6. What type of code block can you write to limit the servo’s range of motion?



Chapter #4: Controlling Motion - Page 135

Exercises

1.

Write a code block that sweeps the value of PuLsouT controlling a servo from a
puration of 700 to 800, then back to 700, in increments of (a) 1, (b) 4.

2. Add a nested FOR..NEXT loop to your answer to exercise 1b so that it delivers ten

pulses before incrementing the PULSOUT Duration argument by 4.

Project

1.

Modify ServoControlWithDebug.bs2 so that it monitors a kill switch. If the kill
switch (P3 pushbutton) is pressed, Debug Terminal should not accept any
commands. It should display: “Press Start switch to start machinery”. When the
start switch (P4 pushbutton) is pressed, the program should function normally. If
power is disconnected and reconnected, the program should behave as though
the kill switch has been pressed.

Solutions

Q1. 1. Plug — Connects servo to power and signal sources

2. Cable — Conducts power and signals from plug into the servo.
3. Horn — The moving part of the servo.
4. Case — Contains DC motor, gears, and control circuits.

Q2. No, the LED just helps us see what's going on with the control signals.
Q3. The low time is controlled with the PAUSE command. The high time is

controlled with the pur.soUT command.

Q4. A FoOR. . .NEXT loop.
Q5. Click the white field above the message display pane in the Debug Terminal and

type the message you’d like to send. Use the DEBUGIN command to receive the
typed characters in the BASIC Stamp.

Q6. A nested IF...THEN statement.

El.a) b) Add “STEP 4” to both FOR loops.

FOR counter = 700 TO 800 FOR counter = 700 TO 800 STEP 4
PULSOUT 14, counter PULSOUT 14, counter
PAUSE 20 PAUSE 20

NEXT NEXT

FOR counter = 800 TO 700 FOR counter = 800 TO 700 STEP 4
PULSOUT 14, counter PULSOUT 14, counter
PAUSE 20 PAUSE 20

NEXT NEXT



Page 136 -

E2.

PI1.

What's a Microcontroller?

FOR counter = 700 TO 800 STEP 4
FOR pulses = 1 TO 10
PULSOUT 14, counter
PAUSE 20
NEXT
NEXT
FOR counter = 800 TO 700 STEP 4
FOR pulses = 1 TO 10
PULSOUT 14, counter
PAUSE 20
NEXT
NEXT

There are many possible solutions; one is given below.
What's a Microcontroller - Ch04Prj0l1Soln2 KillSwitch.bs2
Send messages to the BASIC Stamp to control a servo using
the Debug Terminal as long as kill switch is not being pressed.

1

1

1

Contributed by: Professor Clark J. Radcliffe, Department

of Mechanical Engineering, Michigan State University

{$sTAMP BS2}
{$PBASIC 2.5}

counter VAR Word
pulses VAR Word
duration VAR Word
DO

PAUSE 2000
IF (IN3 = 1) AND (IN4 = 0) THEN

DEBUG "Press Start switch to start machinery.

ELSEIF (IN3 = 0) AND (IN4 = 1) THEN
DEBUG CLS, "Enter number of pulses:", CR
DEBUGIN DEC pulses

DEBUG "Enter PULSOUT duration:", CR
DEBUGIN DEC duration

DEBUG "Servo is running...", CR

FOR counter = 1 TO pulses
PULSOUT 14, duration
PAUSE 20

NEXT

DEBUG "DONE"
PAUSE 2000
ENDIF

LOOP

", CR ,CRSRUP



Chapter #4: Controlling Motion - Page 137

Further Investigation

The servo, and using sensors to control servos, can be investigated in detail in a variety of
Stamps in Class texts.

“Advanced Robotics: with the Toddler”, Student Guide, Version 1.2, Parallax Inc.,

2003

Advanced Robotics: with the Toddler uses servos to control the motions of the
Parallax Toddler robot’s legs. Although we take walking for granted,
programming a machine to walk, maneuver, and keep its balance can be very
challenging. This walking robot is recommended for advanced students who
have already mastered the concepts in What’s a Microcontroller? and either
Robotics with the Boe-Bot or SumoBot.

“ Robotics with the Boe-Bot”, Student Workbook, Version 2.0 Parallax I nc., 2003

Robotics with the Boe-Bot makes use of the same servo control principles you
just learned with a twist; servos can also be modified and used as rolling robot
motors. Using the BASIC Stamp, Board of Education, and Robotics with the
Boe-Bot kit, this text starts with the basics of robot navigation, then guides you
through navigation with sensors. It also introduces some more in-depth topics
such as solving problems with artificial intelligence and navigation using
elementary control systems.

“SumoBot”, Student Workbook, Version 1.1, Parallax Inc., 2002

Robot Sumo is a very exciting competition that is fun for observers and
participants. SumoBot is a guided tour through building, testing, and competing
with your own autonomous Mini-Sumo class SumoBot® robot. This textbook
offers a condensed presentation of the Robotics with the Boe-Bot text material
applied towards the goal of winning a robotic sumo wrestling contest.



Chapter #5: Measuring Rotation - Page 139

Chapter #5: Measuring Rotation

ADJUSTING DIALS AND MONITORING MACHINES

Many households have dials to control the lighting in a room. Twist the dial one
direction, and the light gets brighter; twist the dial in the other direction, and the light gets
dimmer. Model trains use dials to control motor speed and direction. Many machines
have dials or cranks used to fine tune the position of cutting blades and guiding surfaces.

Dials can also be found in audio equipment, where they are used to adjust how music and
voices sound. Figure 5-1 shows a simple example of a dial with a knob that is turned to
adjust the speaker’s volume. By turning the knob, a circuit inside the speaker changes,
and the volume of the music the speaker plays changes. Similar circuits can also be
found inside joysticks, and even inside the servo used in Chapter #4: Controlling Motion.

Figure 5-1
Volume
Adjustment
on a Speaker

THE VARIABLE RESISTOR UNDER THE DIAL — A POTENTIOMETER

The device inside sound system dials, joysticks and servos is called a potentiometer,
often abbreviated as a “pot”. Figure 5-2 shows a picture of some common
potentiometers. Notice that they all have three pins.



Page 140 - What's a Microcontroller?

Figure 5-2

A Few
Potentiometer
Examples

Figure 5-3 shows the schematic symbol and part drawing of the potentiometer you will
use in this chapter. Terminals A and B are connected to a 10 kQ resistive element.
Terminal W is called the wiper terminal, and it is connected to a wire that touches the
resistive element somewhere between its ends.

A m Figure 5-3

Potentiometer
10 kQ < ) Schematic Symbol

Pot \y and Part Drawing
B

Figure 5-4 shows how the wiper on a potentiometer works. As you adjust the knob on
top of the potentiometer, the wiper terminal contacts the resistive element at different
places. As you turn the knob clockwise, the wiper gets closer to the A terminal, and as
you turn the knob counterclockwise, the wiper gets closer to the B terminal.

A
A * Fi 5-4
igure 5-
- L 10k S5 w Adjusting the
A Pot 24 Potentiometer's Wiper
W - Terminal
B

[oy)



Chapter #5: Measuring Rotation - Page 141

ACTIVITY #1: BUILDING AND TESTING THE POTENTIOMETER CIRCUIT

Placing different size resistors in series with an LED causes different amounts of current
to flow through the circuit. Large resistance in the LED circuit causes small amounts of
current to flow through the circuit, and the LED glows dimly. Small resistances in the
LED circuit causes more current to flow through the circuit, and the LED glows more
brightly. By connecting the W and A terminals of the potentiometer, in series with an
LED circuit, you can use it to adjust the resistance in the circuit. This in turn adjusts the
brightness of the LED. In this activity, you will use the potentiometer as a variable
resistor and use it to change the brightness of the LED.

Dial Circuit Parts

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)
(1) LED — any color

(1) Jumper wire

Building the Potentiometer Test Circuit

Figure 5-5 shows a circuit that can be used for adjusting the LED’s brightness with a
potentiometer.

V' Build the circuit shown in Figure 5-5.

/‘:\‘ Tip: Use a needle-nose pliers to straighten the kinks out of the potentiometer’s legs before
1 | plugging the device into the breadboard. When the potentiometer’s legs are straight, they
\w/ maintain better contact with the breadboard sockets.




Page 142 - What's a Microcontroller?

Vdd

220 Q

Pot
10 kQ

LED

»

nc

<
2
n

Ooooooo
ooooo

O00000000opAaooogdo
Oo0o000ooOoooeMOooooooo

Ooooooooo

O000000o0ooooooooooo
Oo0oooDoOooeE ooogo

ooooooooo

Ooooooooooooooonoo
Oooooooooooooodmo
Oooooooooooooogyyo

Figure 5-5
Potentiometer-LED
Test Circuit

DDDDDDDDDDF@DDFA&@.
—

Testing the Potentiometer Circuit

V' Turn the potentiometer clockwise until it reaches its mechanical limit shown in

Figure 5-6.

Handle with care: If your potentiometer will not turn this far, do not try to force it. Just turn

(R
\é) it until it reaches its mechanical limit; otherwise, it might break.

Gradually rotate the potentiometer counterclockwise to the positions shown in
Figure 5-6 (b), (¢), (d), (e), and (f) noting the how brightly the LED glows at

each position.

How the Potentiometer Circuit Works

(e)

Figure 5-6
Potentiometer Input Shaft

(a) through (f) show the
potentiometer’s wiper
terminal set to different
positions.

The total resistance in your test circuit is 220 € plus the resistance between the A and W
terminals of the potentiometer. This value could be anywhere from 0 to 10 kQ. As you



Chapter #5: Measuring Rotation - Page 143

turn the potentiometer’s input shaft, the resistance between the A and W terminals
changes. This in turn changes the current flow through the LED circuit.

ACTIVITY #2: MEASURING RESISTANCE BY MEASURING TIME

This activity introduces a new part called a capacitor. A capacitor behaves like a
rechargeable battery that only holds its charge for short durations of time. This activity
also introduces RC-time, which is an abbreviation for resistor-capacitor time. RC-time is
a measurement of how long it takes for a capacitor to lose a certain amount of its stored
charge as it supplies current to a resistor. By measuring the time it takes for the capacitor
to discharge with different size resistors and capacitors, you will become more familiar
with RC-time. In this activity, you will program the BASIC Stamp to charge a capacitor
and then measure the time it takes the capacitor to discharge through a resistor.

Introducing the Capacitor

Figure 5-7 shows the schematic symbol and part drawing for the type of capacitor used in
this activity. Capacitance value is measured in microfarads (iLF), and the measurement is
typically printed on the capacitors. The cylindrical case of the capacitor is called a
canister.

This capacitor has a positive (+) and a negative (-) terminal. The negative terminal is
~=.  the lead that comes out of the metal canister closest to the stripe with a negative (-) sign.
\ ! | Always make sure to connect these terminals as shown in the circuit diagrams. Connecting
- one of these capacitors incorrectly can damage it. In some circuits, connecting this type of

capacitor incorrectly and then connecting power can cause it to rupture or even explode.

Figure 5-7

3300 uF Capacitor
Schematic Symbol
and Part Drawing

+

T 3300 |JF

Pay careful attention
to the leads and how
they connect to the
Positive and
Negative Terminals.




Page 144 - What's a Microcontroller?

Resistance and Time Parts

(1) Capacitor — 3300 puF

(1) Capacitor — 1000 puF

(1) Resistors — 220 € (red-red-brown)

(1) Resistor — 470 Q (yellow-violet-brown)
(1) Resistor — 1 k€ (brown-black-red)

(1) Resistor — 2 kQ (red-black-red)

(1) Resistor — 10 k€ (brown-black-orange)

-’

\
|

Recommended Equipment: Safety goggles or safety glasses.

Building and Testing the Resistance Capacitance (RC) Time Circuit

Figure 5-8 shows the circuit schematic and Figure 5-9 shows the wiring diagram for this
activity. You will be taking time measurements using different resistor values in place of
the resistor labeled R;.

SAFETY

Always observe polarity when connecting the 3300 pF capacitor. Remember, the
negative terminal is the lead that comes out of the metal canister closest to the stripe with a
negative (-) sign. Use Figure 5-7 to identify the (+) and (-) terminals.

Your 3300 pF capacitor will work fine in this experiment so long as you make sure that the
positive (+) and negative (-) terminals are connected EXACTLY as shown in Figure 5-8 and
Figure 5-9.

Never reverse the supply polarity on the 3300 uF or any other polar capacitor. The
voltage at the capacitor's (+) terminal must always be higher than the voltage at its (-)
terminal. Vss is the lowest voltage (0 V) on the Board of Education and BASIC Stamp
HomeWork Board. By connecting the capacitor’'s negative terminal to Vss, you ensure that
the polarity across the capacitor’s terminals will always be correct.

Wear safety goggles or safety glasses during this activity.
Always disconnect power before you build or modify circuits.

Keep your hands and face away from this capacitor when power is connected.

With power disconnected, build the circuit as shown starting with a 470 Q
resistor in place of the resistor labeled R;.



Chapter #5: Measuring Rotation - Page 145

Figure 5-8
p7 Schematic for Viewing
RC-ti Volt; D
220 Q N R, =470Q ime Voltage Decay
3300 pF R R, - 1kQ Four different resistors
R, =2ka will be used as R;

Ri=10kQ  shown in the schematic.
First, the schematic will

be built and tested with
\Zs Ri=470 2 then Ri= 1
kQ, efc.
R, R, R, R,
Figure 5-9
Vdd i ASS( Wiring Diagram for
X3 < Figure 5-8
pisFl| 00000 00
p4| OOOOO 0o
ooooollooyoo Make sure that the
PPN Doy eRbhOE '
P2l o IR ERGEE negative lead of the
Elg Zoooo| |ooooo capacitor is connected
P9 g g g g g g g g g g on your board the same
Eg ooooo! |ooooo way it is shown in this
PG g g g g g g g g g g figure, with the negative
Ei ooooo! |ooooo lead connected to Vss.
b3 ooooo| |ooooo
o> ooooo| |ooooo
> ooooo| jooooo
- ooooo 0oooo
xp 00000 00000

Polling the RC-Time Circuit with the BASIC Stamp

Although a stopwatch can be used to record how long it takes the capacitor’s charge to
drop to a certain level, the BASIC Stamp can also be programmed to monitor the circuit
and give you a more reliable time measurement.

Example Program: PolledRcTimer.bs2

V' Enter and run PolledRcTimer.bs2.
V' Observe how the BASIC Stamp charges the capacitor and then measures the
discharge time.



Page 146 - What's a Microcontroller?

Record the measured time (the capacitor’s discharge time) in the 470 Q row of
Table 5-1.

Disconnect power from your Board of Education or BASIC Stamp HomeWork
Board.

Remove the 470 Q resistor labeled R; in Figure 5-8 and Figure 5-9 on page
145, and replace it with the 1 kQ resistor.

Reconnect power to your board.

Record your next time measurement (for the 1 k2 resistor).

Repeat these steps for each resistor value in Table 5-1.

e < < <

Table 5-1: Resistance and RC-time for C = 3300 uF
Resistance (L) Measured Time (s)

470
1k
2k

10 k

' What's a Microcontroller - PolledRcTimer.bs2
' Reaction timer program modified to track an RC-time voltage decay.

' {$sTAMP BS2}
' {$PBASIC 2.5}

timeCounter VAR Word
counter VAR Nib

DEBUG CLS

HIGH 7

DEBUG "Capacitor Charging...", CR

FOR counter = 5 TO 0

PAUSE 1000

DEBUG DEC2 counter, CR, CRSRUP
NEXT

DEBUG CR, CR, "Measure decay time now!", CR, CR
INPUT 7

DO

PAUSE 100
timeCounter = timeCounter + 1



Chapter #5: Measuring Rotation - Page 147

DEBUG ? IN7
DEBUG DEC5 timeCounter, CR, CRSRUP, CRSRUP

LOOP UNTIL IN7 = O

DEBUG CR, CR, CR, "The RC decay time was ",
DEC timeCounter, CR,
"tenths of a second.", CR, CR

END

How PolledRcTimer.bs2 Works

Two variables are declared. The timeCounter variable is used to track how long it takes
the capacitor to discharge through R;. The counter variable is used to count down
while the capacitor is charging.

timeCounter VAR Word
counter VAR Nib

The command DEBUG cLsS clears the Debug Terminal so that it doesn’t get cluttered with
successive measurements. HIGH 7 sets P7 high and starts charging the capacitor, then a
“Capacitor charging..” message is displayed. After that, a FOR.NEXT loop counts
down while the capacitor is charging. As the capacitor charges, the voltage across its
terminals increases toward anywhere between 2.5 and 4.9 V (depending on the value of
R)).

DEBUG CLS
HIGH 7
DEBUG "Capacitor Charging...", CR

FOR counter = 5 TO 0

PAUSE 1000

DEBUG DEC2 counter, CR, CRSRUP
NEXT

A message announces when the decay starts getting polled.
DEBUG CR, CR, "Measure decay time now!", CR, CR

In order to let the capacitor discharge itself through the R; resistor, the I/O pin is changed
from HIGH to INPUT. As an input, the I/O pin, has no effect on the circuit, but it can
sense high or low signals. As soon as the I/O pin releases the circuit, the capacitor



Page 148 - What's a Microcontroller?

discharges as it feeds current through the resistor. As the capacitor discharges, the
voltage across its terminals gets lower and lower (decays).

INPUT 7

Back in the pushbutton chapter, you used the BASIC Stamp to detect a high or low signal
using the variables IN3 and IN4. At that time, a high signal was considered Vdd, and a
low signal was considered Vss. It turns out that a high signal is any voltage above 1.4 V.
Of course, it could be up to 5 V. Likewise, a low signal is anything between 1.4 V and 0
V. This po..Loop checks P7 every 100 ms until the value of IN7 changes from 1 to 0,
which indicates that the capacitor voltage decayed below 1.4 V.

DO

PAUSE 100
timeCounter = timeCounter + 1

DEBUG ? IN7
DEBUG DEC5 timeCounter, CR, CRSRUP, CRSRUP

LOOP UNTIL IN7 = 0

The result is then displayed and the program ends.

DEBUG CR, CR, CR, "The RC decay time was ",

DEC timeCounter, CR,
"tenths of a second.", CR, CR

END

Your Turn — A Faster Circuit

By using a capacitor that has roughly 1/3 the capacity to hold charge, the time
measurement for each resistor value that is used in the circuit will be reduced by 1/3. In
Activity #3, you will use a capacitor that is 10,000 times smaller, and the BASIC Stamp
will still take the time measurements for you using a command called RCTIME.

V' Disconnect power to your Board of Education or HomeWork Board.

V' Replace the 3300 pUF capacitor with a 1000 UF capacitor.

V' Confirm that the polarity of your capacitor is correct. The negative
terminal should be connected to Vss.

\' Reconnect power.



Chapter #5: Measuring Rotation - Page 149

V' Repeat the steps in the Example Program: PolledRcTimer.bs2 section, and
record your time measurements in Table 5-2.

V' Compare your time measurements to the ones you took earlier in Table 5-1.
How close are they to 1/3 the value of the measurements taken with the 3300
UF capacitor?

Table 5-2: Resistance and RC-time for C = 1000 uF
Resistance (Q) Measured Time (s)

470

1k

2k

10 k

ACTIVITY #3: READING THE DIAL WITH THE BASIC STAMP

In Activity #1, a potentiometer was used as a variable resistor. The resistance in the
circuit varied depending on the position of the potentiometer’s adjusting knob. In
Activity #2, an RC-time circuit was used to measure different resistances. In this
activity, you will build an RC-time circuit to read the potentiometer, and use the BASIC
Stamp to take the time measurements. The capacitor you use will be very small, and the
time measurements will only take a few milliseconds. Even though the measurements
take very short durations of time, the BASIC Stamp will give you an excellent indication
of the resistance between the potentiometer’s A and W terminals.

Parts for Reading RC-Time with the BASIC Stamp

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)

(2) Jumper wires

(1) Capacitor — 0.1 uF shown in Figure 5-10

(1) Capacitor — 0.01 uF, also shown in Figure 5-10
(2) Jumper wires

(R These capacitors do not have + and — terminals. You can safely connect these

\b‘ capacitors to a circuit without worrying about positive and negative terminals.




Page 150 - What's a Microcontroller?

a Figure 5-10
0.1 uF Ceramic Capacitors

The 0.1 uF capacitor (above)
and the 0.01 uF capacitor

(below) are both non-polar.
0.01 uF You will not have to worry
about positive and negative

-

|_

leads with these two parts.

Building an RC Time Circuit for the BASIC Stamp

Figure 5-11 shows a schematic for the fast RC-time circuit, and Figure 5-12 shows the
wiring diagram. This is the circuit that you will use to monitor the position of the
potentiometer’s input shaft with the help of the BASIC Stamp and a PBASIC program.

\' Build the circuit shown in Figure 5-11.

P7
220 Q e
':gtkg —— 0.4pF  Figure5-11
BASIC Stamp
RCTIME Circuit
with Potentiometer




Chapter #5: Measuring Rotation - Page 151

vad  Vin_ Vss
X3

o] DO00O 00000

F°Hl coooo __ooooo

FaHl coooo[jooooo

F°Ml coooo| |ooooo

F"l 5500o0| |ooooo

Pi°Wl ooooo| |ooooo | Floures-12

t. M| 0ooooo| |ooooo | Wiring Diagram for

p7 @ BEOOO 1000004 Figure 5-11

i M| coooo| |ooooo

; ooooo| looooo

Pee| D000 TomNOD

° &l 0ooON g

o SIs) ¥

b BN oo

o O 0ooo
S oooo 0000

Programming RC-Time Measurements

The BASIC Stamp program to measure the potentiometer’s resistance will do essentially
the same thing that you did by hand in Activity #2. The equivalent of pressing and
holding the pushbutton is a HIGHE command followed by a pPauseE. The RCTIME command
is the BASIC Stamp module’s way of letting go of the pushbutton and polling until the
capacitor’s voltage gets low enough to pass the threshold voltage of 187 (1.4 V).

Example Program: ReadPotWithRcTime.bs2

\' Enter and run ReadPotWithRcTime.bs2
V' Try rotating the potentiometer’s input shaft while monitoring the value of the
time variable using the Debug Terminal.

' What's a Microcontroller - ReadPotWithRcTime.bs2
' Read potentiometer in RC-time circuit using RCTIME command.

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word

DO
HIGH 7
PAUSE 100
RCTIME 7, 1, time
DEBUG HOME, "time = ", DEC5 time

LOOP



Page 152 - What's a Microcontroller?

How ReadPotWithRcTime.bs2 Works

Here are the pseudo-code steps the program goes through to take the RC-time
measurement.

e Declare the variable time to store a time measurement.
e Code block within Do...LOOP:
o Set I/0 pin P7 to HIGH.
o Wait for 100 ms (20 ms to make sure the capacitor is charged up and 80
more ms to keep the Debug Terminal display steady).
o Execute the RCTIME command.
o Store the time measurement in the time variable.
o Display the value time in the Debug Terminal.

Before the ReTIME command is executed, the capacitor is fully charged. As soon as the
RCTIME command executes, the BASIC Stamp changes the /O pin from an output to an
input. As an input, the I/O pin looks about the same to the circuit as when the pushbutton
was released (open circuit) in Activity #2. The RcTIME command is a high speed version
of the polling that was used in Activity #2, and it measures the amount of time it takes for
the capacitor to lose its charge and fall below the I/O pin’s 1.4 V input threshold. Instead
of counting in 100 ms increments, the RCTIME command counts in 2 |1 increments.

Your Turn — Changing Time by Changing the Capacitor

V' Replace the 0.1 UF capacitor with a 0.01 UF capacitor.

\ Try the same positions on the potentiometer that you did in the main activity
and compare the value displayed in the Debug Terminal with the values
obtained for the 0.1 uF capacitor. Are the RCTIME measurements one tenth the
value?

Go back to the 0.1 UF capacitor.

With the 0.1 UF capacitor back in the circuit and the 0.01 UF capacitor
removed, make a note of the highest and lowest values for the next activity.

<2 <2

ACTIVITY #4: CONTROLLING A SERVO WITH A POTENTIOMETER

Potentiometers together with servos can be used to make lots of fun things. This is the
foundation for model airplanes, cars and boats. This activity shows how the BASIC
Stamp can be used to monitor a potentiometer circuit and control the position of a servo.



Chapter #5: Measuring Rotation - Page 153

An example of a model airplane and its radio controller are shown in Figure 5-13. The
model airplane has servos to control all its flaps and the gas engine’s throttle settings.
These servos are controlled using the radio control (RC) unit in front of the plane. This
RC unit has potentiometers under a pair of joysticks that are used to control the servos
that in turn control the plane’s elevator and rudder flaps.

Figure 5-13
Model Airplane and
Radio Controller

How the RC Unit Controls the Airplane: The potentiometers under the joysticks are

A~ monitored by a circuit that converts the position of the joystick into control pulses for the

1 | servo. These control pulses are then converted to radio signals and transmitted by the

\-/ handheld controller to a radio receiver in the model airplane. The radio receiver converts
these signals back to control pulses which then position the servos.

Potentiometer Controlled Servo Parts

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)
(1) Capacitor — 0.1 uF

(1) Parallax Standard Servo

(1) LED — any color

(2) Jumper wires

HomeWork Board users will also need:

(1) 3-pin male-male header



Page 154 - What's a Microcontroller?

(4) Jumper wires

CAUTION: use only a Parallax Standard Servo for the activities in this text!

I ) Do not substitute a Parallax Continuous Rotation Servo, as it may be quickly damaged by
\./ the circuits shown below. Likewise, we do not recommend using other brands of standard
hobby servos, which may not be rated for use with the voltage supplied in these circuits.

Building the Dial and Servo Circuits

This activity will use two circuits that you have already built individually: the
potentiometer circuit from the activity you just finished and the servo circuit from the
previous chapter.

V' Leave your potentiometer RC-time circuit from Activity #3 on your
prototyping area. If you need to rebuild it, use Figure 5-11 on page 150 and
Figure 5-12 on page 151. Make sure to use the 0.1 uF capacitor, not the 0.01
UF capacitor.

V' Add your servo circuit from Chapter #4, Activity #1 to the project. Remember
that your servo circuit will be different depending on your carrier board.
Below are the pages for the sections that you will need to jump to:

o Page 105 — Board of Education Rev C
o Page 111 — Board of Education Rev B
o Page 108 — BASIC Stamp HomeWork Board

Programming Potentiometer Control of the Servo

You will need the smallest and largest value of the time variable that you recorded from
your RC-time circuit while using a 0.1 uF capacitor.

N OIf you have not already completed the Your Turn section of the previous activity,
go back and complete it now.

For this next example, here are the time values that were measured by a Parallax
technician; your values will probably be slightly different:

o All the way clockwise: 1
o All the way counterclockwise: 691



Chapter #5: Measuring Rotation - Page 155

So how can these input values be adjusted so that they map to the values of 500 and 1000
that are needed to control the servo with the PuLsouT command? The answer is by using
multiplication and addition. First, multiply the input values by something to make the
difference between the clockwise (minimum) and counterclockwise (maximum) values
500 instead of almost 700. Then, add a constant value to the result so that its range is
from 500 to 1000 instead of 1 to 500. In electronics, these operations are called scaling
and offset.

Here’s how the math works for the multiplication (scaling):

time(maximum) = 691X% =691x0.724 =500

time(minimum) = 1><ﬂ =0.724
691

After the values are scaled, here is the addition (offset) step.

time(maximum) = 500+ 500 = 1000
time(minimum) = 0.724 + 500 = 500

The */ operator that was introduced on page 95 is built into PBASIC for scaling by
fractional values, like 0.724. Here again are the steps for using */ applied to 0.724:

1. Place the value or variable you want to multiply by a fractional value before the
*/ operator.

time = time */

2. Take the fractional value that you want to use and multiply it by 256.

new fractional value = 0.724x 256 =185.344

3. Round off to get rid of anything to the right of the decimal point.

new fractional value =185

4. Place that value after the */ operator.



Page 156 - What's a Microcontroller?

time = time */ 185

That takes care of the scaling, now all we need to do is add the offset of 500. This can be
done with a second command that adds 500 to time:

time = time */ 185
time = time + 500

Now, time is ready to be recycled into the PuLsouT command’s Duration argument.

time = time */ 185 ' Scale by 0.724.
time = time + 500 ' Offset by 500.
PULSOUT 14, time ' Send pulse to servo.

Example Program: ControlServoWithPot.bs2

V' Enter and run this program, then twist the potentiometer’s input shaft and
make sure that the servo’s movements echo the potentiometer’s movements.

' What's a Microcontroller - ControlServoWithPot.bs2
' Read potentiometer in RC-time circuit using RCTIME command.
' Scale time by 0.724 and offset by 500 for the servo.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

time VAR Word
DO
HIGH 7
PAUSE 10
RCTIME 7, 1, time
time = time */ 185 ' Scale by 0.724 (X 256 for */).
time = time + 500 ' Offset by 500.
PULSOUT 14, time ' Send pulse to servo.
LOOP

Your Turn — Scaling the Servo’s Relationship to the Dial

Your potentiometer and capacitor will probably give you time values that are somewhat
different from the ones discussed in this activity. These are the values you gathered in
the Your Turn section of the previous activity.

V' Repeat the math discussed in the Programming Potentiometer Control of the
Servo section on page 154 using your maximum and minimum values.



Chapter #5: Measuring Rotation - Page 157

Substitute your scale and offset values in ControlServoWithPot.bs2.
Add this line of code between the puLsouT and LooP commands so that you
can view your results.

2L <2

DEBUG HOME, DEC5 time ' Display adjusted time value.

V' Run the modified program and check your work. Because the values were
rounded off, the limits may not be exactly 500 and 1000, but they should be
pretty close.

Using Constants in Programs

In larger programs, you may end up using the PuLsouT command and the value of the
scale factor (which was 185) and the offset (which was 500) many times in the program.
You can use alias names for these values with the con directive like this:

scaleFactor CON 185
offset CON 500

(R These alias names are just about always declared near the beginning of the program so
\&/ that they are easy to find.

Now, anywhere in your program that you want to use one of these values, you can use the
words of £set Or scaleFactor instead. For example,

time = time */ scaleFactor ' Scale by 0.724.
time = time + offset ' Offset by 500.

You can also apply the same technique with the I/O pins. For example, you can declare a
constant for I/O pin P7.

rcPin CON 7

There are two places in the previous example program where the number 7 is used to
refer to I/O pin P7. The first can now be written as:

HIGH rcPin
The second can be written as:
RCTIME rcPin, 1, time

If you change your circuit later, all you have to do is change the value in your constant
declaration, and both the HIGH and RCcTIME commands will be automatically updated.



Page 158 - What's a Microcontroller?

Likewise, if you have to recalibrate your scale factor or offset, you can also just change
the con directives at the beginning of the program.

/ &  Assigning an alias is what you do when you give a variable, constant or I/O pin a name
\L/ using VAR, CON, or PIN.

Example Program: ControlServoWithPotUsingConstants.bs2

This program makes use of aliases in place of almost all numbers.

\' Enter and run ControlServoWithPotUsingConstants.bs2.
V' Observe how the servo responds to the potentiometer and verify that it’s the
same as the previous example program (ControlServoWithPot.bs2).

' What's a Microcontroller - ControlServoWithPotUsingConstants.bs2
' Read potentiometer in RC-time circuit using RCTIME command.
' Apply scale factor and offset, then send value to servo.

' {$sTAMP BS2}
' {$PBASIC 2.5}

scaleFactor CON 185
offset CON 500
rcPin CON 7
delay CON 10
servoPin CON 14
time VAR Word
DO

HIGH rcPin
PAUSE delay
RCTIME rcPin, 1, time
time = time */ scaleFactor
time = time + offset
PULSOUT servoPin, time
DEBUG HOME, DEC5 time

LOOP

Scale scaleFactor.

Offset by offset.

Send pulse to servo.
Display adjusted time value.

Your Turn — Using Constants for Calibration and Easy Updating

As mentioned earlier, if you change the 1/0O pin used by the HIGH and RCTIME command,
you can simply change the value of the rePin constant declaration.



<_ <2 2 <2 2

Chapter #5: Measuring Rotation - Page 159

Save the example program under a new name.

Change the scaleFactor and offset values to the unique values for your RC
circuit that you determined in the previous Your Turn section.

Run the modified program and verify that it works correctly.

Modify your circuit by moving the RC-time circuit from /O pin P7 to I/O pin
PS.

Modify the rcPin declaration so that it reads:

rcPin CON 8
Add this command before the po..Loop so that you can see that the rcPin
constant really is just a way of saying the number eight:

DEBUG ? rcPin
Re-run the program and verify that the HIGH and RCcTIME commands are still

functioning properly on the different I/O pin with just one change to the rcPin
coN directive.



Page 160 - What's a Microcontroller?

SUMMARY

This chapter introduced the potentiometer, a part often found under various knobs and
dials. The potentiometer has a resistive element that typically connects its outer two
terminals and a wiper terminal that contacts a variable point on the resistive element. The
potentiometer can be used as a variable resistor if the wiper terminal and one of the two
outer terminals is used in a circuit.

The capacitor was also introduced in this chapter. A capacitor can be used to store and
release charge. The amount of charge a capacitor can store is related to its value, which
is measured in Farads, (F). The p is engineering notation for micro, and it means one-
millionth. The capacitors used in this chapter’s activities ranged from 0.01 to 3300 uF.

A resistor and a capacitor can be connected together in a circuit that takes a certain
amount of time to charge and discharge. This circuit is commonly referred to as an RC-
time circuit. The R and C in RC-time stand for resistor and capacitor. When one value
(C in this chapter’s activities) is held constant, the change in the time it takes for the
circuit to discharge is related to the value of R. When the value of R changes, the value
of the time it takes for the circuit to charge and discharge also changes. The overall time
it takes the RC-time circuit to discharge can be scaled by using a capacitor of a different
size.

Polling was used to monitor the discharge time of a capacitor in an RC circuit where the
value of C was very large. Several different resistors were used to show how the
discharge time changes as the value of the resistor in the circuit changes. The RCTIME
command was then used to monitor a potentiometer (a variable resistor) in an RC-time
circuit with smaller value capacitors. Although these capacitors cause the discharge
times to range from roughly 2 to 1500 us (millionths of a second), the BASIC Stamp has
no problem tracking these time measurements with the ReTIME command. The I/O pin
must be set HIGH, and then the capacitor in the RC-time circuit must be allowed to charge
by using pausE before the ReTIME command can be used.

PBASIC programming can be used to measure a resistive sensor such as a potentiometer
and scale its value so that it is useful to another device, such as a servo. This involves
performing mathematical operations on the measured RC discharge time, which the
RCTIME command stores in a variable. This variable can be adjusted by adding a constant
value to it, which comes in handy for controlling a servo. In the Projects section, you



Chapter #5: Measuring Rotation - Page 161

may find yourself using multiplication and division as well. The con directive can be
used at the beginning of a program to substitute a name for a number. As with naming
variables, naming constants is also called creating an alias. After an alias is created, the
name can be used in place of the number throughout the program. This can come in
handy, especially if you need to use the same number in 2, 3, or even 100 different places
in the program. You can change the number in the con directive, and all 2, 3, or even
100 different instances of that number are automatically updated next time you run the
program.

Questions

1.

When you turn the dial or knob on a sound system, what component are you
most likely adjusting?

2. In a typical potentiometer, is the resistance between the two outer terminals
adjustable?
3. How is a capacitor like a rechargeable battery? How is it different?
4. What can you do with an RC-time circuit to give you an indication of the value
of a variable resistor?
5. What happens to the RC discharge time as the value of R (the resistor) gets
larger or smaller?
6. What does the con directive do? Explain this in terms of a name and a number.
Exercise
1. Let’s say that you have a 0.5 UF capacitor in an RC timer circuit, and you want
the measurement to take 10-times as long. Calculate the value of the new
capacitor.
Projects
1. Add a bi-color LED circuit to Activity #4. Modify the example program so that
the bi-color LED is red when the servo is rotating counterclockwise, green when
the servo is rotating clockwise, and off when the servo holding its position.
2. Use IF..THEN to modify the example program from Activity #4 so that the servo
only rotates between puLsouT values of 650 and 850.
Solutions

Q1. A potentiometer.



Page 162 - What's a Microcontroller?

Q2. No, it’s fixed. The variable resistance is between either outer terminal and the
wiper (middle) terminal.

Q3. A capacitor is like a rechargeable battery in that it can be charged up to hold
voltage. The difference is that it only holds a charge for a very small amount of
time.

Q4. You can measure the time it takes for the capacitor to discharge (or charge)
This time is related to the resistance and capacitance. If the capacitance is
known and the resistance is variable, then the discharge time gives an indication
of the resistance.

Q5. As R gets larger, the RC discharge time increases in direct proportion to the
increase in R. As R gets smaller, the RC discharge time decreases in direct
proportion to the decrease in R.

Q6. The con directive substitutes a name for a number.

El. new cap =10 x old cap value

=10x 0.5pF
=5uF
P1. Activity #4 with bi-color LED added.
P13 D Potentiometer schematic from Figure 5-11

p. 150, servo from Figure 4-3 p. 106, bi-
color LED from Figure 2-19 p. 63, with
P15 and P14 changed to P13 and P12.

P12

470 Q

' What's a Microcontroller - Ch5Prj0l ControlServoWithPot.bs2

' Read potentiometer in RC-time circuit using RCTIME command.

' The time variable ranges from 126 to 713, and an offset of 330 is
' needed.

' Bi-color LED on P12, P13 tells direction of servo rotation:

' green for CW, red for CCW, off when servo is holding position.

' {$sTAMP BS2}
' {$PBASIC 2.5}
DEBUG "Program Running!"

time VAR Word ' time reading from
potentiometer
prevTime VAR Word ' previous reading

DO



P2.

prevTime = time

HIGH 7

PAUSE 10

RCTIME 7, 1, time

time = time + 330

IF ( time > prevTime + 2) THEN
HIGH 13
LOW 12

ELSEIF ( time < prevTime - 2)
LOW 13
HIGH 12

ELSE
LOW 13
LOW 12

ENDIF

THEN

PULSOUT 14, time

LOOP

Chapter #5: Measuring Rotation - Page 163

' Store previous time reading
' Read pot using RCTIME

' Scale pot, match servo range

' increased, pot turned CCW
' Bi-color LED red

' value decreased, pot turned CW
' Bi-color LED green

' Servo holding position
' LED off

The key is to add 1F..THEN blocks; an example is shown below.

' What's a Microcontroller - Ch5Prj02 ControlServoWithPot.bs2
' Read potentiometer in RC-time circuit using RCTIME command.

' The time variable ranges from 126 to 713,

' needed.

and an offset of 330 is

' Modify so the servo only rotates from 650 to 850.

' {$sTAMP BS2}
' {$PBASIC 2.5}
DEBUG "Program Running!"

time VAR Word

DO
HIGH 7
PAUSE 10
RCTIME 7, 1, time

time = time + 330
IF (time < 650)
time = 650

ENDIF

IF (time > 850)
time = 850

ENDIF

THEN

THEN

PULSOUT 14,
LOOP

time

' Read pot with RCTIME

' Scale time to servo range

' Constrain range from 650 to 850



Page 164 - What's a Microcontroller?

Further Investigation

Several different electronic components, concepts and techniques were incorporated in
this chapter. Some of the more notable examples are:

o Using a potentiometer as an input device

e Measuring the resistance/capacitance of a device using RCTIME

e  Performing math on an input value and recycling it into an output
« Controlling a motor based on a measured value

“ Advanced Robotics: with the Toddler”, Student Workbook, Version 1.2, Parallax
Inc., 2003
“ Robotics with the Boe-Bot”, Student Workbook, Version 2.0, Parallax I nc., 2003
“SumoBot”, Student Workbook, Version 1.1, Parallax I nc., 2002
Every Stamps in Class robotics text uses RCTIME to measure resistive sensors to
detect a variety of conditions. Each condition leads to math and decisions, and
the end result is robot movement.

“Basic Analog and Digital”, Student Guide, Version 2.0, Parallax Inc., 2003
Basic Analog and Digital uses the potentiometer to create a variable voltage,
called a voltage divider, which is analyzed by an analog to digital converter. A
potentiometer is also used as an input device to set the frequency of a 555 timer.
This text takes a closer look at the math involved in RC voltage decay.

“Applied Sensors’, Student Guide, Version 1.3, Parallax Inc., 2003
RCTIME is used extensively in this book to collect data from a variety of sensors.

“Industrial Control”, Student Guide, Version 2.0, Parallax Inc., 2002
This book introduces techniques used extensively in industry for controlling
machines based on sensor input. The techniques fall under the general category
of control systems.



Chapter #6: Digital Display - Page 165

Chapter #6: Digital Display

THE EVERY-DAY DIGITAL DISPLAY

Figure 6-1 shows a display on the front of an oven door. When the oven is not in use, it
displays the time. When the oven is in use, it displays the oven’s timer, cooking settings,
and it flashes on and off at the same time an alarm sounds to let you know the food is
done. A microcontroller inside the oven door monitors the pushbuttons and updates the
display. It also monitors sensors inside the oven and switches devices that turn the
heating elements on and off.

Figure 6-1
Digital Clock 7-Segment
Display on Oven Door

Each of the three digits in Figure 6-1 is called a 7-segment display. In this chapter, you
will program the BASIC Stamp to display numbers and letters on a 7-segment display.

WHAT'S A 7-SEGMENT DISPLAY?

A 7-segment display is rectangular block of 7 lines of equal length that can be lit
selectively to display digits and some letters. A very common form is the 7-segment LED
display, a package with a rectangular block of 7 LEDs. Figure 6-2 shows a part drawing
of the 7-segment LED display you will use in this chapter’s activities. It has one
additional LED, a dot that can be used as a decimal point. Each of the segments (A
through G) and the dot contains a separate LED, which can be controlled individually.
Most of the pins have a number along with a label that corresponds with one of the LED
segments. Pin 5 is labeled DP, which stands for decimal point. Pins 3 and 8 are labeled
“common cathode”, and they will be explained when the schematic for this part is
introduced.



Page 166 - What's a Microcontroller?

Common
Cathode

109876

Figure 6-2
7-Segment
LED Display
Part Drawing
and Pin Map

12345
|

Common
Cathode

Pin Map: Figure 6-2 is an example of a pin map. A pin map contains useful information that
helps you connect a part to other circuits. Pin maps usually show a number for each pin, a
O name for each pin, and a reference. Take a look at Figure 6-2. Each pin is numbered, and
1 the name for each pin is the segment letter next to the pin. The reference for this part is its
overall appearance. You know by looking at the top of the display that pin 1 is closest to the
lower-left corner of the display. Other parts have more subtle references, such as the flat

spot on a regular LED’s case.

Figure 6-3 shows a schematic of the LEDs inside the 7-segment LED display. Each LED
anode is connected to an individual pin. All the cathodes are connected together by wire
inside the part. Because all the cathodes share a common connection, the 7-segment LED
display can be called a “common cathode” display. By connecting either pin 3 or pin 8 of
the part to Vss, you will connect all the LED cathodes to Vss.



Chapter #6: Digital Display - Page 167

Figure 6-3
7-Segment
Schematic

ACTIVITY #1: BUILDING AND TESTING THE 7-SEGMENT LED DISPLAY

In this activity, you will manually build circuits to test each segment in the display.

7-Segment LED Display Test Parts

(1) 7-segment LED display
(5) Resistors — 1 kQ (brown-black-red)
(5) Jumper wires

7-Segment LED Display Test Circuits

v With power disconnected from your Board of Education or HomeWork Board,
build the circuit shown in Figure 6-4 and Figure 6-5.
V' Reconnect power and verify that the A segment emits light.

What'’s the x with the nc above it in the schematic? The nc stands for not connected or
\  no-connect. It indicates that a particular pin on the 7-segment LED display is not connected
/' to anything. The x at the end of the pin also means not connected. Schematics sometimes
use just the x or just the nc.

/
|
\

?
-




Page 168 - What's a Microcontroller?

vdd

nc nc nc nc nc nc nc
X X X X X X X Figure 6-4
1 2 4 6 7 9 10 5 Test Circuit
hematic for
E D C B A F G DP tsf;1(:e ‘Z, aticto
Segment LED
A AU AU AN AUD. AU AN AU A Display.
LED’s
3 )Ls
V;s nc
SJIRR3IS3ITRIN
< o = N W B Uy
SOEEEEEEENEETETNY] <
nooooooooooooooéo
Doooooooooooooooo|gls
DoooDooooooooooog|mle ;
000000000000 Flgure.6-5.
000oo0o0oo0ooooo Test Circuit
S Wiring Diagram
for the ‘A’
Segment LED
< .
2 Display

V' Disconnect power, and modify the circuit by connecting the resistor to the B
LED input as shown in Figure 6-6 and Figure 6-7.



vdd

Chapter #6: Digital Display - Page 169

nc C nc nc nc nc nc
X X X X X X X )
1 2 4 6 7 9 10 |5 Figure 6-6
Test Circuit
E D C B A F G DP Schematic for
the ‘B’ Segment
b AN AT AN AUD. AU AN AU A LED Display.
LED’s
%—T—c ? O—T—o o)
T
Vgs nc
VUV UUTUVTUUTUTUTUTUVTUTTUTUTTUTDO
SOEEEEEEETEETEENE <
NO0000000000000008
ooooooooooooooooo|igls
Dooooooooooooooog|jgle ;
000000000000 Figure 6-7
Oooooooooooo Test Circuit
S Wiring Diagram
for the ‘B’
- Segment LED
2 Display

V' Reconnect power and verify that the B segment emits light.
V' Using the pin map from Figure 6-2 as a guide, repeat these steps for segments

C through G.

Your Turn — The Letter A and the Number Two

Figure 6-8 and Figure 6-9 show the digit ‘3* hardwired into the 7-segment LED display.



Page 170 - What's a Microcontroller?

Vdd Vdd Vdd  Vdd vdd
>
T 3 3T =2 S 1kQ @l
ne ne ne Figure 6-8
< 9 Hardwired Digit ‘3’
1 2 4 6 7 Tg 10 |5 S
The digit “3” is
E D C B A F G DP shown on the 7-
segment LED
!§ !§ !§ !§ !§ X !:: !:: display using the
LED' circuit shown in this
S .
schematic.
3 J(s
V;s nc
3UIIZREZIZ3IIVT
< O = N W b L
[\S)
ooOoooooooooooog ‘
0oOoooooooooo <
DooooDoooooooéoooo|g@lle
0oOoooooooooo
0ooooooooooo ‘ Figure 6-9
LLSooooooooo > Wiring Diagram for
000000000000 Figure 6-8
<
o
o

Build and test the circuit shown in Figure 6-8 and Figure 6-9, and verify that it
displays the number three.

Draw a schematic that will display the number two on the 7-segment LED.
Build and test the circuit to make sure it works. Trouble-shoot if necessary.
Repeat for the letter “‘A’.

s <



Chapter #6: Digital Display - Page 171

ACTIVITY #2: CONTROLLING THE 7-SEGMENT LED DISPLAY

In this activity, you will connect the 7-segment LED display to the BASIC Stamp, and
then run a simple program to test and make sure each LED is properly connected.
7-Seagment LED Display Parts

(1) 7-segment LED display
(8) Resistors — 1 kQ (brown-black-red)
(5) Jumper wires

Connecting the 7-Segment LED Display to the BASIC Stamp

Figure 6-10 shows the schematic and Figure 6-11 shows the wiring diagram for this
BASIC Stamp controlled 7-segment LED display example.

V' Build the circuit shown in Figure 6-10 and Figure 6-11.

/’:'\ Schematic and pin map: If you are trying to build the circuit from the schematic in Figure 6-
(1 ) 10 without relying on Figure 6-11, make sure to consult the 7-segment LED display’s pin
map (Figure 6-2, page 166).




Page 172 - What's a Microcontroller?

Figure 6-10
BASIC Stamp
Controlled 7-
Segment LED
Display
Schematic

Be careful with the resistors connected to P13 and P14. Look carefully at the resistors

~.  connected to P13 and P14 in Figure 6-11. There is gap between these two resistors. The

! | gap is shown because pin 8 on the 7-segment LED display is left unconnected. A resistor

@ connects I/O pin P13 to 7-segment LED display pin 9. Another resistor connects P14 to 7-
segment LED display pin 7.




Chapter #6: Digital Display - Page 173

EDC GF:AB

Ellllllll

a8 a3

X Figure 6-11
Doooooooois ! Wiring Diagram for
ooooooooon ) Figure 6-10

00000000 EE
minislslslsislsls]slu]s}
0ooooooo Use the segment
letters above this
diagram as a

reference.

0000000t C
OOoooOooooOg
000000003
00000000y Y
Ooooooooo

i

Parallel Device: The 7-segment LED display is called a parallel device because you have
to use more than one /O line at a time to send data (high and low information) to the device.
In the case of this 7-segment LED display, it takes 8 I/0 pins to instruct the device what to
do.

Parallel Bus: The wires that transmit the HIGH/LOW signals from the BASIC Stamp to the
7-segment LED display are called a parallel bus. Note that these wires are drawn as
parallel lines in Figure 6-10. The term parallel kind of makes sense given the geometry of
the schematic.

Programming the 7-Segment LED Display Test

The HIGH and Low commands will accept a variable as a pin argument. To test each
segment, one at a time, simply place the HIGH and Low commands in a FOR..NEXT loop,
and use the index to set the I/O pin, high, then low again.

#
d

J

Enter and run SegmentTestWithHighLow.bs2.

Verify that every segment in the 7-segement LED display lights briefly,
turning on and then off again.

Record a list of which segment each 1/0 pin controls.

Example Program: SegmentTestWithHighLow.bs2

' What's a Microcontroller - SegmentTestWithHighLow.bs2
' Individually test each segment in a 7-Segment LED display.



Page 174 - What's a Microcontroller?

' {$STAMP BS2}
' {$PBASIC 2.5}

pinCounter VAR Nib

DEBUG "I/O Pin", CR,
Mmoo n , CR

FOR pinCounter = 8 TO 15

DEBUG DEC2 pinCounter, CR
HIGH pinCounter

PAUSE 1000

LOW pinCounter

NEXT

Your Turn — A Different Pattern

Removing the command Low pinCounter will have an interesting effect:

V' Comment the LOW pinCounter command by adding an apostrophe to the left
of'it.
V' Run the modified program and observe the effect.

ACTIVITY #3: DISPLAYING DIGITS

If you include the decimal point there are eight different BASIC Stamp 1/O pins that send
high/low signals to the 7-segment LED display. That’s eight different HIGH or Low
commands just to display one number. If you want to count from zero to nine, that would
be a huge amount of programming. Fortunately, there are special variables you can use
to set the high and low values for groups of I/O pins.

In this activity, you will use 8-digit binary numbers instead of HIGH and Low commands
to control the high/low signals sent by BASIC Stamp I/O pins. By setting special
variables called p1rH and ouTH equal to the binary numbers, you will be able to control
the high/low signals sent by all the I/O pins connected to the 7-segment LED display
circuit with a single PBASIC command.



Chapter #6: Digital Display - Page 175

8 bits: A binary number that has 8 digits is said to have 8 bits. Each bit is a slot where you
=, can store eithera1ora0.
.

Wly) A byte is a variable that contains 8 bits. There are 256 different combinations of zeros and
ones that you can use to count from 0 to 255 using 8 bits. This is why a byte variable can
store a number between 0 and 255.

Parts and Circuit for Displaying Digits

Same as previous activity

Programming On/Off Patterns Using Binary Numbers

In this activity, you will experiment with the variables DIRE and OUTH. DIRH is a variable
that controls the direction (input or output) of I/O pins P8 through P15. ouTs controls the

high or low signals that each I/O pin sends. As you will soon see, OUTH is especially
useful because you can use it to set the high/low signals at eight different I/O pins at once

with just one command. Here is an example program that shows how these two variables

can be used to count from 0 to 9 on the 7-segment LED display without using HIGH and

LOW commands:

Example Program: DisplayDigits.bs2

This example program will cycle the 7-Segment LED display through the digits O

through 9.

\' Enter and run DisplayDigits.bs2.

V' Verify that the digits 0 through 9 are displayed.

' What's a Microcontroller - DisplayDigits.bs2

' Display the digits 0 through 9 on a 7-segment LED display.

'{$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

OUTH = %00000000
DIRH = %11111111
' BAFG.CDE
OUTH = %11100111
PAUSE 1000

OUTH = %10000100

1

1

OUTH initialized to low.

Set P8-P15 to all output-low.
Digit:

0

1



Page 176 - What's a Microcontroller?

PAUSE 1000

OUTH = %11010011 v2

PAUSE 1000

OUTH = %11010110 '3

PAUSE 1000

OUTH = %10110100 ' 4

PAUSE 1000

OUTH = %01110110 ''5

PAUSE 1000

OUTH = %01110111 ''6

PAUSE 1000

OUTH = %11000100 i

PAUSE 1000

OUTH = %11110111 '8

PAUSE 1000

OUTH = %11110110 ()

PAUSE 1000

DIRH = %00000000 ' I/0 pins to input,
' segments off.

END

How DisplayDigits.bs2 Works

Figure 6-12 shows how you can use the DIRH and ouTH variables to control the direction
and state (high/low) of I/O pins P8 through P15.

NN
NO\NN\N O OO0O00000
W\ AROO0O0O0O0O0O0O
RO OOOOOOO
[ QO Ooo00000o0o
] W) 1000000oa0

Figure 6-12
oooooooo

onoooooooooo|  Using DIRH
ZEZZa00000000/  and OUTH to
CLLZ

I L JJoooooooog t all /O Pi
da (== 00000000 seta ins
("4

to Output-Low

OUTH =
DIRH =



Chapter #6: Digital Display - Page 177

The first command:
OUTH = %00000000
gets all the I/O pins (P8 through P15) ready to send the low signals. If they all send low

signals, it will turn all the LEDs in the 7-segment LED display off. If you wanted all the
I/O pins to send the high signal, you could use ouTH = %11111111 instead.

What does % do? The % is used to tell the BASIC Stamp Editor that the number is a binary

N number. For example, the binary number %00001100 is the same as the decimal number
\é} 12. As you will see in this activity, binary numbers can make many programming tasks

much easier.

The low signals will not actually be sent by the I/O pins until you use the DIRH variable
to change all the I/O pins from input to output. The command:

DIRH = %11111111

sets all I/O pins P8 through P15 to output. As soon as this command is executed, P8
through P15 all start sending the low signal. This is because the command oUTH =
%00000000 was executed just before this DIRH command. As soon as the DIRH command
set all the I/O pins to output, they started sending their low signals. You can also use
DIRH = %00000000 to change all the I/O pins back to inputs.

Before 1/0 pins become outputs: Up until the 1/O pins are changed from input to output,
they just listen for signals and update the INH variable. This is the variable that contains
IN8, IN9, up through IN15. These variables can be used the same way that IN3 and
IN4 were used for reading pushbuttons in Chapter #3.

\-/ All BASIC Stamp /O pins start out as inputs. This is called a “default”. You have to tell a
BASIC Stamp /O pin to become an output before it starts sending a high or low signal. Both
the HIGH and LOW commands automatically change a BASIC Stamp 1/O pin’s direction to
output. Placing a 1 in the DIRH variable also makes one of the I/O pins an output.

Figure 6-13 shows how to use the ouTH variable to selectively send high and low signals
to P8 through P15. A binary-1 is used to send a high signal, and a binary-0 is used to
send a low signal. This example displays the number three on the 7-segment LED
display:

' BAFG.CDE

OUTH = %11010110



Page 178 -

What's a Microcontroller?

SN
NN\ D O0O0000o0ogd
A\ QAR OOO0O0OOOO
RO OOOOOOO
[ | [

OO0000000
] W) 1000000oa0

Figure 6-13
Ooooooooo

oooooooooooo|  Using OUTH to

R conwoime
RN O0ooooooo|  High/Low Signals
of P8 — P15.

- o

D.D.D.D.D.D.D.D.Q_Q_Q_Q_Q_Q_Q_D_

T

' BAFG.CDE
OUTH = %11010110

The display is turned so that the three on the display is upside-down because it more
clearly shows how the values in ouTH line up with the I/O pins. The command ouTH =
%11010110 uses binary zeros to set I/O pins P8, P11, and P13 low, and it uses binary
ones to set P9, P10, P12, P14 and P15 high. The line just before the command is a
comment that shows the segment labels line up with the binary value that turns that
segment on/off. The next example program shows how to set OUTH to binary numbers to
make the 7-segment LED display count from zero to nine.

i

Inside the HIGH and LOW commands: The command HIGH 15 is really the same as
OUT15 = 1 followed by DIR15 = 1. Likewise, the command LOW 15 is the same as
OUT15 = 1 followed by DIR15 = 1. If you want to change P15 back to an input, use
DIR15 = 0. You can then use IN15 to detect (instead of send) high/low signals.

Your Turn — Displaying A through F

\/
\/

Figure out what bit patterns (combinations of zeros and ones) you will need to
display the letters A, b, C, d, E, and F.
Modify SevenSegment0to9 so that it displays A, b, C, d, E, F.



Chapter #6: Digital Display - Page 179

Decimal vs. Hexadecimal The basic digits in the decimal (base-10) number system are: 0,

o 1,2, 3,4,5,6, 7,8, and 9. In the hexadecimal (base-16) number system the basic digits

1 /| are:0,1,23,4,56,7,8,9,ADb,C,d,E,F. Base-16 is used extensively in both computer

\v/ and microcontroller programming. Once you figure out how to display the characters A
through F, you can further modify your program to count in hexadecimal from 0 to F.

Keeping Lists of On/Off Patterns

The nookup command makes writing code for 7-segment LED display patterns much
easier. The Lookup command lets you “look up” elements in a list. Here is a code
example that uses the Lookup command:

LOOKUP index, [7, 85, 19, 167, 28], value

There are two variables used in this command, index and value. If the index is O,
value stores the 7. If index is 1, the value stores 85. Since index is 2, in this
example, the LookuP command places 19 into value, and that’s what the Debug
Terminal displays.

Example Program: SimpleLookup.bs2

\' Enter and run SimpleLookup.bs2.

Run the program as-is, with the index variable set equal to 2.

Try setting the index variable equal to numbers between 0 and 4.

Re-run the program after each change to the index variable and note which
value from the list gets placed in the value variable.

Optional: Modify the program by placing the LookUP command in a FOR..NEXT
loop that counts from O to 4.

< 2L 2 2

' What's a Microcontroller - SimpleLookup.bs2
' Debug a value using an index and a lookup table.

' {$sTAMP BS2}
' {$PBASIC 2.5}

value VAR Byte
index VAR Nib

index = 2
DEBUG ? index

LOOKUP index, [7, 85, 19, 167, 28], value



Page 180 - What's a Microcontroller?

DEBUG ? value, CR

DEBUG "Change the index variable to a ", CR,
"different number (between 0 and 4).", CR, CR,

"Run the modified program and ", CR,
"check to see what number the", CR,
"LOOKUP command places in the", CR,
"value variable."

END

Example Program: DisplayDigitsWithLookup.bs2

This example program shows how the LookUP command can come in really handy for
storing the bit patterns used in the ouTH variable. Again, the index is used to choose
which binary value is placed into the ouTH variable. This example program counts from
0 to 9 again. The difference between this program and DisplayDigits.bs2 is that this
program is much more versatile. It is much quicker and easier to adjust for different
number sequences using lookup tables.

V' Enter and run DisplayDigitsWithLookup.bs2.

V' Verify that it does the same thing as the previous program (with much less
work).

\' Take a look at the Debug Terminal while the program runs. It shows how the
value of index is used by the LookuP command to load the correct binary
value from the list into ouTH.

' What's a Microcontroller - DisplayDigitsWithLookup.bs2
' Use a lookup table to store and display digits with a 7-segment LED display.

' {$STAMP BS2}
' {$PBASIC 2.5}

index VAR Nib

OUTH = %00000000
DIRH = %11111111

DEBUG "index OUTH ", CR,

FOR index = 0 TO 9

LOOKUP index, [ %11100111, %10000100, $11010011,
%$11010110, %10110100, %01110110,



Chapter #6: Digital Display - Page 181

%$01110111, %11000100, $%11110111, %11110110 ], OUTH
DEBUG " ", DEC2 index, " ", BIN8 OUTH, CR
PAUSE 1000
NEXT

DIRH = %00000000

END

Your Turn — Displaying 0 through F Again

V' Modify DisplayDigitsWithLookup.bs2 so that it counts from 0 through F in
hexadecimal. Don’t forget to update the FOR.NEXT loop’s start and end
values.

ACTIVITY #4: DISPLAYING THE POSITION OF A DIAL

In Chapter #5, Activity #4 you used the potentiometer to control the position of a servo.
In this activity, you will display the position of the potentiometer using the 7-segment
LED display.

Dial and Display Parts

(1) 7-segment LED display

(8) Resistors — 1 kQ (brown-black-red)
(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)
(1) Capacitor — 0.1 uF

(7) Jumper wires

Building the Dial and Display Circuits

Figure 6-14 shows a schematic of the potentiometer circuit that should be added to the
project. Figure 6-15 shows a wiring diagram of the circuit from Figure 6-14 combined
with the circuit from Figure 6-10 on Page 172.

V' Add the potentiometer circuit to the 7-segment LED display circuit as shown
in Figure 6-15.



Page 182 - What's a Microcontroller?

P5 & MN
220 Q
Pot Z<+— Figure 6-14
10kQ = O'HF schematic of
Potentiometer
ne Circuit Added to
_I_ the Project
V;s

Figure 6-15
Project Wiring
Diagram

Programming the Dial and Display

There is a useful command called the Lookpown, and yes, it is the reverse of the Lookur
command. While the LookUP command gives you a number based on an index, the
LOOKDOWN command gives you an index based on a number.

Example Program: SimpleLookdown.bs2

This example program demonstrates how the LookDOWN command works.

\' Enter and run SimpleLookdown.bs2.

V' Run the program as-is, with the value variable set equal to 167, and use the
Debug Terminal to observe the value of index.

V' Try setting the value variable equal to each of the other numbers listed by the
LOOKDOWN command: 7, 85, 19, 28.



Chapter #6: Digital Display - Page 183

V' Re-run the program after each change to the value variable and note which
value from the list gets placed in the index variable.

Unless you tell it to make a different kind of comparison, the LookpowN command checks
to see if a value is equal to an entry in the list. You can also check to see if a value is
greater than, less than or equal to, etc. For example, to search for an entry that is less
than or equal to the value variable, use the <= operator just before the first bracket that
starts the list.

V' Modify SimpleLookdown.bs2 by substituting this value and LOOKDOWN

statement:

value 35
LOOKDOWN value,

<= [ 7, 19, 28,

J

Experiment with different values and
you would expect.

85, 167 ], index

see if the index variable displays what

. Trick question:
( ? | LOOKDOWN command can cause problems
‘@’ make any changes to the index.

What happens if your value is greater than 167? This little twist in the

because the LOOKDOWN command doesn’t

' What's a Microcontroller - SimpleLookdown.bs2
' Debug an index using a value and a lookup table.

' {$sTAMP BS2}
' {$PBASIC 2.5}

value VAR Byte

index VAR Nib

value = 167

DEBUG ? value

LOOKDOWN value, [7, 85, 19, 167, 28], index

DEBUG ? index, CR

DEBUG "Change the value variable to a ", CR,
"different number in this list:", CR,
"y, 8%, 19, 167, ew 28,7, Cr, CR,
"Run the modified program and ", CR,
"check to see what number the ", CR,



Page 184 - What's a Microcontroller?

"LOOKDOWN command places in the ", CR,
"index variable."

END

Example Program: DialDisplay.bs2

This example program mirrors the position of the potentiometer’s knob by lighting
segments around the outside of the 7-segment LED display as shown in Figure 6-16.

Figure 6-16
Displaying the
Potentiometer’s
Position with the
7-Segment LED
Display

\' Enter and run DialDisplay.bs2.

\' Twist the potentiometer’s input shaft and make sure it works.

V' When you run the example program, it may not be as precise as shown in
Figure 6-16. Adjust the values in the lookdown table so that that the digital
display more accurately depicts the position of the potentiometer.

' What's a Microcontroller - DialDisplay.bs2
' Display POT position using 7-segment LED display.

'{$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

index VAR Nib
time VAR Word
OUTH = %00000000
DIRH = %11111111
DO

HIGH 5

PAUSE 100

RCTIME 5, 1, time

LOOKDOWN time, <= [40, 150, 275, 400, 550, 800], index



Chapter #6: Digital Display - Page 185

LOOKUP index, [ %11100101, %11100001, %01100001,
%$00100001, %00000001, %00000000 ], OUTH

LOOP

How DialDisplay.bs2 Works

This example program takes an RCTIME measurement of the potentiometer and stores it in
a variable named time.
HIGH 5

PAUSE 100
RCTIME 5, 1, time

The time variable is then used in a LookDoOwN table. The LookpDowN table decides which
number in the list time is smaller than, then loads the entry number (0 to 5 in this case)
into the index variable.

LOOKDOWN time, <= [40, 150, 275, 400, 550, 800], index

Then, the index variable is used in a LooKUP table to choose the binary value to load into
the oUTH variable.

LOOKUP index, [ %11100101, %11100001, %01100001,
$00100001, %00000001, %00000000 ], OUTH

Your Turn — Adding a Segment

DialDisplay.bs2 only makes five of the six segments turn on when you turn the dial. The
sequence for turning the LEDs on in DialDisplay.bs2 is E, F, A, B, C, but not D.

\ Save DialDisplay.bs2 under the name DialDisplayY ourTurn.bs2.

\ Modify DialDisplayYourTurn.bs2 so that it causes all six outer LEDs to turn
on in sequence as the potentiometer is turned. The sequence should be: E, F,
A, B, C,and D.



Page 186 - What's a Microcontroller?

SUMMARY

This chapter introduced the 7-segment LED display, and how to read a pin map. This
chapter also introduced some techniques for devices and circuits that have parallel inputs.
The pIrH and oUTH variables were introduced as a means of controlling the values of
BASIC Stamp I/O pins P8 through P15. The rookup and LOOKDOWN commands were
introduced as a means for referencing the lists of values used to display letters and
numbers.

Questions

1.

In a 7-segment LED display, what is the active ingredient that makes the display
readable when a microcontroller sends a high or low signal?

2. What does common cathode mean? What do you think common anode means?
3. What is the group of wires that conduct signals to and from a parallel device
called?
4. What are the names of the commands in this chapter that are used to handle lists
of values?
Exercises
1. Write an ouTH command to set P8, P10, P12 high and P9, P11, P13 low.
Assuming all your I/O pins started as inputs, write the DIRE command that will
cause the I/0 pins to send high/low signals while leaving P14, P15 configured as
inputs.
2. Write the values of ouTs required to make the letters: a, C, d, F, H, I, n, P, S.
Project
1. Spell “FISH CHIPS And dIP” over and over again with your 7-segment LED
display. Make each letter last for 400 ms.
Solutions

QI. The active ingredient is an LED.
Q2. Common cathode means that all the cathodes are connected together, i.e., they

share a common connection point. Common anode would mean that all the
anodes are connected together.

Q3. A parallel bus.
Q4. LookuP and LOOKDOWN handle list of values.



Chapter #6: Digital Display - Page 187

El. The first step for configuring ouTH is set to "1" in each bit position specified as
HIGH. So bits 8, 10, and 12 get set to "1". Then put a "0" for each Low, so bits 9, 11,
and 13 get a "0", as shown. To configure DIRH, the specified pins, 8, 10, 12, 9, 11,
and 13 must be set as outputs by setting those bit to "1". 15 and 14 are configured
as inputs by placing zeroes in bits 15 and 14. The second step is to translate this to a
PBASIC statement.

Bit 15 14 13 12 11 10 9 8
OUTH 0 0 0 1 o0 1 o0 1

Bit 15 14 13 12 11 10 9 8
DIRH 0 0 1 1 1 1 1 1

OUTH = %00010101 DIRH = %00111111

E2. The key to solving this problem is to draw out each letter and note which segments
must be lit. Place a 1 in every segment that is to be lit. Translate that to the binary

OUTH value.
Letter | LED Segments | BAFG.CDE | OUTL Value = e
a e, f,a,b,c, g 11110101 | %$11110101 109876
C a,f, e d 01100011 | %01100011
d b,c,d, e g 10010111 $10010111
F a,f,e g 01110001 | %01110001
H f,e,b,c, g 10110101 %$10110101
I f,e 00100001 | %$00100001
n e, gc 00010101 $00010101
P allbutdand e 11110001 | %$11110001
S a,f,gc,d 01110110 | %01110110 12345
From Figure 6-2, p. 160 %gphlggg

P1. Use the Schematic from Figure 6-10 on page 172. To solve this problem, modify
DisplayDigitsWithLookup.bs2, using the letter patterns worked out in Exercise 1.
In the solution, the letters have been set up as constants to make the program more
intuitive. Using the binary values is fine too, but more prone to errors.

' What's a Microcontroller - Ché6Prj0l FishAndChips.bs2
' Use a lookup table to store and display digits with a 7-segment display.
' Spell out the message: FISH CHIPS And dIP

'{$sTaMP BS2}
' {$PBASIC 2.5}



Page 188 - What's a Microcontroller?

Patterns of 7-Segment Display to create letters

' All off to start
' All LEDs must be outputs

' 19 chars in message

' 19 chars in message

space, C, H, I, P, S, space,

n, d, space, d, I, P, space ], OUTH

A CON %$11110101
@ CON %$01100011
d CON %$10010111
F CON %$01110001
H CON %$10110101
I CON %$00100001
n CON %$00010101
P CON %$11110001
S CON %$01110110
space CON %$00000000
OUTH = %00000000
DIRH = %11111111
index VAR Byte
DO
DEBUG "index OUTH ", CR,
L n CR
FOR index = 0 TO 18
LOOKUP index, [ F, I, S, H,
A,
DEBUG " ", DEC2 index, "
PAUSE 400
NEXT
LOOP

Further Investigation

As with all texts cited in this section, this one is available for free download from

www.parallax.com.

", BINS OUTH, CR

' 400 ms between letters

“StampWorks’, Workbook, Version 1.2, Parallax I nc., 2001

StampWorks is written by Nuts & Volts author Jon Williams, and features a wide
This text is a collection of 32 experiments including
several that use 7-segment LED displays and other types of displays. This text
makes use of the INEX 1000 board, which has many of the components you

variety of experiments.

have used in this text built into it.



Chapter #7: Measuring Light - Page 189

Chapter #7: Measuring Light

DEVICES THAT CONTAIN LIGHT SENSORS

You have already worked with two different kinds of sensors. The pushbutton can be
thought of as a simple pressure sensor, and the potentiometer is a position/rotation sensor.
There are many kinds of sensors built into appliances and machines that are not as
obvious as a button or a knob. Other common sensors measure things like temperature,
smoke, vibration, tilt, and light. Although each of these different kinds of sensors can be
found in one or more devices that most people use on a daily basis, light sensors are
probably the most common.

One example of an every-day device that contains a light sensor is probably your
television. If it can be controlled by a handheld remote, it has a built-in detector for a
type of light called infrared that cannot be seen by the human eye. The handheld remote
uses infrared light to transmit information about the channel, volume, and other keys that
you might press to control the TV. Another common example is a digital camera. A
camera’s light sensors help it adjust for various lighting conditions so that the picture
looks clear regardless of whether it’s a sunny or cloudy day.

INTRODUCING THE PHOTORESISTOR

Light sensors have many different functions, and they come in different shapes, sizes, and
with different price tags. Some sensors are designed to sense a particular color of light,
such as blue, green, red, or infrared. Some sensors don’t care what color the light is
because they react to how bright the light is. Other sensors look for only special kinds of
light given off by certain chemical reactions. Light sensors also have a variety of ways to
tell a microcontroller what they see. Some sensors send a voltage, some send a sequence
of binary values, and others react to different kinds of light or light levels by changing
resistance.

Of the light sensors that react to light by changing their resistance, the photoresistor
shown in Figure 7-1 is probably the most common, least expensive and easiest to use. Its
active ingredient is a chemical compound called cadmium sulfide (CdS). This compound
changes resistance depending on how bright the light is that shines on its collecting
surface. Bright light causes low resistance values between the two leads while dim light
causes higher resistance values.



Page 190 - What's a Microcontroller?

Figure 7-1
Photoresistor Schematic and
¥y Part Drawing.

The photoresistor’'s cadmium
sulfide coated light collecting
surface is shown at the top of
the part’s drawing.

As with a potentiometer, you can use a photoresistor in an RC-time circuit. The program
to read the photoresistor is also about the same as the one used to read the potentiometer.
Even though the programming is the same, light is very different from rotation or
position. The activities in this chapter focus on applications that use light (instead of
position) to give the microcontroller information. Along the way, some PBASIC
programming techniques will be introduced that will help you with long term data
storage, and with making your programs more manageable and readable.

ACTIVITY #1: BUILDING AND TESTING THE LIGHT METER

In this activity, you will build and test an RC-time circuit that reads the value of a
photoresistor. The RC-time measurement will give you an idea of the light levels sensed
by the photoresistor’s light collecting surface. As with the potentiometer test, the time
values measured by the RcTIME command will be displayed in the Debug Terminal.

Light Detector Test Parts

(1) Photoresistor

(1) Resistor — 220 Q (red-red-brown)
(1) Capacitor — 0.01 uF

(1) Capacitor — 0.1 uF

(1) Jumper wire

/ &  Although there are two capacitors in the list of parts, you will only use one capacitor in
\L/ the circuit at any given time.

Building the RC Time Circuit with a Photoresistor

Figure 7-2 shows a schematic of the RC-time circuit you will use in this chapter, and
Figure 7-3 shows the wiring diagram. This circuit is different from the potentiometer
circuit from Chapter #5, Activity #3 in two ways. First, the I/O pin used to measure the



Chapter #7: Measuring Light - Page 191

decay time is different (P2). Second, the variable resistor is now a photoresistor instead
of a potentiometer.

V' Build the circuit shown in Figure 7-2 and Figure 7-3.

P2 O—AW
220 Q %
T %0WF Figure 7-2
Photoresistor RC-time
Circuit Schematic
Vss

X3
pisfEl| COOOO ooooo
p2M| 00000 _ 00000
P3| 00000 ooooo
poM| 00000 ooooo
o1 ooooo ooooo

ooooo ooooo .
F’Wl ocoooo| |ocoooo Figure 7-3 .
Pa ooooo oooog Photoresistor RC-time
ooooo ooooo - ;

Eé talalals lslalals Wiring Diagram
e ooooo ooooo
i ooooo ooooo |
3 ooooo oo
P —:—:93@_ oo Y,
> oo :ﬁm //
- ooooo m](/[CF,

Sl ooooo oo [

Programming the Photoresistor Test

The first example program (TestPhotoresistor.bs2) is really just a slightly revised version
of ReadPotWithRcTime.bs2 from Chapter #5, Activity #3. The potentiometer circuit
from Chapter #5 was connected to I/O pin P7. The circuit in this activity is connected to
P2. Because of this difference, the example program has to have two commands updated
to make it work. The command that was HIGH 7, since the potentiometer circuit was
connected to P7, is now HIGH 2 since the photoresistor circuit is connected to P2. For
the same reason, the command that was RCTIME 7, 1, time iS now RCTIME 2, 1,
time.



Page 192 - What's a Microcontroller?

Example Program: TestPhotoresistor.bs2

Instead of twisting the potentiometer’s knob, the circuit is tested by exposing the light
collecting surface of the photoresistor to different light levels. When the example
program is running, the Debug Terminal should display small values for bright light
conditions and large values for low light conditions.

V' Enter and run TestPhotoresistor.bs2.

V' While watching the value of the time variable on the Debug Terminal note the
value under normal lighting conditions.

V' Turn the lights in the room off or cast a shadow over the circuit with your hand
and check the time variable again. It should be a significantly larger number.

\ If you face the photoresistor’s light collecting surface toward direct sunlight,
the time variable should be fairly small.

' What's a Microcontroller - TestPhotoresistor.bs2
' Read photoresistor in RC-time circuit using RCTIME command.

' {$sTAMP BS2}
v {$PBASIC 2.5}

time VAR Word
DO

HIGH 2

PAUSE 100

RCTIME 2, 1, time

DEBUG HOME, "time = ", DEC5 time
LOOP

Your Turn — Using a Different Capacitor for Different Light Conditions

Replacing the 0.01 uF capacitor with a 0.1 uF capacitor can be useful for more brightly
lit rooms or outdoors. The time measurements with the 0.1 UF capacitor will take ten
times as long, which means the value of the time variable displayed by the Debug
Terminal should be ten times as large.

V' Modify the circuit by replacing the 0.01 UF capacitor with a 0.1 uF capacitor.
V' Re-run TestPhotoresistor.bs2 and verify that the RC-time measurements are
roughly ten times their former values.



Chapter #7: Measuring Light - Page 193

\ Before you move on to the next activity, return the circuit to the original one
shown in Figure 7-2 by removing the 0.1 UF capacitor and replacing it with the
0.01 uF capacitor.

ACTIVITY #2: GRAPHING LIGHT MEASUREMENTS

Factories often have to monitor many sensor inputs to make sure the products they make
turn out right. From light levels in a greenhouse to fluid levels in an oil refinery to
temperature levels in a nuclear reactor, the people responsible for controlling these levels
often rely on graphs of the sensor measurements to get the information they need.

Introducing Stamp Plot Lite

Figure 7-4 shows Stamp Plot Lite software graphing RC-time measurements sent by the
BASIC Stamp. The line shown in Figure 7-4 is much easier to understand than the 250
RC-time measurements that were used to plot that line. Viewing the graph from left to
right, the RC-time measurements gradually get larger and then suddenly drop off. Since
RC-time measurements get larger when the light levels decrease and smaller when they
increase, the graph tells a story. It looks like the light level being measured declined
gradually, and then it suddenly increased again.

Figure 7-4
Stamp Plot Lite
Graphing
Measured Light
Levels

This graph could depict any number of scenarios to the technician reading it. Perhaps a
microcontroller in a greenhouse switched on the artificial lights after the sunlight dropped
below a certain level. Perhaps a system of motors and gears that maintains a solar
panel’s position for maximum sunlight exposure just readjusted the panel’s position after



Page 194 - What's a Microcontroller?

detecting a decrease in light exposure. Regardless of the scenario, if you are familiar
with the measurement being graphed, tools like Stamp Plot Lite can really help make
sense out of data. It does this by converting lists of measurements into a graph.

/‘:"\ Stamp Plot Lite is free for educational use courtesy of SelmaWare Solutions and can be
( 1 /) installed from the Parallax CD or downloaded from the Parallax web site or directly from
http://www.selmaware.com/.

Downloading and Installing Stamp Plot Lite

Before installing Stamp Plot Lite, you must have WinZip installed on your PC or laptop.
WinZip can be installed from the Parallax CD or downloaded from www.winzip.com.
Below are instructions for downloading and installing Stamp Plot Lite from the Parallax
web site:

Go to the Downloads area at www.parallax.com.

Select BASIC Stamp Software.

Download the file labeled “Stamp Plot Lite graphing utility...”

Save StampPlot.zip to your disk.

Open StampPlot.zip by double-clicking it.

If you are using the WinZip wizard, follow the screen prompts, and it will run
the installation program. If you are using WinZip classic, you will have to
double-click Setup.exe to start the installation.

\ Follow the Stamp Plot Lite installation program’s prompts to install the
software.

2L 2 2 2 2 2

Programming to Send Measurements to Stamp Plot Lite

Sending values you want to graph in Stamp Plot Lite is almost the same as sending
numbers to the Debug Terminal, but there are a few rules. First, values are sent using
only the pEC formatter and the cr control character. We want to plot the value of the
time variable, so all that should be sent to the Debug Terminal is the decimal value
followed by a carriage return.

DEBUG DEC time, CR

You can also send display settings to Stamp Plot Lite by sending special messages in
quotes. These messages are called control codes. Control codes are sent to Stamp Plot
Lite at the beginning of a PBASIC program. Although you can click and adjust all the
settings on the software itself, it is usually easier to program the BASIC Stamp to tell



Chapter #7: Measuring Light - Page 195

Stamp Plot Lite those settings for you. Here is an example of some configuration settings
from the next example program that will make your RC-time measurements easier to read
without any adjustments to Stamp Plot Lite’s display settings.

DEBUG "!AMAX 1250", CR,
"ITMAX 25", CR,
"ITMIN 0", CR,
"ISHFT ON", CR,
"IRSET", CR

/’?\ For more information on how to send values and control codes to Stamp Plot Lite, run
|  Stamp Pot Lite’s Help file. Click Start, select programs, select Stamp Plot, then click Stamp

1
&’ Plot Help.

Example Program: PlotPhotoresistor.bs2
Follow these steps to plot the photoresistor data:
\' Use the BASIC Stamp Editor to enter and run PlotPhotoresistor.bs2.

V' Verify that there is a single column of values scrolling down the Debug
Terminal. Figure 7-5 shows an example.

45 Debug Terminal #1
Com Port: Bau

COM1 = 360

Data Bits: Flow Cantral:

~ A J Figure 7-5
130 Example of Scrolling
191 Values in the Debug
192 Terminal.
192
190
[T

V' Make a note of the COM number in the COM Port field in the upper left hand
corner of the Debug Terminal.

V' Use the Windows Start Menu to run Stamp Plot Lite. Click Start, then select
Programs — Stamp Plot — Stamp Plot Lite.

V' Set the COM Port field in Stamp Plot Lite to that same value. Figure 7-6
shows an example where the value is COM1 in the Debug Terminal, so Stamp
Plot is also set to COM1. Your COM port value may be a different number.



Page 196 -

What's a Microcontroller?

Just check to see what the number is in the Debug Terminal, then set Stamp
Plot Lite to that number.

Close the Debug Terminal (click the X button on the top-right or click the
Close button near the bottom of the window).

In the Stamp Plot Lite window, click Connect, then click Plot Data.
Checkmarks should appear in each box after you click it.

i Figure 7-6
ebug Terminal #1
- COM Port Settings
IEDM1 v[ IEEIM1 vI
Debug Terminal (left)

Data Bits: Flaw | i
and Stamp Plot Lite

. Ao I_ (right).

Press and release the Reset button on your Board of Education or HomeWork
Board. This starts the BASIC Stamp program over from the beginning, which
sends the DEBUG commands that configure Stamp Plot Lite.

The data will start graphing as soon as you click Plot Data. Hold you hand
over the photoresistor at different distances to simulate different lighting
conditions. Remember, the darker the shadow you cast, the higher the value in
the graph; the brighter the light, the smaller the value.

IMPORTANT: Only one program can use a COM port at one time.

Before attempting to run a different program using the BASIC Stamp Editor, you must
uncheck the Connect and Plot Data checkboxes in Stamp Plot Lite.

Before reconnecting Stamp Plot Lite (by clicking the Connect and Plot Data checkboxes),
you must close the Debug Terminal.

' What's a Microcontroller - PlotPhotoresistor.bs2
' Graph light levels using Stamp Plot Lite.

' {$sTAMP BS2}
' {$PBASIC 2.5}

time

VAR Word

DEBUG "!AMAX 1250", CR,
"ITMAX 25", CR,
"ITMIN 0", CR,
"|SHFT ON", CR,
"IRSET", CR



Chapter #7: Measuring Light - Page 197

DO

HIGH 2

PAUSE 100

RCTIME 2, 1, time
DEBUG DEC time, CR

LOOP

Your Turn — Adjusting the Display

Span and Time Span have + and — buttons that you can click to increase or decrease the
vertical and horizontal scales. Span is to the left of the area that displays the graph, and
you can use it to adjust the maximum and minimum values displayed on the graph. Time
Span is below the graph, and you can use it to change how many seconds worth of values
plotted in the window.

V' Experiment with increasing and decreasing these values and note their effects
on the how the graph appears.

If you have difficulty finding your plot, you can always press and release the Reset button
on your Board of Education or BASIC Stamp HomeWork Board to restore the default
settings.

ACTIVITY #3: TRACKING LIGHT EVENTS

One of the more useful features of the BASIC Stamp module’s program memory is that
you can disconnect the power, but the program is not lost. As soon as you reconnect
power, the program starts running again from the beginning. Any portion of the program
memory that is not used for the program can be used to store data. This memory is
especially good for storing data that you do not want the BASIC Stamp to forget, even if
power is disconnected and reconnected.

The chip on the BASIC Stamp that stores program memory and data is shown in Figure
7-7. This chip is called an EEPROM. EEPROM stands for electrically erasable
programmable read-only memory. That’s quite a mouthful, and pronouncing each of the
first letters in EEPROM isn’t much better. When people talk about an EEPROM, it is
usually pronounced “E-E-Prom”.



Page 198 - What's a Microcontroller?

Figure 7-7
EEPROM Chip
on BASIC Stamp

Figure 7-8 shows a window called Memory Map. You can view this window by clicking
Run and selecting Memory Map. The Memory Map uses different colors to show how
both the BASIC Stamp module’s RAM (variables) and EEPROM (program memory) are
being used. The EEPROM Map has two graphs. The bar at the far left shows that only a
small fraction of the program memory is used to store the photoresistor program from
Activity #2. By scrolling to the bottom of the EEPROM Map’s main window and
counting the bytes highlighted in blue, you will find that only 101 bytes out of the 2048
byte EEPROM are used for the program. The remaining 1947 bytes are free to store data.

#Memory Map - EEPROM 4% Full (Untitled1) x|
EEPROM Map RAM Map
- o[1[z3[a[s[e[7[e[o]a[e[c[o][E[F][<] s 5141312 111088 T6E54 3210
Y
0uTs: I
DIRs: I
recn .
e Figure 7-8
Fees Memory Map
REGS
REGE
REGY. . . .
[790]00 00 00 00 00 00 00 00 00 00 00 pehe TO view this window,
0 REGID click Run, and select
REGTT
REGT2 Memory Map.
M Legend

B -Fins [ -Byte [ -Bit
[ -‘w/ord [ - Nibble [ - Unused

EPROM Legend
[~ Display ASCIl B -Uncei. Data [0 - Program

B -Def.Data  C-Unused || o0 Cose [Dnitedt B




Chapter #7: Measuring Light - Page 199

2048 bytes = 2 KB. You can use 2048 bytes to store 2048 different numbers, each of
which can store a value between 0 and 255.

The upper-case ‘B’ stands for bytes. A lower-case ‘b’ stands for bits. This can make a big
— difference because 2048 Kb means that 2048 different numbers, but each number is limited
3 ) toavalue of either 0 or 1.

1
\v/ Although both the upper case ‘K’ and the lower-case ‘k’ are called kilo, they are slightly
different. The upper-case ‘K’ is used to indicate a binary kilobyte, which is 1 x 2'% = 1024.
When referring to exactly 2000 bytes, you can use the lower-case k, which stands for kilo

(1 X 10% = 1000) in the metric system.

Using the EEPROM for data storage can be very useful for remote applications. One
example of a remote application would be a temperature monitor placed in a truck that
hauls frozen food. A second example is a weather monitoring station. One of the pieces
of data a weather station might store for later retrieval is light levels.

Since we are using a photoresistor to measure light levels, this activity introduces a
technique for storing measured light levels to, and retrieving them back from the
EEPROM. In this activity, you will run one PBASIC example program that stores a
series of light measurements in the BASIC Stamp module’s EEPROM. After that
program is finished, you will run a second program that retrieves the values from
EEPROM and displays them in the Debug Terminal.

Programming Long Term Data Storage

The wrRITE command is used to store values in the EEPROM, and the READ command is
used to retrieve those values.

The syntax for the WRITE command is:
WRITE Location, {WORD} Data Item

For example, if you want to write the value 195 to address 7 in the EEPROM, you could
use the command:

WRITE 7, 195

Word values can be anywhere between 0 and 65565 while byte values can only contain
numbers between 0 and 255. A word value takes the space of two bytes. If you want to
write a word size value to EEPROM, you have to use the optional word modifier. Be
careful though. Since a word takes two bytes, you have to skip one of the byte size
addresses in EEPROM before you can write another word. Let’s say you need to save



Page 200 - What's a Microcontroller?

two word values to EEPROM: 659 and 50012. You could start at address 8, but you will
have to write the second value to address 10.

WRITE 8, Word 659
WRITE 10, Word 50012

Is it possible to write over the program? Yes, and if you do, the program is likely to either
start behaving strangely or stop running altogether. Since the PBASIC program tokens
reside in the highest addresses in the EEPROM, it's best to use the lowest Address values
for storing numbers with the WRITE command.

How do | know if the Address I'm using is too large? You can use the memory map to
figure out the highest value not used by your PBASIC program. The numbers on the left
side of the main Memory Map graph shown in Figure 7-8 on page 198 are hexadecimal
numbers, and 79A is the highest value not occupied by a program token. Hexadecimal
means base-16, so 79A is really:

7x162 + 9x16' + Ax16°
=7x16% + 9x16" + 10x16°

¢

= 7x256 + 9x16 + 10x1
= 1946.

Why does this add up ot 1946 instead of 1947? There are 1947 total addresses free, but
they are numbered Address 0 through Address 1946. You can also program the BASIC
Stamp to make this conversion for you using the DEBUG command’s DEC formatter and the
$ hexadecimal operator like this:

DEBUG DEC $79A

For a reminder about hexadecimal numbers, see the information box on page 179.

Example Program: StoreLightMeasurementsinEeprom.bs2

This example program demonstrates how to use the WRITE command by taking light
measurements every 5 seconds for 2 2 minutes and storing them in EEPROM.

\' Enter and run StoreLightMeasurementsToEeprom.bs?2 .
v Record the measurements displayed on the Debug Terminal so that you can
verify the measurements read back from the EEPROM.

\  Gradually increase the shade over the photoresistor during the 2 %2 minute test period for

\&/ meaningful data.

' What's a Microcontroller - StoreLightMeasurementsInEeprom.bs2



Chapter #7: Measuring Light - Page 201

' Write light measurements to EEPROM.

' {$sTAMP BS2}
' {$PBASIC 2.5}

time VAR Word
eepromAddress VAR Byte
DEBUG "Starting measurements...", CR, CR,
"Measurement Value", CR,
N o e e e e e e n , CR
PAUSE 1000

FOR eepromAddress = 0 TO 58 STEP 2
HIGH 2
PAUSE 5000
RCTIME 2, 1, time
DEBUG DEC2 eepromAddress,
n ", DEC time, CR
WRITE eepromAddress, Word time

NEXT

DEBUG "All done. Now, run:", CR,
"ReadLightMeasurementsFromEeprom.bs2"

END

How StoreLightMeasurementsinEeprom.bs2 Works

The For..NEXT loop that measures the RC-time values and stores them to EEPROM has
to count in steps of 2 because word values are written into the EEPROM.

FOR eepromAddress = 0 to 58 STEP 2
The reTIME command loads the time measurement into the word size time variable.
RCTIME 2, 1, time

The time variable is stored at the address given by the current value of the
eepromAddress variable each time through the loop. Remember, the eepromaddress
variable is incremented by two each time through the loop because a word variable takes
up two bytes. The address for a WRITE command is always in terms of bytes.

WRITE eepromAddress, Word time
NEXT



Page 202 - What's a Microcontroller?

Programming Data Retrieval

To retrieve these values from EEPROM, you can use the READ command. The syntax for
the READ command is:

READ Location, {WORD} Data Item

While the wrRITE command can use either a constant or a variable, the READ command’s
DataItem argument must be a variable, because it has to store the value fetched from the
EEPROM by the READ command.

Let’s say that the variable eepromvaluea and eepromvalueB are Word variables, and
littleEE is a byte variable. Here are some commands to retrieve the values you stored
using the write command.

READ 7, littleEE

READ 8, Word eepromValueA
READ 10, Word eepromValueB

Example Program: ReadLightMeasurementsFromEeprom.bs2

This example program demonstrates how to use the READ command to retrieve the light
measurements that were stored in EEPROM by StoreLightMeasurementsInEeprom.bs2.

\  After StoreLightMeasurementsToEeprom.bs2 has completed, disconnect and
reconnect the power supply to the BASIC Stamp module to prove that the data
is not erased from the module’s EEPROM when the power is disconnected.
Also, close and re-open the BASIC Stamp Editor.

\' Leave the BASIC Stamp module’s power disconnected until you are ready to
run ReadLightMeasurementsFromEeprom.bs2; otherwise, it will start taking
measurements again.

\' Enter and run ReadLightMeasurementsFromEeprom.bs2.

Compare the table that is displayed by this program with the one displayed by
StoreLightMeasurementsInEeprom.bs2, and verify that the values are the same.

' What's a Microcontroller - ReadLightMeasurementsFromEeprom.bs2
' Read light measurements from EEPROM.

' {$sTAMP BS2}
' {$PBASIC 2.5}

time VAR Word



Chapter #7: Measuring Light - Page 203

eepromAddress VAR Byte

DEBUG "Retrieving measurements", CR, CR,
"Measurement Value", CR,
n , CR

FOR eepromAddress = 0 TO 58 STEP 2

READ eepromAddress, Word time

DEBUG DEC2 eepromAddress, " ", DEC time, CR
NEXT

END

How ReadlLightMeasurementsFromEeprom.bs2 Works

As with the WRITE command, the READ command uses byte-size addresses. Since words
are being read from the EEPROM, the eepromaddress variable has to have 2 added to it
each time through the FOR..NEXT loop.

FOR eepromAddress = 0 to 58 STEP 2

The rREaD command gets the word size value at eepromaddress. This value is loaded
into the time variable.

READ eepromAddress, Word time

The value of the time and eepromaddress variables are displayed as columns in a table
in the Debug Terminal.

DEBUG DEC2 eepromAddress, " ", DEC time, CR
NEXT

Your Turn — Plotting the Stored Data

V' Modify ReadLightMeasurementsFromEeprom.bs2 so that it displays the data
to Stamp Plot Lite. Remember, the DEBUG statement must only display the
value and a carriage return.

ACTIVITY #4: SIMPLE LIGHT METER

Light sensor information can be communicated in a variety of ways. The light meter you
will work with in this chapter changes the rate that the display flickers depending on the
light intensity it detects.



Page 204 - What's a Microcontroller?

Light Meter Parts

(1) Photoresistor

(1) Resistor — 220 Q (red-red-brown)
(1) Capacitor — 0.01 uF

(1) Capacitor — 0.1 uF

(1) 7-segment LED display

(8) Resistors — 1 kQ (brown-black-red)
(6) Jumper wires

Building the Light Meter Circuit

Figure 7-9 shows the 7-segment LED display and photoresistor circuit schematics that
will be used to make the light meter, and Figure 7-10 shows a wiring diagram of the
circuit. The photoresistor circuit is the same one you have been using in the last two
activities, and the 7-segment LED display circuit is the one that was controlled by the
BASIC Stamp in Chapter #6.



P15
P14
P13
P12
P11
P10

P9

P8

P2

Chapter #7: Measuring Light - Page 205

Leps ¥

V7

V7
¢

V{4

¢
»
¢
»
¢
»
¢
w

¢
//

o Wy
2200 7%

common

Vss

— 0.01 pF

Figure 7-9
Light Meter
Circuit

Schematic.



Page 206 - What's a Microcontroller?

ooogoooon
ooogoooon
oo OO0 00 =
oo Ooooooooo
oo Ooooo

Vi

opefioooor C
ooooooo!

]

- OO0V YN

000y YR

RN URIEININIA A )\ ¥
LN - -\ "

Build the circuit shown in Figure 7-9 and Figure 7-10.
Test the 7-segment LED display to make sure it is connected properly using
SegmentTestWithHighLow.bs2 from Chapter #6, Activity #2.

PPA

Figure 7-10
Wiring Diagram
for Figure 7-9

UIA

SA

2 <2

Using Subroutines

Most of the programs you have written so far operate inside a po..Loop. Since all the
main activity happens inside the Do..LooP, it is usually called the main routine. As you
add more circuits and more useful functions to your program, it can get kind of difficult
to keep track of all the code in the main routine. Your programs will be much easier to
work with if you organize them into smaller segments of code that do certain jobs.
PBASIC has some commands that you can use to make the program jump out of the main
routine, do a job, and then return right back to the same spot in the main routine. This
will allow you to keep each segment of code that does a particular job somewhere other
than your main routine. Each time you need the program to do one of those jobs, you can
write a command inside the main routine that tells the program to jump to that job, do it,
and come back when the job is done. This process is called executing a subroutine.

Figure 7-11 shows an example of a subroutine and how it’s used. The command cosus
Subroutine Name causes the program to jump to the Subroutine Name: label. When
the program gets to that label, it keeps running and executing commands until it gets to a
RETURN statement. Then, the program goes back to command that comes after the cosus
command. In the case of the example in Figure 7-11, the next command is: DEBUG
"Next command".



Chapter #7: Measuring Light - Page 207

DO

GOSUB Subroutine Name

DEBUG "Next command"

LOOP .
Figure 7-11
How
(b ) N Subroutines
Subroutine Name: Work
DEBUG "This is a subroutine..."
PAUSE 3000
RETURN

What's a label? A label is a name that can be used as a placeholder in your program.
GOSUB is one of the commands you can use to jump to a label. Some others are GOTO,
~~™. ON GOTO, and ON GOSUB. You can use these commands to jump to labels. A label must
\ ? /end with a colon, and for the sake of style, separate words with the underscore character.
& \When picking a name for a label, make sure not to use a reserved word. The rest of the
rules for a label name are the same as the ones for naming variables listed in the
information box on page 53.

Example Program: SimpleSubroutines.bs2

This example program shows how subroutines work by sending messages to the Debug
Terminal.

v Examine SimpleSubroutines.bs2 and try to guess the order in which the DEBUG
commands will be executed.

\' Enter and run the program.

\' Compare the program’s actual behavior with your predictions.

' What's a Microcontroller - SimpleSubroutines.bs2
' Demonstrate how subroutines work.

' {$sSTAMP BS2}
' {$PBASIC 2.5}

DO

DEBUG CLS, "Start main routine.", CR



Page 208 - What's a Microcontroller?

PAUSE 2000

GOSUB First Subroutine
DEBUG "Back in main.", CR
PAUSE 2000

GOSUB Second_ Subroutine
DEBUG "Repeat main...", CR
PAUSE 2000

LOOP

First_ Subroutine:

DEBUG " Executing first "
DEBUG "subroutine.", CR
PAUSE 3000

RETURN

Second_Subroutine:

DEBUG " Executing second "
DEBUG "subroutine.", CR
PAUSE 3000

RETURN

How SimpleSubroutines.bs2 Works

Figure 7-12 shows how the First Subroutine call in the main routine (the DO..LOOP)
works.  The command GOSUB First Subroutine sends the program to the
First Subroutine: label. The three commands inside that subroutine are executed.
When the program gets to the RETURN statement, it jumps back to the command that

comes right after the osuB command, which is DEBUG "Back in Main.", CR.

/9 " What's a subroutine call? When you use the GOSUB command to make the program jump
\é} to a subroutine, it is called a subroutine call.




PAUSE 2000

GOSUB First Subroutine

DEBUG "Back in main.", CR
<::::;;rst_Subroutine:
DEBUG " Executing first "
DEBUG "subroutine.", CR
PAUSE 3000
RETURN

Chapter #7: Measuring Light - Page 209

Figure 7-12
First Subroutine
Call

Figure 7-13 shows a second example of the same process with the second subroutine call

(GOSUB Second Subroutine).

PAUSE 2000
GOSUB Second_ Subroutine

DEBUG "Repeat main...", CR
<:::;;cond_8ubroutine:
DEBUG " Executing second "

DEBUG "subroutine", CR
PAUSE 3000
RETURN

Your Turn — Adding and Nesting Subroutines

Figure 7-13
Second Subroutine
Call

You can add subroutines after the two that are in the program and call them from within

the main routine.

V' Add the subroutine example in the Figure 7-11 on page 207 to

SimpleSubroutines.bs2.



Page 210 - What's a Microcontroller?

V' Make any necessary adjustments to the DEBUG commands so that the display
looks right with all three subroutines.

You can also call one subroutine from within another. This is called nesting subroutines.

V' Try moving the GosuB that calls Subroutine Name into one of the other
subroutines, and see how it works.

L™ \ When nesting subroutines the rule is no more than four deep. See the BASIC Stamp
\ |1 g/ Manual for more details. Look up GOSUB and RETURN.

Light Meter Using Subroutines

The segments on the display cycle in a circular pattern that gets faster when the light on
the photoresistor gets brighter. When the light gets dimmer, the circular pattern
displayed by the 7-segment LED display goes slower.

The program that runs the light meter will deal with three different operations:
1. Read the photoresistor.
2. Calculate how long to wait before updating the 7-segment LED display.
3. Update the 7-segment LED display.

Each operation is contained within its own subroutine, and the main Do...L.ooP routine will
cycle and call each one in sequence, over and over again.

Example Program: LightMeter.bs2

~=.  Controlled lighting conditions make a big difference. For best results, conduct this test in
: ! ,aroom lit by fluorescent lights with no direct sunlight (close the blinds). For information on
@’ how to calibrate this meter to other lighting conditions, see the Your Turn section.

\' Enter and run LightMeter.bs2.

\ Verify that the circular pattern displayed by the 7-segment LED display is
controlled by the lighting conditions the photoresistor is sensing. Do this by
casting a shadow over it with your hand or a piece of paper.



Chapter #7: Measuring Light - Page 211

' What's a Microcontroller - LightMeter.bs2
' Indicate light level using 7-segment display.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

index VAR Nib Variable declarations.
time VAR Word
OUTH = %00000000 Initialize 7-segment display.

DIRH = %$11111111

DO
GOSUB Get_Rc_Time
GOSUB Delay
GOSUB Update Display

LOOP

Get_Rc_Time:

HIGH 2
PAUSE 3
RCTIME 2, 1, time

RETURN
Delay:
PAUSE time
RETURN
Update Display:

IF index = 6 THEN index =
! BAFG.CDE
LOOKUP index, [ %01000000,
%$10000000,
%00000100,
%$00000010,
%$00000001,
%00100000
index = index + 1

RETURN

0

1,

OUTH

Main routine.

Subroutines

RC-time subroutine

Delay subroutine.

Display updating subroutine.



Page 212 - What's a Microcontroller?

How LightMeter.bs2 Works

The first two lines of the program declare variables. It doesn’t matter whether these
variables are used in subroutines or the main routine, it’s always best to declare variables
(and constants) at the beginning of your program. Since this is such a common practice,
this section of code has a name, variable declarations. This name is shown in the
comment to the right of the first variable declaration.

index VAR Nib ' Variable declarations.
time VAR Word

Many programs also have things that need to get done once at the beginning of the
program. Setting all the 7-segment I/O pins low and then making them outputs is an
example. This section of a PBASIC program also has a name, initialization.

OUTH $00000000 ' Initialize 7-segment display.
DIRH = %11111111

This next segment of code is called the main routine. The main routine calls the
Get_Rc_Time subroutine first. Then, it calls the Delay subroutine, and after that, it calls
the update Display subroutine. Keep in mind that the program goes through the three
subroutines as fast as it can, over and over again.
DO ' Main routine.
GOSUB Get Rc_Time
GOSUB Delay

GOSUB Update Display
LOOP

All subroutines are usually placed after the main routine. The first subroutine’s name is
Get Rc_Time:, and it takes the RC-time measurement on the photoresistor circuit. This
subroutine has a pausE command that charges up the capacitor. The Duration of this
command is small because it only needs to pause long enough to make sure the capacitor
is charged. Note that the ReTIME command sets the value of the time variable. This
variable will be used by the second subroutine.

' Subroutines
Get Rc_Time: ' RC-time subroutine
HIGH 2
PAUSE 3

RCTIME 2, 1, time



Chapter #7: Measuring Light - Page 213

RETURN

The second subroutine’s name is Delay, and all it contains is a PAUSE command. If you
want to do some extra math on the value of the time variable before using it in the PAUSE
command, it would be appropriate to do that in this subroutine.

Delay:

PAUSE time
RETURN

The third subroutine is named Update Display. The LookuP command in this
subroutine contains a table with six bit patterns that are used to create the circular pattern
around the outside of the 7-segment LED display. By adding 1 to the index variable
each time the subroutine is called, it causes the next bit pattern in the sequence to get
placed in ouTH. There are only entries in the LookuP command’s lookup table for index
values from 0 through 5. What happens when the value of index gets to 6? The lookup
command doesn’t automatically know to go back to the first entry, but you can use an
IF..THEN statement to fix that problem. The command IF index = 6 THEN index =
0 resets the value of index to 0 each time it gets to 6. It also causes the sequence of bit
patterns placed in oUTH to repeat itself over and over again. This, in turn, causes the 7-
segment LED display to repeat its circular pattern over and over again.
Update Display:
IF index = 6 THEN index = 0
' BAFG.CDE
LOOKUP index, [ %$01000000,
$10000000,
%$00000100),
$00000010,
%$00000001,
$00100000 ], OUTH
index = index + 1
RETURN

Your Turn — Adjusting the Meter’s Hardware and Software

There are two ways to change the sensitivity of the meter. First the software can be
changed. For example, the 7-segment LED display will cycle at one-tenth the speed if
you multiply the time variable by 10 in the pelay subroutine, and it will cycle twice as
fast if you divide the time variable by 2.

V' Modify LightMeter.bs2 so that the time variable is multiplied by 10. The
easiest way to do this is to change



Page 214 - What's a Microcontroller?

PAUSE time

PAUSE time * 10

in the Delay subroutine.

Run the modified program and test to make sure the cycling of the 7-segment
LED display is now one tenth of what it was before.

You can also try multiplying the time variable by other values such as 5 or 20,
or dividing by 2 using PAUSE time / 2.

You can also make the display cycle at one tenth the speed by swapping the 0.01pF
capacitor for the 0.1 UF capacitor. Remember that when you use a capacitor that is ten
times as large, the RC-time measurement will become ten times as long.

\/
\/

Replace the 0.01 uF capacitor with a 0.1 UF capacitor.
Run the program and see if the predicted effect occurred.

\

(D)
-’

Which is better, adjusting the software or the hardware? You should always try to use
the best of both worlds. Pick a capacitor that gives you the most accurate measurements
over the widest range of light levels. Once your hardware is the best it can be, use the
software to automatically adjust the light meter so that it works well for the user, both indoors
and outdoors. This takes a considerable amount of testing and refinement, but that’s all part
of the product design process.




Chapter #7: Measuring Light - Page 215

SUMMARY

This chapter introduced a second way to use the RCTIME command by using it to measure
light levels with a photoresistor. Like the potentiometer, the photoresistor is a variable
resistor. Unlike the potentiometer, the photoresistor’s resistance changes with light levels
instead of with position. Stamp Plot Lite was used to graph successive light
measurements, and methods for recording and interpreting graphical data were
introduced. The WRITE and READ commands were used to store and retrieve values to
and from the BASIC Stamp module’s EEPROM. The EEPROM was then used in an RC-
time data logging application. In this chapter’s last activity, a light meter application was
developed. This application used subroutines to perform the three different jobs required
for the light meter to function.

uestions

1.  What kind of different things can sensors detect?

2.  What is the name of the chemical compound that makes a photoresistor sensitive
to light?

3. How is a photoresistor similar to a potentiometer? How is it different?

4. What does EEPROM stand for?

5. How many bytes can the BASIC Stamp module’s EEPROM store? How many
bits can it store?

6. What command do you use to store a value in EEPROM? What command do
you use to retrieve a value from EEPROM? Which one requires a variable?

7. What is a label?

8.  What is a subroutine?
9. What command is used to call a subroutine? What command is used to end a
subroutine?
Exercises

1. Draw the schematic of a photoresistor RC-time circuit connected to P5.

2. Modify TestPhotoresistor.bs2 to so that it works on a circuit connected to P5
instead of P2.

3. Explain how you would modify LightMeter.bs2 so that the circular pattern
displayed by the 7-segment LED display goes in the opposite direction.



Page 216 - What's a Microcontroller?

Project

1. In an earlier chapter, you used a pushbutton to make an LED blink. Instead of
using a pushbutton, use a photoresistor to make the LED blink when you cast a
shadow over it. Hint: You can use an IF..THEN statement and the greater
than/less than operators to decide if your time measurement is above or below a
certain value. The operator > is used for greater than, and the operator < is used
for less than.

Solutions

Q1. Pressure, position, rotation, temperature, smoke, vibration, tilt, light, and almost
anything else you may think of: humidity, g-force, flexion, flow rate, the list
goes on...

Q2. Cadmium sulfide (CdS).

Q3. Both devices have varying resistance values. The photoresistor's resistance
varies according to the light level falling upon it, unlike the potentiometer, which
only changes when the knob is turned.

Q4. Electrically Erasable Programmable Read-Only Memory.

Q5. 2048 bytes. 2048 x 8 = 16,384 bits.

Q6. To store a value — WRITE
To retrieve a value — READ
The READ command requires a variable.

Q7. A label is a name that can be used as a placeholder in a PBASIC program.

Q8. A subroutine is a small segment of code that does a certain job.

Q9. Calling: cosus; ending: RETURN

E1. Schematic based on Figure 7-2 on page 191, P2 changed to P5.

A 5
\Zi} == 0.01pF
vss
E2. The required changes are very similar to those explained on page 191.

DO
HIGH 5
PAUSE 100
RCTIME 5, 1, time



Chapter #7: Measuring Light - Page 217

DEBUG HOME, "time = ", DEC5 time
LOOP

E3. To go in the opposite direction, the patterns must be displayed in the reverse
order. This can be done by switching the patterns around inside the Lookup
statement, or by reversing the order they get looked up.

Solution 1

Update Display:
IF index = 6 THEN index = 0

! BAFG.CDE
LOOKUP index, [ %01000000,
%$10000000,
%$00000100,
%$00000010,
%$00000001,
%$00100000 ], OUTH
index = index + 1
RETURN
Solution 2
Update_ Display:
! BAFG.CDE
LOOKUP index, [ %01000000,
%10000000,
%00000100,
%$00000010,
%$00000001,
$00100000 ], OUTH
IF (index = 0) THEN
index = 5
ELSE
index = index - 1
ENDIF
RETURN

P1. Photoresistor from Figure 7-2, p.191; LED from Figure 2-11, p.48.

P2 < AVAVAV

=]
220 Q 14

4
:<> == 0.01uF 470 Q

AA/A

X LED

= Vss



Page 218 - What's a Microcontroller?

The key to solving this problem is to insert an IF..THEN statement that tests
whether the photoresistor reading is above some threshold value. If it is, flash
the LED. The threshold value can be found by running TestPhotoresistor.bs2
and observing the readings. Note the difference between an unshaded and a
shaded value. Take a value somewhere in the middle and use that for your
threshold. In the solution shown, the threshold value was encoded in a constant

named Dark to make the program easier to change.

' What's a Microcontroller - ChO7Prj0l PhotoresistorFlasher.bs2

' Make LED on P14 flash whenever a shadow is cast over

' the photoresistor. Change "Dark" constant for your conditions.

' {$sTAMP BS2}
' {$PBASIC 2.5}

Dark CON 25

time VAR Word

DO
HIGH 2 ' Read photoresistor with RCTIME
PAUSE 100

RCTIME 2, 1, time

DEBUG HOME, "time = ", DEC5 time ' Print value to Debug Terminal

IF (time > Dark) THEN ' Compare reading to known dark value

HIGH 14 ' Blink LED on pin P14
PAUSE 100
LOW 14
PAUSE 100
ENDIF

LOOP

Further Investigation
“Applied Sensors’, Student Guide, Version 2.0, Parallax Inc., 2003

More in-depth coverage of light measurement using a photodiode, scientific
units and math are featured in this text along with other sensor applications.

“Industrial Control”, Student Guide, Version 2.0, Parallax Inc., 2002

Stamp Plot Lite was developed in conjunction with this text to demonstrate the

fundamentals of techniques used in industrial process control.



Chapter #8: Frequency and Sound - Page 219

Chapter #8: Frequency and Sound

YOUR DAY AND ELECTRONIC BEEPS

Here are a few examples of beeps you might hear during a normal day: The microwave
oven beeps when it’s done cooking your food. The cell phone plays different tones of
beeps that resemble songs to get your attention when a call is coming in. The ATM
machine beeps to remind you not to forget your card. A store cash register beeps to let
the teller know that the bar code of the grocery item passed over the scanner was read.
Many calculators beep when the wrong keys are pressed. Let’s not forget that you may
have started your day with a beeping alarm clock.

MICROCONTROLLERS, SPEAKERS, BEEPS AND ON/OFF SIGNALS

Just about all of the electronic beeps you hear during your daily routine are made by
microcontrollers connected to speakers. The microcontroller creates these beeps by
sending rapid high/low signals to various types of speakers. The rate of these high/low
signals is called the frequency, and it determines the tone or pitch of the beep. Each time
a high/low repeats itself, it is called a cycle. You will often see the number of cycles per
second referred to as Hertz, and it is abbreviated Hz. For example, one of the most
common frequencies for the beeps that help machines get your attention is 2 kHz. That
means that the high/low signals repeat at 2000 times per second.

Introducing the Piezoelectric Speaker

In this activity, you will experiment with sending a variety of signals to a common, small,
and inexpensive speaker called a piezoelectric speaker. Its schematic symbol and part
drawing are shown in Figure 8-1.

Figure 8-1
Piezoelectric Speaker

Schematic Symbol and
k Part Drawing



Page 220 - What's a Microcontroller?

lf * ' A piezoelectric speaker is commonly referred to as a piezo speaker or piezo buzzer, and
\./ piezo is pronounced “pE-A-zO”.

ACTIVITY #1: BUILDING AND TESTING THE SPEAKER

In this activity, you will build and test the piezoelectric speaker circuit.

Speaker Parts

(1) Piezoelectric speaker
(2) Jumper wires

Building the Piezoelectric Speaker Circuit

The negative terminal of the piezoelectric speaker should be connected to Vss, and the
positive terminal should be connected to an I/O pin. The BASIC Stamp will then be
programmed to send high/low signals to the piezoelectric speaker’s positive terminal.

\' Build the circuit shown in Figure 8-2.

Vdd

pisFl| COOO0
p12M| COOOO
P13 0000
p2fff| E\PEE )
rill| B¥YO Figure 8-2
oo . .

PO 5o Piezoelectric
Eg gggm oooo Speaker Circuit
s M| ooooo| [ooooo Schematic and
P5 ooooo ooooo Wiring Diagram
o ooooo| |(ooooo
o3 ooooo| |(ooooo
i ooooo| |(ooooo
> ooooo| jooooo
50 ooooo  ooooo

| 00000 00000

How the Piezoelectric Speaker Circuit Works

When a guitar string vibrates, it causes changes in air pressure. These changes in air
pressure are what your ear detects as a tone. The faster the changes in air pressure, the
higher the pitch, and the slower the changes in air pressure, the lower the pitch. The
element inside the piezo speaker’s plastic case is called a piezoelectric element. When
high/low signals are applied to the speaker’s positive terminal, the piezoelectric element



Chapter #8: Frequency and Sound - Page 221

vibrates, and it causes changes in air pressure just as a guitar string does. As with the
guitar string, your ear detects the changes in air pressure caused by the piezoelectric
speaker, and it typically sounds like a beep or a tone.

Programming Speaker Control

The FREQoUT command is a convenient way of sending high/low signals to a speaker to
make sound. The BASIC Stamp Manual shows the command syntax as this:

FREQOUT Pin, Duration, Freql {, Freq2}

As with most of the other commands used in this book, Pin is a value you can use to
choose which BASIC Stamp I/O pin to use. The buration argument is a value that tells
the FREQoUT command how long the tone should play, in milliseconds. The Fregqi
argument is used to set the frequency of the tone, in Hertz. There is an optional Freg2
argument that can be used to mix frequencies.

Here is how to send a tone to I/O pin P9 that lasts for 1.5 seconds and has a frequency of
2 kHz:

FREQOUT 9, 1500, 2000

Example Program: TestPiezoWithFreqout.bs2

This example program sends the 2 kHz tone to the speaker on I/O pin P9 for 1.5 seconds.
You can use the Debug terminal to see when the speaker should be beeping and when it
should stop.

\' Enter and run TestPiezoWithFreqout.bs2.
V' Verify that the speaker makes a clearly audible tone during the time that the
Debug Terminal displays the message “Tone sending...”

' What's a Microcontroller - TestPiezoWithFregout.bs2
' Send a tone to the piezo speaker using the FREQOUT command.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Tone sending...", CR
FREQOUT 9, 1500, 2000

DEBUG "Tone done."



Page 222 - What's a Microcontroller?

Your Turn — Adjusting Frequency and Duration

Save TestPiezoWithFreqout.bs2 under a different name.
Try some different values for the buration and Fregl argument.
After each change, run the program and make a note of the effect.

As the Freg1 argument gets larger, does the tone’s pitch go up or down? Try
values of 1500, 2000, 2500 and 3000 to answer this question.

2 2 2 2

ACTIVITY #2: ACTION SOUNDS

Many toys contain microcontrollers that are used to make action sounds. Action sounds
tend to involve rapidly changing the frequency played by the speaker. You can also get
some interesting effects from mixing two different tones together using the FREQOUT
command’s optional Freg2 argument. This activity introduces both techniques.

Programming Action Sounds

Action and appliance sounds have three different components:

1. Pause
2. Duration
3. Frequency

The pause is the time between tones, and you can use the PAUSE command to create that
pause. The duration is the amount of time a tone lasts, which you can set using the
FREQOUT command’s Duration argument. The frequency determines the pitch of the
tone. The higher the frequency, the higher the pitch, the lower the frequency, the lower
the pitch. This is, of course, determined by the FREQOUT command’s Freql argument.

Example Program: ActionTones.bs2

ActionTones.bs2 demonstrates a few different combinations of pause, duration, and
frequency. The first sequence of tones sounds similar to an electronic alarm clock. The
second one sounds similar to something a familiar science fiction movie robot might say.
The third is more the kind of sound effect you might hear in an old video game.

\  Enter and run ActionTones.bs2.

' What's a Microcontroller - ActionTones.bs2
' Demonstrate how different combinations of pause, duration, and frequency
' can be used to make sound effects.



' {$STAMP BS2}
' {$PBASIC 2.5}

duration VAR Word
frequency VAR Word
DEBUG "Alarm...", CR
PAUSE 100
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
DEBUG "Robot reply...", CR
PAUSE 100

FREQOUT 9, 100, 2800
FREQOUT 9, 200, 2400
FREQOUT 9, 140, 4200
FREQOUT 9, 30, 2000
PAUSE 500

DEBUG "Hyperspace...", CR
PAUSE 100
FOR duration = 15 TO 1 STEP 1
FOR frequency = 2000 TO 2500 STEP 20
FREQOUT 9, duration, frequency
NEXT
NEXT

DEBUG "Done", CR

END

How ActionTones.bs2 Works

Chapter #8: Frequency and Sound - Page 223

The “Alarm” routine sounds like an alarm clock. This routine plays tones at a fixed
frequency of 1.5 kHz for a duration of 0.5 s with a fixed delay between tones of 0.5 s.
The “Robot reply” routine uses various frequencies for brief durations.

The “Hyperspace” routine uses no delay, but it varies both the duration and frequency.
By using FoOr..NEXT loops to rapidly change the frequency and duration, you can get
some interesting sound effects. When one For..NEXT loop executes inside another one, it
is called a nested loop. Here is how the nested FOR.NEXT loop shown below works. The



Page 224 - What's a Microcontroller?

duration variable starts at 15, then the frequency loop takes over and sends
frequencies of 2000, then 2020, then 2040, and so on, up through 2500 to the piezo
speaker. When the frequency loop is finished, the duration loop has only repeated one
of its 15 passes. So it subtracts one from the value of duration and repeats the
frequency loop all over again.
FOR duration = 15 TO 1
FOR frequency = 2000 TO 2500 STEP 15
FREQOUT 9, duration, frequency

NEXT
NEXT

Example Program: NestedLoops.bs2

To better understand how nested FOR..NEXT loops work, NestedLoops.bs2 uses the DEBUG
command to show the value of a much less complicated version of the nested loop used
in ActionTones.bs2.

\' Enter and run NestedLoops.bs2.
V' Examine the Debug Terminal output and verify how the duration and
frequency arguments change each time through the loop.

' What's a Microcontroller - ActionTones.bs2
' Demonstrate how different combinations of pause, duration, and frequency
' can be used to make sound effects.

' {$STAMP BS2}
' {$PBASIC 2.5}

duration VAR Word
frequency VAR Word
DEBUG "Alarm...", CR
PAUSE 100
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
DEBUG "Robot reply...", CR
PAUSE 100

FREQOUT 9, 100, 2800



Chapter #8: Frequency and Sound - Page 225

FREQOUT 9, 200, 2400
FREQOUT 9, 140, 4200
FREQOUT 9, 30, 2000
PAUSE 500

DEBUG "Hyperspace...", CR
PAUSE 100
FOR duration = 15 TO 1 STEP 1
FOR frequency = 2000 TO 2500 STEP 20
FREQOUT 9, duration, frequency

NEXT

NEXT

DEBUG "Done", CR

END

Your Turn — More Sound Effects

There is pretty much an endless number of ways to modify ActionTones.bs2 to get
different sound combinations. Here is just one modification to the “Hyperspace” routine:

V
J

DEBUG "Hyperspace jump...", CR

FOR duration = 15 TO 1 STEP 3
FOR frequency = 2000 TO 2500 STEP 15
FREQOUT 9, duration, frequency
NEXT
NEXT
FOR duration = 1 TO 36 STEP 3
FOR frequency = 2500 TO 2000 STEP 15
FREQOUT 9, duration, frequency
NEXT
NEXT

Save your example program under the name ActionTonesYourTurn.bs2.
Have fun with this and other modifications of your own invention.

Two Frequencies at Once

You can send two frequencies at the same time. In audio, this is called “mixing”.
Remember the FREQOUT command’s syntax from Activity #1:

FREQOUT Pin, Duration, Freql {, Freq2}

You can use the optional Freg2 argument to mix two frequencies using the FREQOUT
command. For example, you can mix 2 and 3 kHz together like this:

FREQOUT 9, 1000, 2000, 3000



Page 226 -

What's a Microcontroller?

Each touchtone keypad tone is also an example of two frequencies mixed together. In
telecommunications, that is called DTMF (Dual Tone Multi Frequency). There is also a
PBASIC command called DTMFOUT that is designed just for sending phone tones. For
examples of projects where phone numbers are dialed, see the DTMFOUT command in the
BASIC Stamp Manual.

Example Program: MixingTones.bs2

This example program demonstrates the difference in tone that you get when you mix 2
and 3 kHz together. It also demonstrates an interesting phenomenon that occurs when
you mix two sound waves that are very close in frequency. When you mix 2000 Hz with
2001 Hz, the tone will fade in and out once every second (at a frequency of 1 Hz). If you
mix 2000 Hz with 2002 Hz, it will fade in and out twice a second (2 Hz), and so on.

Beat is when two tones very close in frequency are played together causing the tone you
hear to fade in and out. The frequency of that fading in and out is the difference between
the two frequencies. If the difference is 1 Hz, the tone will fade in and out at 1 Hz. If the
difference is 2 Hz, the tone will fade in and out at 2 Hz.

The variations in air pressure made by the piezoelectric speaker are called sound waves.
When the tone is loudest, the variations in air pressure caused by the two frequencies are
adding to each other (called superposition). When the tone is at its quietest, the variations
in air pressure are canceling each other out (called interference).

2 <2

Enter and run MixingTones.bs2.
Keep an eye on the Debug Terminal as the tones play, and note the different
effects that come from mixing the different tones.

' What's a Microcontroller - MixingTones.bs2
' Demonstrate some of the things that happen when you mix two tones.

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Frequency = 2000", CR
FREQOUT 9, 4000, 2000

DEBUG "Frequency = 3000", CR
FREQOUT 9, 4000, 3000

DEBUG "Frequency = 2000 + 3000", CR
FREQOUT 9, 4000, 2000, 3000

DEBUG "Frequency = 2000 + 2001", CR



Chapter #8: Frequency and Sound - Page 227

FREQOUT 9, 4000, 2000, 2001

DEBUG "Frequency = 2000 + 2002", CR
FREQOUT 9, 4000, 2000, 2002

DEBUG "Frequency = 2000 + 2003", CR
FREQOUT 9, 4000, 2000, 2003

DEBUG "Frequency = 2000 + 2005", CR
FREQOUT 9, 4000, 2000, 2005

DEBUG "Frequency = 2000 + 2010", CR
FREQOUT 9, 4000, 2000, 2010

DEBUG "Done", CR

END

Your Turn — Condensing the Code

MixingTones.bs2 was written to demonstrate some interesting things that can happen
when you mix two different frequencies using the FREQOUT command’s optional Freg2
argument. However, it is extremely inefficient.

V' Modify MixingTones.bs2 so that it cycles through the Fregz arguments
ranging from 2001 to 2005 using a word variable and a loop.

ACTIVITY #3: MUSICAL NOTES AND SIMPLE SONGS

Figure 8-3 shows the rightmost 25 keys of a piano keyboard. It also shows the
frequencies at which each wire inside the piano vibrates when that piano key is struck.
The keys and their corresponding notes are labeled C6 through C8. These keys are
separated into groups of 12. Each group spans one octave, made up of 8 white keys and 4
black keys. The sequence of notes repeats itself every 12 keys. Notes of the same letter
are related by frequency, doubling with each higher octave. For example, C7 is twice the
frequency of C6, and C8 is twice the frequency of C7. Likewise, if you go one octave
down, the frequency will be half the value; for example, A6 is half the frequency of A7.

Internet search for — “musical scale”: By using the words "musical scale" in a search

\  engine like Google or Yahoo, you will find lots of fascinating information about the history,

\b‘ physics and psychology of the subject. The 12 note per octave scale is the main scale of
western music. Other cultures use scales that contain 2 to 35 notes per octave.




Page 228 - What's a Microcontroller?

If you’ve ever heard a singer practice his/her notes by singing the Solfege, “Do Re Mi Fa
Sol La Ti Do”, the singer is attempting to match the notes that you get from striking the
white keys on a piano keyboard. These white keys are called natural keys. A black key
on a piano can either be called sharp or flat. For example, the black key between the C
and D keys is either called C-sharp (C*) or D-flat (D?). Whether a key is called sharp or
flat depends on the particular piece being played, and the rules for that are better left to

the music classes.

Figure 8-3: Rightmost Piano Keys and Their Frequencies

N~ W0 o o N~ n o o < ™
[c0] <t o ~ < N~ (@] o AN (@]
o < [¢) (o] O ~— [ce] O AN N
-— AN < (o] [ce] AN < (o] ™ N~
~ ~ ~ ~— ~ ~— AN AN o o
Te) N~ Te) (e} o o o] o ™ o o o o ~— o
© <« W © W O 1 M O K~ ™M © O «— O
< N~ ~ (@] (<] (o] N~ (o] < ™ [©)] ™ N Yo} (o]
o — ™ [sp] Ye] N~ o)) o («g] [(e] N ~— Tp] (@] ~
~— ~ ~— ~ ~ ~ ~ N N N N ™ ™ (<p] <
/[
C D F G A C D G A
6 6 6 6 6 7 7 7 7
# # # # # # # # #
or or or or or or or or or
D E G A B D E A B
6 6 6 6 6 7 7 7 7
b b b b b b b b b
C6|D6|E6|F6|G6|A6|B6|C7|D7|E7|F7|G7|A7|B7|C8




Chapter #8: Frequency and Sound - Page 229

Tuning Method: The keyboard in Figure 8-3 uses a method of tuning called equal
erament. The frequencies are determined using a reference note, then multiplying it by
for values of n = 1, 2, 3, etc. For example, you can take the frequency for A6, and
multiply by 2" to get the frequency for A6#. Multiply it by 2%'? to get the frequency for

tem
2mm

B6, and so on.
reference frequency:

5

The frequency of A6 is 1760
20119 = 1.1224
1760 X 1.224 = 1975.5

1975.5 is the frequency of B6

Here is an example of calculating the frequency for B6 using A6 as a

Programming Musical Notes

The FREQOUT command is also useful for musical notes. Programming the BASIC Stamp
to play music using a piezospeaker involves following a variety of rules used in playing
music using any other musical instrument. These rules apply to the same elements that
were used to make sound effects, frequency, duration, and pause. This next example
program plays some of the musical note frequencies on the piezospeaker, each with a
duration of half a second.

Example Program: DoReMiFaSolLaTiDo.bs2

\ Enter and run DoReMiFaSolLaTiDo.bs2

' What's a Microcontroller - DoReMiFaSolLaTiDo.bs2
' Send an octave of half second tones using a piezoelectric speaker.

' {$STAMP BS2}
' {$PBASIC 2.5}

'Solfege

DEBUG "Do. ..
DEBUG "Re. ..
DEBUG "Mi...
DEBUG "Fa...
DEBUG "Sol..
DEBUG "La. ..

, CR:

, CR:

, CR:

, CR:

, CR:

, CR:

Tone

FREQOUT

FREQOUT

FREQOUT

FREQOUT

FREQOUT

FREQOUT

9,500,1047

9,500,1175

9,500,1319

9,500,1396

9,500,1568

9,500,1760

Note

cé

D6

E6

Fé6

G6

A6



Page 230 - What's a Microcontroller?

DEBUG "Ti...", CR: FREQOUT 9,500,1976 ' B6
DEBUG "Do...", CR: FREQOUT 9,500,2093 ' C7
END

Your Turn — Sharp/Flat Notes

V' Use the frequencies shown in Figure 8-3 to add the five sharp/flat notes to
DoReMiFaSolLaTiDo.bs2

\ Modify your program so that it plays the next octave up. Hint: Save yourself
some typing and just use the * 2 operation after each Freql argument. For
example, FREQOUT 9, 500, 1175 * 2 will give you D7, the D note in the 7™
octave.

Storing and Retrieving Sequences of Musical Notes

A good way of saving musical notes is to store them using the BASIC Stamp module’s
EEPROM. Although you could use many wRITE commands to do this, a better way is to
use the paTa directive. This is the syntax for the paTa directive:

{Symbol} DATA {Word} Dataltem {, {Word} Dataltem, ... }

Here is an example of how to use the DATA directive to store the characters that
correspond to musical notes.

Notes DATA Ilcll , Ilcll , IIGII , IIGII , IIAII , IIAII , IIGII

You can use the READ command to access these characters. The letter ‘C’ is located at
address Notes + 0, and a second letter ‘C’ is located at Notes + 1. Then, there’s a
letter ‘G’ at Notes + 2, and so on. For example, if you want to load the last letter ‘G’
into a byte variable called noteLetter, use the command:

READ Notes + 6, notelLetter

You can also store lists of numbers using the paTA directive. Frequency and duration
values that the BASIC Stamp uses for musical notes need to be stored in word variables
because they are usually greater than 255. Here is how to do that with a paTa directive.

Frequencies DATA Word 2093, Word 2093, Word 3136, Word 3136,
Word 3520, Word 3520, Word 3136



Chapter #8: Frequency and Sound - Page 231

Because each of these values occupies two bytes, accessing them with the read command
is different from accessing characters. The first 2093 is at Frequencies + 0, but the
second 2093 is located at Frequencies + 2. The first 3136 is located at Frequencies
+ 4, and the second 3136 is located at Frequencies + 6.

/ & % The values in the Frequencies DATA directive correspond with the musical notes in

\~/ the Notes DATA directive.

Here is a FOR..NEXT loop that places the Notes DATA into a variable named noteLetter,
then it places the Frequencies DATA into a variable named noteFregq.

FOR index = 0 to 6
READ Notes + index, notelLetter

READ Frequencies + (index * 2), Word noteFreq
DEBUG noteLetter, " ", DEC noteFreqg, CR
NEXT

What does the (index * 2) do? Each value stored in the Frequencies DATA directive
takes a word (two bytes), while each character in the Notes DATA directive only takes
L~ one byte. The value of index increases by one each time through the FOR..NEXT loop.
( ? | That's fine for accessing the note characters using the command READ Notes +
@’ index, noteLetter. The problem is that for every one byte in Notes, the index
variable needs to point twice as far down the Frequencies list. The command READ
Frequencies + (index * 2), Word noteFregq, takes care of this.

The next example program stores notes and durations using DATaA, and it uses the
FREQOUT command to play each note frequency for a specific duration. The result is the
first few notes from the children’s song Twinkle Twinkle Little Star.

( i \ The Alphabet Song used by children to memorize their “ABCs” uses the same notes as

\-/ Twinkle Twinkle Little Star.

Example Program: TwinkleTwinkle.bs2

This example program demonstrates how to use the DATA directive to store lists and how
to use the READ command to access the values in the lists.

\ Enter and run TwinkleTwinkle.bs2



Page 232 - What's a Microcontroller?

\' Verify that the notes sound like the song Twinkle Twinkle Little Star.
V' Use the Debug Terminal to verify that it works as expected by accessing and
displaying values from the three paTa directives.

' What's a Microcontroller - TwinkleTwinkle.bs2
' Play the first seven notes from Twinkle Twinkle Little Star.

' {$STAMP BS2}
' {$PBASIC 2.5}

Notes DATA wQm, nQw wg@n w@m wam wpmn wgn

Frequencies DATA Word 2093, Word 2093, Word 3136, Word 3136,
Word 3520, Word 3520, Word 3136

Durations DATA Word 500, Word 500, Word 500, Word 500,
Word 500, Word 500, Word 1000

index VAR Nib
notelLetter VAR Byte
noteFreq VAR Word
noteDuration VAR Word
DEBUG "Note Duration Frequency", CR,
N o o e e e e e e e - n CR
’
FOR index = 0 TO 6
READ Notes + index, notelLetter
DEBUG " ", notelLetter
READ Durations + (index * 2), Word noteDuration
DEBUG " ", DEC4 noteDuration

READ Frequencies + (index * 2), Word noteFreq
DEBUG " ", DEC4 noteFreq, CR

FREQOUT 9, noteDuration, noteFreq
NEXT

END

Your Turn — Adding and Playing More Notes

This program played the first seven notes from Twinkle Twinkle Little Star. The words
go “Twin-kle twin-kle lit-tle star”. The next phrase from the song goes “How I won-der



Chapter #8: Frequency and Sound - Page 233

what you are”, and its notes are F, F, E, E, D, D, C. As with the first phrase the last note
is held twice as long as the other notes. To add this phrase to the song from
TwinkleTwinkle.bs2, you will need to expand each paTa directive appropriately. Don’t
forget to change the FOR..NEXT loop so that it goes from 0 to 13 instead of from 0 to 6.

V' Modify TwinkleTwinkle.bs2 so that it plays the first two phrases of the song
instead of just the first phrase.

ACTIVITY #4: MICROCONTROLLER MUSIC

Note durations are not recorded on sheet music in terms of milliseconds. Instead, they
are described as whole, half, quarter, eight, sixteenth, and thirty-second notes. As the
name suggests, a half note lasts half as long as a whole note. A quarter note lasts one
fourth the time a whole note lasts, and so on. How long is a whole note? It depends on
the piece of music being played. One piece might be played at a tempo that causes a
whole note to last for four seconds, another piece might have a two second whole note,
and yet another might have some other duration.

Rests are the time between notes when no tones are played. Rest durations are also
measured as whole, half, quarter, eighth, sixteenth and thirty-second.

A Better System for Storing and Retrieving Music

You can write programs that store twice as much music in your BASIC Stamp by using
bytes instead of words in your DaTa directives. You can also modify your program to
make the musical notes easier to read by using some of the more common musical
conventions for notes and duration. This activity will start by introducing how to store
musical information in a way that relates to the concepts of notes, durations, and rests.
Tempo is also introduced, and it will be revisited in the next activity.

Here is an example of the paTa directives that stores musical notes and durations for the
next example program. When played, it should resemble the song “Frere Jacques”. Only
the note characters are stored in the Notes DaTa directive because LOOKUP and
LookDowN commands will be used to match up letters to their corresponding frequencies.

Notes DATA IICIIIIIDIIIIIEIIIIICIIIIICIIIIIDIIIIIEIIIIICIIIIIEIIIIIFIII
IIGII , IIEII , IIFII , IIGII , IIQII

Durations DATA 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,



Page 234 - What's a Microcontroller?

WholeNote CON 2000

The first number in the Durations DATA directive tells the program how long the first
note in the Notes Data directive should last. The second duration is for the second note,
and so on. The durations are no longer in terms of milliseconds. Instead, they are much
smaller numbers that can be stored in bytes, so there is no word prefix in the DaTA
directive. Compared to storing values in terms of milliseconds, these numbers are more
closely related to sheet music. Here is a list of what each duration means.

o 1 —whole note

e 2 —halfnote

e 4 — quarter note

o 8 —cighth note

e 16 —sixteenth note

o 32 — thirty-second note

After each value is read from the Durations DATA directive, it is divided into the
WholeNote value to get the Duration used in the FREQOUT command. The amount of
time each note lasts depends on the tempo of the song. A faster tempo means each note
lasts for less time, while a slower tempo means each note lasts longer. Since all the note
durations are fractions of a whole note, you can use the duration of a whole note to set the
tempo.

What does the "Q" in Notes DATA mean? "Q"is for quit, and a DO WHILE..LOOP
checks for "Q" each time through the loop.

P How do | play a rest? You can insert a rest between notes by inserting a "P". The Your
/ %) '\ Turn section has the first few notes from Beethoven'’s 5" Symphony, which has a rest in it.

. /
-

How do | play sharp/flat notes? NotesAndDurations.bs2 has values in its lookup tables for
sharp/flat notes. When you use the lower-case version of the note, it will play the flat note.
For example, if you want to play B-flat, use “b” instead of “B”. Remember that this is the
same frequency as A-sharp.

Example Program: NotesAndDurations.bs2

\  Enter and run NotesAndDurations.bs2.
v How does it sound?

' What's a Microcontroller - NotesAndDurations.bs2



Chapter #8: Frequency and Sound - Page 235

' Play the first few notes from Frere Jacques.

'{$sTAMP BS2}
'{$PBASIC 2.5}

DEBUG "Program Running!"

Notes DATA ngn s npn s nEn s ngn ,
"G" ’ "E" ’ "F" ’ "G"
Durations DATA 4, 4, 4, 4,
2, 4, 4, 2
WholeNote CON 2000
index VAR Byte
offset VAR Nib
notelLetter VAR Byte
noteFreqg VAR Word
noteDuration VAR Word
DO UNTIL noteLetter = "Q"
READ Notes + index, notelLetter
LOOKDOWN noteLetter, [ "A", ", "B",
IID", llell, IIE",
"G"’ "a"’ "P"’
LOOKUP offset, [ 1760, 1865, 1976,
2349, 2489, 2637,
3136, 3322, 0,
READ Durations + index, noteDuration

noteDuration =
FREQOUT 9, noteDuration,
index = index + 1
LOOP

END

noteFreq

WholeNote / noteDuration

LIeLIN
,"Qn

non
cr,

nEn
E",

non

2093,
2794,
0

npn
i

WgEn, nCn nwEn wgn

lldll ,
llgll ,
], offset
2217,
2960,
], noteFreq



Page 236 - What's a Microcontroller?

How NotesAndDurations.bs2 Works

The Notes and Durations DATA directives were discussed before the program. These
directives combined with the wholeNote constant are used to store all the musical data
used by the program.

The declarations for the five variables used in the program are shown below. Even
though a FOR.NEXT loop is no longer used to access the data, there still has to be a
variable (index) that keeps track of which DATA entry is being read in Notes and
Durations. The offset variable is used in the LOOKDOWN and LOOKUP commands to
select a particular value. The noteLetter variable stores a character accessed by the
READ command. LOOKUP and LOOKDOWN commands are used to convert this character into
a frequency value. This value is stored in the noteFreq variable and used as the
FREQOUT command’s Fregl argument. The noteDuration variable is used in a READ
command to receive a value from the burations DATA. It is also used to calculate the
Duration used in the FREQOUT command.

index VAR Byte
offset VAR Nib

notelLetter VAR Byte
noteFreq VAR Word

noteDuration VAR Word

The main loop keeps executing until the letter ‘Q’ is read from the Notes DATA.

DO UNTIL notelLetter = "Q"

A ReEAD command gets a character from the Notes DATA, and stores it in the noteLetter
variable. The noteLetter variable is then used in a LookDOWN command to set the value
of the of£set variable. Remember that of£set stores a 1 if “b” is detected, a 2 if “B” is
detected, a 3 if “C” is detected, and so on. This offset value is then used in a LooKUP
command to figure out what the value of the noteFreq variable should be. If offset is
1, noteFreq will be 1865, if offset is 2, noteFreq will be 1976, if offset is 3,
noteFreq is 2093, and so on.

READ Notes + index, noteLetter

LOOKDOWN noteLetter, [ "A", "b", "B", "en, "ar,
n"pn, nen, g, g, g,
nGn, ngn, npn, nom 1, offset

LOOKUP offset, [ 1760, 1865, 1976, 2093, 2217,



Chapter #8: Frequency and Sound - Page 237

2349, 2489, 2637, 2794, 2960,
3136, 3322, 0, 0 1, noteFreq

The note’s frequency has been determined, but the duration still has to be figured out.
The READ command uses the value of index to place a value from the Durations DATA
into noteDuration.

READ Durations + index, noteDuration

Then, noteDuration is set equal to the WholeNote constant divided by the
noteDuration. If note duration starts out as 4 from a READ command, it becomes 2000
+4=500. If noteDuration is 8, it becomes 1500 + 8 = 250.

noteDuration = WholeNote / noteDuration

Now that noteDuration and noteFreq are determined, the FREQOUT command plays the
note.

FREQOUT 9, noteDuration, noteFreq

Each time through the main loop, the index value must be increased by one. When the
main loop gets back to the beginning, the first thing the program does is read the next
note, using the index variable.

index = index + 1

LOOP

Your Turn — Experimenting with Tempo and a Different Tune

The length of time that each note lasts is related to the tempo. You can change the tempo
by adjusting the wholeNote constant. If you increase it to 2250, the tempo will decrease,
and the song will play slower. If you increase it to 1750, the tempo will increase and the
song will play more quickly.

V' Save NotesAndDurations.bs2 under the name
NotesAndDurationsY ourTurn.bs2.

\ Modify the tempo of NotesAndDurationsYourTurn.bs2 by adjusting the value
of wholeNote. Try values of 1500, 1750, 2000, and 2250.

V' Re-run the program after each modification, and decide which one sounds
best.

Entering musical data is much easier when all you have to do is record notes and
durations. Here are the first eight notes from Beethoven’s Fifth Symphony.



Page 238 - What's a Microcontroller?

Notes DATA "G","G","G","e","P","F","F","F","D","Q"
Durations DATA 8, 8, 8, 2, 8, 8, 8, 8, 2

WholeNote CON 2000

\' Save your modified program Beethoven’sFifth.bs2.

\ Replace the Notes and Durations DATA directives and the WholeNote
constant declaration with the code above.

v Run the program. Does it sound familiar?

Adding Musical Features

The example program you just finished introduced notes, durations, and rests. It also
used the duration of a whole note to determine tempo. Cell phones that play music to let
you know that somebody is calling have three features that were not supported by the
previous example program:

o They play “dotted” notes.
o  They determine the whole note duration from a value called tempo.
e They play notes from more than one octave.

The term “dotted” refers to a dot used in sheet music to indicate that a note should be
played 1 % times as long as its normal duration. For example, a dotted quarter note
should last for the duration of a quarter note, plus an eighth note. A dotted half note lasts
for a half plus a quarter note’s duration. You can add a data table that stores whether or
not a note is dotted. In this example, a zero means there is no dot while a 1 means there
is a dot:

Dots DATA o, o, o, o, 0o, O, 1, 0O, O, O, O,

o, o, o0, 1, O

Cell phones typically take the tempo for a song in beats per minute. This is the same as
saying quarter notes per minute.

BeatsPerMin CON 200

Figure 8-4 is a repeat of Figure 8-3 from page 228. It shows the 6™ and 7" octaves on the
piano keyboard. These are the two octaves that sound the clearest when played by the
piezospeaker. Here is an example of a DATA directive you will use in the Your Turn
section to play notes from more than one octave using the Notes DATA directive.



Chapter #8: Frequency and Sound - Page 239

Octaves DATA 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6,
6, 6, 6
Figure 8-4
Rightmost Piano Keys and Their Frequencies
~ 0 o N N~ 0w o o < ™
0 o = < N O o o o
o < © © © - © © o
- o  © © N < N MO N~
~ ~ ~ ~ ~ Al AN AN o o
n ~ D O O O 1w O M o o o o - o
© < W © W O 1w ® O N O © O = ©
S N - O © © N O ¥ ® o o « v o©
O = ™M ®M O K~ O O M © ~ = 1 o v
~ -~ ~ ~ ~ ~ ~ N N N N ™ ™ (<ol <
/[
C D F € A C D (€ A
6 6 6 6 6 7 7 7 7
# # # # # # # # #
or or or or or or or or or
D E G A B D E A B
6 6 6 6 6 7 7 7 7
b b b b b b b b b
C6|D6|E6|F6|G6|A6|B6|C7|D7|E7|F7|G7|A7|B7|C8

/

Example Program: MusicWithMoreFeatures.bs2

This example program plays the first few notes from For He’s a Jolly Good Fellow. All
the notes come from the same (7") octave, but some of the notes are dotted. In the Your
turn section, you will try an example that uses notes from more than one octave, and

dotted notes.

\' Enter and run MusicWithMoreFeatures.bs2.
V' Count notes and see if you can hear the dotted (1 4 duration) notes.
V' Also listen for notes in octave 7. Try changing one of those notes to octave 6.

The change in the way the music sounds is pretty drastic.

' What's a Microcontroller - MusicWithMoreFeatures.bs2

' Play the beginning of For He's a Jolly Good Fellow.



Page 240 - What's a Microcontroller?

' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"

Notes DATA IEW , U@ , TZD
"D" , "C" , "D" ,
Octaves DATA 7, 7, 7,
7 7, 7,
Durations DATA 4, 2, 4,
4, 4, 4,
Dots DATA 0, 0, 0,
0, 0, 0,
BeatsPerMin CON 320
index VAR Byte
offset VAR Nib
noteLetter VAR Byte
noteFreq VAR Word
noteDuration VAR Word
noteOctave VAR Nib
noteDot VAR Bit
wholeNote VAR Word

wholeNote = 60000 / BeatsPerMin * 4

DO UNTIL noteLetter = "Q"

READ Notes + index, notelLetter

LOOKDOWN noteLetter, [ v@w,
"F",
llbll,

LOOKUP offset, [ 4186,
5588,
7459,

ngn,
"9"/
"B",

4435,
5920,
7902,

READ Octaves + index, noteOctave

noteOctave = 8 - noteOctave

"EM,"D","E",
wgEn, ngn nQn
7 5 7 5 7 5
7, 7
4, 4, 4,
2, 2
0, 0, 0,
1, O
npn, nen,
"G, g,
npn, non
4699, 4978,
6272, 6645,
0, 0

noteFreq = noteFreq / (DCD noteOctave)

READ Durations + index, noteDuration
noteDuration = WholeNote / noteDuration

READ Dots + index, noteDot

IF noteDot = 1 THEN noteDuration =

nWEN,MEM, WEM "D,

ngEw,
nan

A",

1,

5274,
7040,
1,

7 7 7
2, 4, 2,
0, 0, 0,
offset
noteFreq

noteDuration * 3 / 2

npn
’



Chapter #8: Frequency and Sound - Page 241

FREQOUT 9, noteDuration, noteFreq
index = index + 1

LOOP

END

How MusicWithMoreFeatures.bs2 Works

Below is the musical data for the entire song. For each note in the Notes DATA directive,
there is a corresponding entry in the Octaves, Durations, and Dots DATA directives.
For example, the first note is a C note in the 7t octave; it’s a quarter note and it’s not
dotted. Here is another example: the second from the last note (not including “Q”) is an
E note, in the 7" octave. It’s a half note, and it is dotted. There is also a BeatsPerMin
constant that sets the tempo for the song.

Notes DATA "C"’"E"’"E"’"E"’"D"’"E"’"F"’"E"’"E"’"D"’"D"’
"D","c","D","E","C","Q"

Octaves DATA 7, 7, 71, 71, 71, 71, 71, 71, 71, 71, 7,
7, 7, 7, 7, 7

Durations DATA 4, 2, 4, 4, 4, 4, 2, 2, 4, 2, 4,
4, 4, 4, 2, 2

Dots DATA 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0

BeatsPerMin CON 320

In the previous example program, WholeNote was a constant. This time, it’s a variable
that will hold the duration of a whole note in ms. After this value is calculated,
WholeNote will be used to determine all the other note durations, just like in the previous
program. The index, offset, noteLetter, and noteDuration variables are also used
in the same manner they were in the previous program. The noteFreq variable is
handled a little differently since now it has to be adjusted depending on the octave the
note is played in. The noteoctave and noteDot variables have been added to handle
the octave and dot features.

wholeNote VAR Word
index VAR Byte
offset VAR Nib

noteletter VAR Byte
noteFreq VAR Word
noteDuration VAR Word



Page 242 - What's a Microcontroller?

noteOctave VAR Nib
noteDot VAR Bit

The wholeNote variable is calculated using the BeatsPerMin. The tempo of the song is
defined in beats per minute, and the program has to divide BeatsPerMin into 60000 ms,
then multiply by 4. The result is the correct value for a whole note.

wholeNote = 60000 / BeatsPerMin * 4

Math executes from left to right. In the calculation wholeNote = 60000 /
L~ beatsPerMin * 4, the BASIC Stamp first calculates 60000 / beatsPerMin.
3 | Then, it multiplies that result by 4.

Parentheses can be used to group operations. If you want to divide 4 into beatsPerMin
first, you can do this: wholeNote = 60000 / (beatsPerMin * 4).

This is all the same as the previous program:

DO UNTIL notelLetter = "Q"

READ Notes + index, noteletter

LOOKDOWN noteLetter, [ "C", nan, "D", "e", "E",
npn, llglll ngn, ngn, L\
llbll’ nBn, npn, non ] , offset

Now that octaves are in the mix, the part of the code that figures out the note frequency
has changed. The Lookur command’s table of values contains note frequencies from the
8™ octave. These values can be divided by 1 if you want to play notes in the 8™ octave,
by 2 if you want to play notes in the 7 octave, by 4 if you want to play notes in the 6"
octave and by 8 if you want to play notes in the 5™ octave. The division happens next.
All this Lookur command does is place a note from the 8™ octave into the noteFreq
variable.

LOOKUP offset, [ 4186, 4435, 4699, 4978, 5274,
5588, 5920, 6272, 6645, 7040,
7459, 7902, 0, 0 1, noteFreq

Here is how the noteFreq variable is adjusted for the correct octave. First, the READ
command grabs the octave value stored in the octaves DATA. This could be a value
between 5 and 8.

READ Octaves + index, noteOctave



Chapter #8: Frequency and Sound - Page 243

Depending on the octave, we want to divide noteFreq by either 1, 2, 4, or 8. That means
that the goal is really to divide by 2° = 1, 2' =2, 2> = 4, or 2° = 8. The statement below
takes the value of noteoctave, which could be a value between 5 and 8, and subtracts
that value from 8. If noteoctave was 8, now it’s 0. If noteoctave was 7, now it’s 1.
If noteoOctave was 6, now it’s 2, and if noteOctave was 5, now it’s 3.

noteOctave = 8 - noteOctave

Now, noteOctave is a value that can be used as an exponent of 2, but how do you raise 2
to a power in PBASIC? One answer is to use the bcb operator. bcd 0 is 1, bcD 1 is 2,
DcD 2 is 4, and pcp 3 is 8. Dividing noteFreq by DCD noteOctave means you are
dividing by 1, 2, 4, or 8, which divides noteFreq down by the correct value. The end
result is that noteFreq is set to the correct octave. You will use the Debug Terminal in
the Your Turn section to take a closer look at how this works.

noteFreq = noteFreq / (DCD noteOctave)

How am | supposed to know to use the DCD operator? Keep learning and practicing.
Every time you see a new command, operator, or any other keyword used in an example,
look it up in the BASIC Stamp manual. Read about it, and try using it in a program of your

? own design. Get in the habit of periodically reading the BASIC Stamp Manual and trying the
‘’  short example programs. That's the best way to get familiar with the various commands and
operators and how they work. By doing these things, you will develop a habit of always
adding to the list of programming tools you can use to solve problems.

The first two lines of code for determining the note duration are about the same as the
code from the previous example program. Now, however, any note could be dotted,
which means the duration might have to be multiplied by 1.5. A READ command is used
to access values stored in EEPROM by the Dots DATA directive. An IF..THEN statement is
used to multiply by 3 and divide by 2 whenever the value of the noteDot variable is 1.

READ Durations + index, noteDuration
noteDuration = WholeNote / noteDuration

READ Dots + index, noteDot
IF noteDot = 1 THEN noteDuration = noteDuration * 3 / 2



Page 244 - What's a Microcontroller?

Integer math The BASIC Stamp does not automatically process a number like 1.5. When
performing math, it only works with integers: ..., -5, -4, -3, -2, -1, 0, 1, 2, 3, ... The best
solution for multiplying by 1.5 is to multiply by 3/2. First, multiply by 3, and then divide by 2.

/e ™  There are many ways to program the BASIC Stamp to handle fractional values. You can

LY program the BASIC Stamp to use integers to figure out the fractional portion of a number.
This is introduced in the Basic Analog and Digital Student Guide. There are also two
operators that make fractional values easier to work with, and they are: ** and * /. These
are explained in detail in the Applied Sensors Student Guide and in the BASIC Stamp
Manual.

The remainder of this example program works the same way that it did in the previous
example program:

FREQOUT 9, noteDuration, noteFreq

index = index + 1

LOOP
END

Your Turn — Playing a Tune with More than One Octave

MusicWithMoreFeatures.bs2 made use of rests, but it stayed in one octave. The tune
“Take Me Out to the Ball Game” shown below plays most of its notes in the 6" octave.
There are two notes in the 7™ octave, and they make a big difference to the way it sounds.

V' Save the example program under the name
MusicWithMoreFeaturesY ourTurn.bs2.
V' Modify the program by replacing the four data directives and one constant
declaration with these:
Notes DATA mCM, MCM, MAN M@GM WEN NGN NDN 0PN O nCn AN,
nge, nEM, nG", nQn

Octaves DATA 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6,
6, 6, 6

Durations DATA 2, 4, 4, 4, 4, 2, 2, 4, 2, 4, 4,
4, 4, 2

Dots DATA 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
o, o0, 1

BeatsPerMin CON 240

V' Run the program and verify that it sounds right.



Chapter #8: Frequency and Sound - Page 245

Those two notes in the 7™ octave are essential for making the tune sound right. It’s
interesting to hear what happens if those 7 values are changed to 6.

V' Try changing the two 7 values in the octaves DATA directive so that they are
6. Keep in mind, this will make “Take Me out to the Ball Game” sound weird.

v Run the program, and listen to the effect of the wrong octaves on the song.

V' Change the octaves DATa back to its original state.

V' Run the program again and listen to see if it sounds correct again.

ACTIVITY #5: CELL PHONE RINGTONES

Many cell phones play music that can be downloaded from web pages. The computer
sends the data about the notes to the microcontroller in the phone, then plays the notes
whenever a call comes in. These are called ringing tones or often just ringtones.

One of the most widely used way of composing, recording and posting notes is one that
features strings of text that describe each note in the song. Here is an example of how the
first few notes from Beethoven’s 5™ look in RTTTL format:

Beethoven5:d=8,0=7,b=125:g,g,g,2d#,p,f.f,f,2d

This format for storing musical data is called RTTTL, which stand for Ringing Tone Text
Transfer Language. The great thing about RTTTL files is that they are widely shared via
the World Wide Web. Many sites have RTTTL files available for free download. There
are also free software programs that can be used to compose and emulate these files as
well as download them to your cell phone. The RTTTL specification is also published on
the World Wide Web. Appendix G summarizes how an RTTTL file stores notes,
durations, pauses, tempo, and dotted notes.

This activity introduces some PBASIC programming techniques that can be used to
recognize different elements of text. The ability to recognize different characters or
groups of characters and take action based on what those characters contain is extremely
useful. In fact, it’s the key to converting RTTTL format ringtone (like Beethoven5
above) into music. At the end of this activity, there is an application program that you
can use to play RTTTL format ringtones.



Page 246 - What's a Microcontroller?

Selecting which Code Block to Execute on a Case by Case Basis

The SELECT..CASE statement is probably the best programming tool for recognizing
characters or values. Keep in mind that this is one of the tools used to convert an RTTTL
ringtone into musical notes. In general, SELECT...CASE is used to:

o Select a variable or expression.
« Evaluate that variable or expression on a case by case basis.
o Execute different blocks of code depending on which case that variable’s value

fits into.
Here is the syntax for SELECT...CASE: SELECT expression
CASE condition(s)
statement(s)
ENDSELECT

You can try the next two example programs to see how SELECT..CASE works.
SelectCaseWithValues.bs2 takes numeric values you enter into the Debug Terminal and
it tells you the minimum variable size you will need to hold that wvalue.
SelectCaseWithCharacters.bs2 tells you whether the character you entered into the Debug
Terminal is upper or lower case, a digit, or punctuation.

Remember to use the upper Windowpane in the Debug Terminal to transmit the
characters you type to the BASIC Stamp. The Transmit and Receive Windowpanes are
shown in Figure 8-5.

-'-'f}'Dehug Terminal #1 ol x|
Corm Part: Baud Rate: Parit
Windowpanes DstaBis  FlowCortich ¢ 1% [~ A [~ ATS Figure 8-5

s [of ] emx eos ects Sending Messages

Transmit — to the BASIC Stamp
Click the Transmit

(upper) Windowpane

Receive — and enter the value

or characters you
want to transmit to
the BASIC Stamp.

e | Maoos. | Pase | Cea | Dos | [ Echoon




Chapter #8: Frequency and Sound - Page 247

Example Program: SelectCaseWithValues.bs2

V' Enter and run SelectCaseWithValues.bs2.
V' Click the Debug Terminal’s Transmit Windowpane.
\' Enter a value between 0 and 65535, and press the Enter key.

What happens if you enter a number larger than 65535? If you enter the number 65536,
/o the BASIC Stamp will store the number 0. If you enter the number 65537, the BASIC Stamp
\§ o . /. will store the number 1, and so on. When a number is too large for the variable it fits into, it
is called overflow.

V' Use Table 2-2 to verify that the example program makes the right decisions
about the size of the numbers you enter into the Debug Terminal.

Table 2-2: Variable Types and Values They Can Store
Variable type Range of Values
Bit Oto1
Nib 0to 15
Byte 0 to 255
Word 0 to 65535

' What's a Microcontroller - SelectCaseWithValues.bs2
' Enter a value and see the minimum variable size required to hold it.

' {$sTAMP BS2}
' {$PBASIC 2.5}

value VAR Word

DEBUG "Enter a value from", CR,
"0 to 65535: "

DO
DEBUGIN DEC value
SELECT value
CASE 0, 1
DEBUG "Bit", CR

PAUSE 100

CASE 2 TO 15
DEBUG "Nib (Nibble)", CR



Page 248 - What's a Microcontroller?

PAUSE 200

CASE 16 TO 255
DEBUG "Byte", CR
PAUSE 300

CASE 256 TO 65535
DEBUG "Word", CR
PAUSE 400

ENDSELECT
DEBUG CR, "Enter another wvalue: "

LOOP

How SelectCaseWithValues.bs2 Works

A word variable is declared to hold the values entered into the Debug Terminal.

value VAR Word

The pEBUGIN command takes the number you enter and places it into the value variable.

DEBUGIN DEC value

The sELECT statement chooses the value variable as the one to evaluate cases for.
SELECT value

The first case is if the value variable equals either 0 or 1. If value equals either of those

numbers, the DEBUG and PAUSE commands that follow it are executed.

CASE 0, 1
DEBUG "BIT", CR
PAUSE 100

The second case is if value equals any number from 2 to 15. If it does equal any of
those numbers, the DEBUG and PAUSE commands below it are executed.

CASE 2 to 15
DEBUG "NIB (Nibble)", CR
PAUSE 200

When all the cases are done, the ENDSELECT keyword is used to complete the
SELECT. . CASE statement.

ENDSELECT



Chapter #8: Frequency and Sound - Page 249

Example Program: SelectCaseWithCharacters.bs2

This example program evaluates each character you enter into the Debug Terminal’s
Transmit Windowpane. It can recognize upper and lower case characters, digits, and
some punctuation. If you enter a character the program does not recognize, it will tell
you to try again (entering a different character).

\' Enter and run SelectCaseWithCharacters.bs2.
\' Click Debug Terminal’s Transmit Windowpane, enter characters and observe
the results.

' What's a Microcontroller - SelectCaseWithCharacters.bs2
' Program that can identify some characters: case, digit, punctuation.

' {$STAMP BS2}
' {$PBASIC 2.5}

character VAR Byte
DEBUG "Enter a character: ", CR
DO

DEBUGIN character
SELECT character

CASE "A" TO n Z n
DEBUG CR, "Upper case", CR

CASE "a" TO "z"
DEBUG CR, "Lower case", CR

CASE n O n TO n 9 n
DEBUG CR, "Digit", CR

CASE ll!"' ll?"' ll."' "'ll
DEBUG CR, "Punctuation", CR

CASE ELSE
DEBUG CR, "Character not known.", CR,
"Try a different one."
ENDSELECT

DEBUG CR, "Enter another character", CR

LOOP



Page 250 - What's a Microcontroller?

How SelectCaseWithCharacters.bs2 Works

When compared to SelectCaseWithValues.bs2, this example program has a few
differences. First, the name of the value variable was changed to character, and its
size was changed from word to byte. This is because all characters in PBASIC are byte
size. The sELECT statement chooses the character variable for case by case evaluation.

SELECT character

The quotation marks are used to tell the BASIC Stamp Editor that you are referring to
characters.

SELECT character

CASE IIAII to IIZII
DEBUG CR, "Upper case", CR

CASE Ilall to IIZII
DEBUG CR, "Lower case", CR

CASE IIOII to |l9|l
DEBUG CR, "Digit", CR

CASE Il!ll, "?"l "'"I "l"
DEBUG CR, "Punctuation", CR

There is also one different caAsE statement that was not used in the previous example:

CASE ELSE
DEBUG CR, "Character not known.", CR,
"Try a different one."

This case statement tells the seLECT code block what to do if none of the other cases are
true. You can get this case to work by entering a character such as % or $.
Your Turn — Selecting Based on Ranges

V' Modify the SELECT..CASE statement in SelectCaseWithCharacters.bs2 so that
it displays “Special character” when you enter one of these characters: @, #,
$9 %’ N b &7 *’ (7 )’ - Or +‘

RTTTL Ringtone Player Application Program

Below is the RTTTL file that contains the musical information used in the next example
program. There are five more RTTTL File DATA directives that you can try in the Your



Chapter #8: Frequency and Sound - Page 251

Turn section. This program plays a tune called Reveille, which is the bugle call played at
military camps first thing in the morning. You may have heard it in any number of
movies or television shows.

RTTTL File DATA "Reveille:d=4,0=7,b=140:896,8c,1l6e,16c,896,8e,",
"8c,1l6e,16c,8g6,8e,8c,1l6e,16c,8a6,8c,e,8c,8g6,",
"8c,1l6e,16c,896,8e,8c,1l6e,16c,8g6,8e,8¢c,1l6e,",
"lé6c,8g96,8e,c,p,8e,8e,8e,8e,9,8e,8c,8e,8c,8e,8c,",
"e,8c,8e,8e,8e,8e,8e,9,8e,8c,8e,8c,896,8g6,c."

Example Program: MicroMusicWithRtttl.bs2

This application program is pretty long, and it’s a good idea to download the latest
version from the www.parallax.com — Downloads — Educational Curriculum page.
Look for a link named Selected Example Programs near the What’s a Microcontroller
PDF downloads. Downloading the program and opening it with the BASIC Stamp Editor
should save you a significant amount of time. The alternative, of course, is to hand enter
and debug four pages of code.

\ Use the BASIC Stamp Editor to open your downloaded
MicroMusicWithRtttl.bs2 file, or hand enter the example below very carefully.

v Run the program, and verify that the piece is recognizable as the Reveille
bugle call.

V' Go to the Your Turn section and try some more tunes (RTTTL_File DATA
directives).

' What's a Microcontroller - MicroMusicWithRtttl.bs2
' Play Nokia RTTTL format ringtones using DATA.

' {$STAMP BS2}
' {$PBASIC 2.5}
DEBUG "Program Running!"

SpeakerPin CON 9 ' Piezospeaker connected to P9.
I ===== [ Veriglsleg | =======================================================

counter VAR Word ' General purpose counter.

char VAR Byte ' Variable stores characters.

index VAR Word ' Index for pointing at data.

noteLetter VAR Byte ' Stores note character.

noteFreq VAR Word ' Stores note frequency.



Page 252 - What's a Microcontroller?

noteOctave VAR Word ' Stores note octave.
duration VAR Word ' Stores note duration.
tempo VAR Word ' Stores tempo.

default _d VAR Byte ' Stores default duration.
default_o VAR Byte ' Stores default octave.
default b VAR Word ' Stores default beats/min.

EEPROM Data ]

RTTTL_File DATA "Reveille:d=4,0=7,b=140:896,8c,16e,16c,8g6,8e,",
"8c,1l6e,1l6c,896,8e,8c,1l6e,16¢c,8a6,8c,e,8c,896,",
"8c,1l6e,16c,896,8e,8c,1l6e,16c,8g6,8e,8c,1l6e, ",
"léc,8g96,8e,c,p, 8e,8e,8e,8e,9,8e,8c,8e,8c,8e,8c,"
"e,8c,8e,8e,8e,8e,8e,9,8e,8c,8e,8c,8g6,8g6,c."

Done DATA ",aq, "

Notes DATA llpll , llall , ll#ll , llbll ,

"C", "#"’ "d"’ "#"’
"e"’ "f"’ "#"’ "g"’
ll#ll
Octaves8 DATA Word O, Word 3520, Word 3729, Word 3951,
Word 4186, Word 4435, Word 4699, Word 4978,
Word 5274, Word 5588, Word 5920, Word 6272,
Word 6645
Y [ Initialization J-------cmm oo oo oo
counter = 0 ' Initialize counter.

GOSUB FindEquals ' Find first '=' in file.

GOSUB ProcessDuration ' Get default duration.

GOSUB FindEquals ' Find next '="'.

GOSUB ProcessOctave ' Get default octave.

GOSUB FindEquals ' Find last '='.

GOSUB GetTempo ' Get default tempo.

DO UNTIL char =
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB

LOOP

"q"
ProcessDuration
ProcessNote
CheckForDot
ProcessOctave
PlayNote

END

Loop until 'g' in DATA.

Get note duration.

Get index value of note.
If dot, 3/2 duration.
Get octave.

Get freq, play note,

End of main loop.

next.

End of program.



1

1

1

1

FindEquals:

DO

READ RTTTL_File + counter, char
counter = counter + 1

LOOP UNTIL char = "="

RETURN

Chapter #8: Frequency and Sound - Page 253

Go through characters in
RTTTL file looking for
=", Increment counter
until '=' is found, then
return.

[ Subroutine - Read Tempo from RTTTL Header ]----------------------

Each keyboard character has a unique number called an ASCII value.

The characters 0, 1, 2,...9 have ASCII values of 48, 49, 50,...57.
You can always convert from the character representing a digit to

to its value by subtracting 48 from the variable storing the digit.

GetTempo:

default b = 0

DO

READ RTTTL_File + counter, char

IF char = ":" THEN

default_b = default b / 10
counter = counter + 1
EXIT

ENDIF

default_b = default_b + char - 48
counter = counter + 1
default b = default b * 10

LOOP UNTIL char = ":"

RETURN

Subroutine - Look up Octave ]------

ProcessOctave:

READ RTTTL_File + counter, char
SELECT char

CASE "5" TO "8"

noteOctave = char - "0O"
counter = counter + 1

CASE ELSE

noteOctave = default o

ENDSELECT
IF default o = 0 THEN

default_o = noteOctave

ENDIF

You can examine this by comparing DEBUG DEC 49 and DEBUG 49.

Parse RTTTL file for Tempo.
Convert characters to
digits by subtracting 48
from each character's ASCII
value. Iteratively multiply
each digit by 10 if there
is another digit, then add
the most recent digit to
one's column.

For example, the string
"120" is (1 X 10 X 10)

+ (2 X 10) + 0. The '1'

is converted first, then
multiplied by 10. The '2'
is then converted/added.

0 is converted/added, done.

Octave may or may not be
included in a given note
because any note that is
played in the default
octave does not specify
the octave. If a char
from '5' to '8' then use
it, else use default o.
Characters are converted
to digits by subtracting
'0', which is the same as
subtracting 48. The first
time this subroutine is
called, default o is 0.



Page 254 - What's a Microcontroller?

RETURN

I [ Subroutine - Find Index of Note ]

ProcessNote:

READ RTTTL File + counter, char

SELECT char
CASE "p n
index = 0
counter = counter + 1
CASE n a n TO n g n
FOR index = 1 TO 12
READ Notes + index,

NEXT
counter = counter + 1

notelLetter
IF notelLetter = char THEN EXIT

READ RTTTL File + counter,

SELECT char
CASE n # n
index = index + 1

counter = counter + 1

ENDSELECT
ENDSELECT

RETURN

' Set index value for lookup
' of note frequency based on
' note character. If 'p',

' index is 0. If 'a' to 'g',
' read character values in

' DATA table and find match.
' Record index value when

' match is found. If next

' char is a sharp (#), add

' 1 to the index wvalue to

' increase the index (and

' frequency) by 1 notch.

' As with other subroutines,
' increment counter for each
' character that is processed.

I o===== [ Subroutine - Determine Note Duration ]---------------"-~-—-~-~—~—~—~—~—~—~—-

ProcessDuration:

READ RTTTL_File + counter,

SELECT char

CASE "1m, n2n, n3mn - ugwn,

duration = char - 48
counter = counter + 1

READ RTTTL File + counter, char

SELECT char
CASE n 6 n , n 2 n

duration = duration * 10 + char

char

ngn

counter = counter + 1

ENDSELECT

CASE ELSE

duration = default d
ENDSELECT

IF default_d <> 0 THEN

duration = 60000/default b/duration*3

ELSE
default d = duration

' Check to see if characters
' form 1, 2, 4, 8, 16 or 32.
' If yes, then convert from
' ASCII character to a value
' by subtracting 48. In the
' case of 16 or 32, multiply
' by 10 and add the next

' digit to the ones column.

48

' If no duration, use
' use default.

' If default_d not defined
' (if default_d = 0), then
' set default_d = to the
' duration from the d=#.



ENDIF

RETURN
Subroutine -
CheckForDot :

READ RTTTL File + counter,
SELECT char

Check For

[

char

CASE "."
duration = duration * 3 / 2
counter = counter + 1
ENDSELECT
RETURN

PlayNote:

READ RTTTL File + counter,
SELECT char
CASE n , n
counter =
READ Octave8 +
noteOctave = 8
noteFreq = noteFreq /
IF noteFreq = 0 THEN
PAUSE duration
ELSE
FREQOUT SpeakerPin,
ENDIF
ENDSELECT

counter + 1

RETURN

char

(index * 2),
- noteOctave
(DCD noteOctave)

duration,

Chapter #8: Frequency and Sound - Page 255

Indicating 1.5 Duration ]

' Check for dot indicating

' multiply duration by 3/2.
' If dot found, multiply by
' 3/2 and increment counter,
' else, do nothing and

' return.

' Find last comma in the

' current note entry. Then,
' fetch the note frequency
' from data, and play it,

' pause if frequency = 0.

or

Word noteFreq

noteFreq

How MicroMusicWithRtttl.bs2 Works

This example program is fun to use, and it shows the kind of code you will be able to
write with some practice. However, it was included in this text more for fun than for the

coding concepts it employs.

If you examine the code briefly, you might notice that you have already used all of the
commands and operators in the program. Here is a list of the elements in this application
example that should, by now, be familiar:

o Comments to help explain your code



Page 256 - What's a Microcontroller?

o Constant and variable declarations

e DATA declarations

e READ commands

e IF..ELSE..ENDIF blocks

e DO..LOOP both with and without WHILE and UNTIL
e Subroutines with cosu, labels, and RETURN

e  FOR..NEXT loops

e LOOKUP and LOOKDOWN commands

o The FREQOUT and PAUSE commands
e SELECT..CASE

Your Turn — Different Tunes

\' Try replacing the RTTTL File DATA directive in MicroMusicWithRTTTL.bs2
with each of the five different music files below.

‘f ™ Only one RTTTL File DATA directive at a time! Make sure to replace, not add, your

new RTTTL File DATA directive.

)
v Run MicroMusicWithRTTTL.bs2 to test each RTTTL file.

RTTTL File DATA "TwinkleTwinkle:d=4,0=7,b=120:c,c,9,9,a,a,29,£,",
"f,e,e,d,d,2¢,9,9,£,f,e,e,2d,9,9,£,f,e,e,2d,c,¢c,",
"g,9,a,a,29,f,f,e,e,4d,d,1c"

Yy

RTTTL File DATA "FrereJacques:d=4,0=7,b=125:¢c,d,e,c,c,d,e,c,e, f",
",29,e,f,29,89,8a,89,8f,e,c,89,8a,89,8f,e,c,c,g6",
",2c,c,g6,2c"

RTTTL File DATA "Beethoven5:d=8,0=7,b=125:9,9,9,2d#,p, £, £, £,24d"

RTTTL File DATA "ForHe'sAJollyGoodFellow:d=4,0=7,b=320:c,2e,e,e,",
"d,e,2f.,2e,e,2d,d,d,c,d,2e.,2c,d,2e,e,e,d,e,2f,",
"g,2a,a,9,9,9,2f,d,2c"

RTTTL _File DATA "TakeMeOutToTheBallgame:d=4,0=7,b=225:2¢c6,c,a6,",
"g6,e6,29.6,2d6,p,2c6,Cc,a6,96,e6,29.6,96,p,p,a6",
",g#6,a6,e6,f6,96,a6,p,£6,2d6,p,2a6,a6,a6,b6,c, ",
"d,b6,a6,g6"




Chapter #8: Frequency and Sound - Page 257

Downloading RTTTL Files: There are lots of RTTTL files available for download from
various sites on the World Wide Web. These files are contributed by ring-tone enthusiasts,
many of whom are not music experts. Some phone tones are pretty good, others are barely
recognizable. If you want to download and play some more RTTTL files, make sure to
remove any spaces from between characters, then insert the text file between quotes.




Page 258 - What's a Microcontroller?

SUMMARY

This chapter introduced techniques for making sounds and musical tones using the
BASIC Stamp and a piezoelectric speaker. The FREQouT command can be used to send a
piezoelectric speaker high/low signals that cause it to make sound effects and/or musical
notes. The FREQoUT command has arguments that control the I/O Pin the signal is sent
to, the Duration of the tone, the frequency of the tone (Fregi1). The optional Freg2
argument can be used to mix tones.

Sound effects can be made by adjusting the frequency and duration of tones and the
pauses between. The value of the frequency can also be swept across a range of values or
mixed to create a variety of effects.

Making musical notes also depends on frequency, duration, and pauses. The value of the
FREQOUT command’s Duration argument is determined by the tempo of the song and the
duration of the note (whole, half, quarter, etc.). The Fregi value of the note is
determined by the note’s letter and octave. Rests between notes are used to set the
duration of the PAUSE command.

Playing simple songs using the BASIC Stamp can be done with a sequence of FREQOUT
commands, but there are better ways to store and retrieve musical data. paTa directives
along with their optional symbol labels were used to store byte values using no prefix
and word values using the word prefix. The READ command was used to retrieve values
stored by DATA directives. The READ command’s Address argument always used the
DATA directive’s optional symbol label to differentiate between different types of data.
Some the symbol labels that were used were Notes, Durations, Dots, and Octaves.

Musical data can be stored in formats that lend themselves to translation from sheet
music. The sheet music style data can then be converted into Frequency using the
LoOKUP and LOOKDOWN commands. Mathematic operations can also be performed on
variable values to change the octave of a note by dividing its frequency by a power of
two. Mathematic operations are also useful for note durations given either the tempo or
the duration of a whole note.

SELECT..CASE was introduced as a way of evaluating a variable on a case by case basis.
SELECT...CASE is particularly useful for examining characters or numbers when there are
many choices as to what the variable could be and many different sets of actions that



Chapter #8: Frequency and Sound - Page 259

need to be taken based on the variable’s value. A program that converts strings of
characters that describe musical tones for cell phones (called RTTTL files) was used to
introduce a larger program that makes use of all the programming techniques introduced
in this text. SELECT..CASE played a prominent role in this program because it is used to
examine characters selected in an RTTTL file on a case-by-case basis.

Questions

1.

What causes a tone to sound high-pitched? What causes a tone to sound low-
pitched?

2. What does FREQOUT 15, 1000, 3000 do? What effect does each of the
numbers have?
3. How can you modify the FREQOUT command from Question 2 so that it sends
two frequencies at once?
4. Ifyou strike a piano’s B6 key, what frequency does it send?
5. How do you modify a baTa directive or READ command if you want to store and
retrieve word values?
6. Can you have more than one DATA directive? If so, how would you tell a READ
command to get data from one or the other DATA directive?
7. What’s an octave? If you know the frequency of a note in one octave, what do
you have to do to that frequency to play it in the next higher octave?
8.  What does SELECT...CASE do?
Exercises
1. Modify the “Alarm...” tone from ActionTones.bs2 so that the frequency of the
tone it plays increases by 500 each time the tone repeats.
2. Explain how to modify MusicWithMoreFeatures.bs2 so that it displays an alert
message in the Debug Terminal each time a dotted note is played.
Project

1.

Build pushbutton controlled tone generator. If one pushbutton is pressed, the
speaker should make a 2 kHz beep for 1/5 of a second. If the other pushbutton is
pressed the speaker should make a 3 kHz beep for 1/10 of a second.



Page 260 - What's a Microcontroller?

Solutions

Q1. Our ears detect changes in air pressure as tones. A high pitched tone is from
faster changes in air pressure, a low pitched tone from slower changes in air
pressure.

Q2. FREQOUT 15, 1000, 3000 sends a 3000 Hz signal out pin 15 for one second
(1000 ms).

The effect of each number:
15 — pin number 15.
1000 — duration of tone equals 1000 ms or one second.
3000 — the frequency of the tone, in Hertz, so this sends a 3000 Hz tone.
Q3. Use the optional Freg2 argument. To mix 3000 Hz and say, 2000 Hz, we simply

add the second frequency to the command, after a comma:
FREQOUT 15, 1000, 3000, 2000

Q4. 1975.5 Hz, see Figure 8-3 on page 228.

Q5. Use the optional word modifier before each data item.

Q6. Yes. Each pata directive has a different symbol parameter. To specify which
DATA directive to get the data from, include the symbol parameter after the READ
keyword. For example: READ Notes, noteLetter. In this example, Notes is
the symbol parameter.

Q7. An octave is a group of 8 whole and 4 chromatic notes. To get a given note in
the next higher octave, multiply the frequency by two.

Q8. SELECT. . .CASE selects a variable or expression, evaluates it on a case by case
basis, and executes different blocks of code depending on which case the
variable's value fits into.

E1. This problem can be solved either by manually increasing each tone by 500, or
by utilizing a FOR. . .NEXT loop with a STEP value of 500.

Utilizing FOR. . .NEXT loop: Manually increasing tone:
DEBUG "Increasing alarm...", CR DEBUG "Increasing Alarm...",CR
PAUSE 100 PAUSE 100
FOR frequency = 1500 TO 3000 STEP 500 FREQOUT 9, 500, 1500
FREQOUT 9, 500, frequency PAUSE 500
PAUSE 500 FREQOUT 9, 500, 2000
NEXT PAUSE 500
FREQOUT 9, 500, 2500
PAUSE 500
FREQOUT 9, 500, 3000
PAUSE 500

E2. Modify the lines that check for the dotted note:
READ Dots + index, noteDot



Chapter #8: Frequency and Sound - Page 261

IF noteDot = 1 THEN noteDuration = noteDuration * 3 / 2

Add a pEBUG command to the IF...THEN. Don't forget the ENDIF.
READ Dots + index, noteDot
IF noteDot = 1 THEN
noteDuration = noteDuration * 3 / 2
DEBUG "Dotted Note!", CR
ENDIF

P1. Use the piezospeaker circuit from Figure 8-2, p. 220; pushbutton circuits from
Figure 4-20, p. 129.

' What's a Microcontroller - Ch8Prj0l PushButtonToneGenerator.bs2
' P4 Pressed: 2 kHz beep for 1/5 second. 2 kHz = 2000 Hz.

! 1/5 s = 1000 / 5 ms = 200 ms

' P3 Pressed: 3 kHz beep for 1/10 second. 3 kHz = 3000 Hz.

! 1/10 s = 1000 / 10 ms = 100 ms

' {$STAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

DO I!:II
IF (IN4 = 1) THEN

FREQOUT 9, 200, 2000 ' 2000 Hz for 200 ms
ELSEIF (IN3 = 1) THEN
FREQOUT 9, 100, 3000 ' 3000 Hz for 100 ms
ENDIF
LOOP

Further Investigation

“Applied Sensors’, Student Guide, Version 2.0, Parallax Inc., 2003
More sound effects, clicks, crickets are introduced using the piezoelectric
speaker. The pentatonic and equal temperament scale are the basis for
discussion of math fractions. The speaker is also used as feedback for a variety
of sensor measurements.

“Basic Analog and Digital”, Student Guide, Version 2.0, Parallax Inc., 2003
The speaker is used to make a frequency generated by a 555 timer audible. The
BASIC Stamp measures the frequency of the tone with a couNT command.

“Understanding Signals’, Student Guide, Version 1.0, Parallax Inc., 2003
You can use this book to view the output of the FREQouT command, both as
digital pulses, and as sine waves.



Chapter #9: Electronic Building Blocks - Page 263

Chapter #9: Electronic Building Blocks

THOSE LITTLE BLACK CHIPS

You need look no further than your BASIC Stamp (see Figure 9-1) to find examples of
“those little black chips”. Each of these chips has a special function. The upper-right
chip is the voltage regulator. This chip takes the battery voltage and converts it to almost
exactly 5.0 V, which is what the rest of the components on the BASIC Stamp need to run
properly. The upper-left chip is the BASIC Stamp module’s EEPROM. PBASIC
programs are condensed to numbers called tokens that are downloaded to the BASIC
Stamp. These tokens are stored in the EEPROM, and you can view them by clicking Run
and then Memory Map in the BASIC Stamp Editor. The largest chip is called the
Interpreter chip. It fetches the tokens from the EEPROM and then interprets the PBASIC
command that the token represents. Then, it executes the command, fetches the next
token, and so on. This process is called “fetch and execute”.

Figure 9-1
Integrated
Circuits on the
BASIC Stamp



Page 264 - What's a Microcontroller?

People use the term “integrated circuit” (IC) to talk about little black chips. The
integrated circuit is actually a tiny silicon chip that’s contained inside the black plastic or
ceramic case. Depending on the chip, it may have anywhere between hundreds and
millions of transistors. A transistor is the basic building block for integrated circuits, and
you will have the opportunity to experiment with a transistor in this chapter. Other
familiar components that are designed into silicon chips include diodes, resistors and
capacitors.

Take a moment to think about the activities you’ve tried in this book so far. The list
includes switching LEDs on and off, reading pushbuttons, controlling servos, reading
potentiometers, measuring light, controlling displays, and making sounds. Even though
that’s just the beginning, it’s still pretty impressive, especially considering that you can
combine these activities to make more complex gizmos and gadgets. The core of the
system that made all those activities possible is comprised of just the three integrated
circuits shown in Figure 9-1 and a few other parts. It just goes to show how powerful
integrated circuits can be when they are designed to work together.

EXPAND YOUR PROJECTS WITH PERIPHERAL INTEGRATED CIRCUITS

There are thousands of integrated circuits designed to be used with microcontrollers.
Sometimes different integrated circuit manufacturers make chips that perform the same
function. Sometimes each chip’s features differ slightly, and other times, the chips are
identical, but one might cost a little less than the other. Each one of the thousands of
different integrated circuits can be used as a building block for a variety of designs.
Companies publish information on how each of their integrated circuits work in
documents called datasheets that are published on the World Wide Web. These
manufacturers also publish application notes, which show how to use their integrated
circuit in unique or useful ways that make it easier to design products. The integrated
circuit manufacturers give away this information in hopes that engineers will use it to
build their chip onto the latest must-have toy or appliance. If thousands of toys are sold,
it means the company sells thousands of their integrated circuits.

In this chapter, you will experiment with a transistor, and a special-purpose integrated
circuit called a digital potentiometer. As mentioned earlier, the transistor is the basic
building block for integrated circuits. It’s also a basic building block for lots of other
circuits as well. The digital potentiometer also has a variety of uses. Keep in mind that
for each activity you have done, there are probably hundreds of different ways that you
could use each of these integrated circuits.



Chapter #9: Electronic Building Blocks - Page 265

ACTIVITY #1: CONTROL CURRENT FLOW WITH A TRANSISTOR

In this activity, you will use a transistor as a way to control the current passing through an
LED. You can use the LED to monitor the current since it glows more brightly when
more current passes through it and less brightly when less current passes through it.

Introducing the Transistor

Figure 9-2 shows the schematic symbol and part drawing of the 2N3904 transistor. There
are many different types of transistors. This one is called NPN, which refers to the type
of materials used to manufacture the transistor and the way those materials are layered on
the silicon. The best way to get started thinking about a transistor is to imagine it as a
valve that is used to control current. Different transistors control how much current
passes through by different means. This transistor controls how much current passes into
C (collector) and back out of E (emitter). It uses the amount of current allowed into the B
(base) terminal to control the current passing from C through E. With a very small
amount of current allowed into B, a current flow of about 416 times that amount flows
through the transistor into C and out of E.

Figure 9-2
2N3904 Transistor

mwoO

2N3904

The 2N3904 Part Datasheet: As mentioned earlier, semiconductor manufacturers publish
documents called datasheets for the parts they make. These datasheets contain
information engineers use to design the part into a product. To see an example of a part
\  datasheet for the 2N3904: Go to www.fairchildsemi.com. Enter 2N3904 into the Search field
\&/ on Fairchild Semiconductor's home page, and click Go. One of the search results should be
a link to the 2N3904 Product Folder. Follow the link to the product folder, then click
Download this Datasheet link. Most web browsers display the datasheet by opening it with

Adobe Acrobat Reader.

Transistor Example Parts

(1) Transistor — 2N3904
(2) Resistors — 100 kQ (brown-black-yellow)
(1) LED — any color




Page 266 - What's a Microcontroller?

(1) Potentiometer — 10 kQ

(3) Jumper wires

Building and Testing the Transistor Circuit

Figure 9-3 shows a circuit that you can use to manually control how much current the
transistor allows through the LED. By twisting the knob on the potentiometer, the circuit
will deliver different amounts of current to the transistor’s base. This will cause a change
in the amount of current the transistor allows to pass from its collector to its emitter. The
LED will give you a clear indication of the change by glowing more or less brightly.

\/
\/

<
o)
a

POT <
10kQ S

Vgs

Your Turn — Switching the Transistor On/Off

Build the circuit shown in Figure 9-3.
Turn the knob on the potentiometer and verify that the LED changes
brightness in response to a change in the position of the potentiometer’s wiper

terminal.

100 kQ

V;s

X2

DDDDDDDDD"A

Figure 9-3
Manual
Potentiometer
Controlled
Transistor
Circuit

If all you want to do is switch a transistor on and off, you can use the circuit shown in
Figure 9-4. When the BASIC Stamp sends a high signal to this circuit, it will make it so
that the transistor conducts as much current as if you adjusted the potentiometer for
maximum brightness. When the BASIC Stamp sends a low signal to this circuit, it will
cause the transistor to stop conducting current, and the LED should emit no light.



Chapter #9: Electronic Building Blocks - Page 267

What's the difference between this and connecting an LED circuit to an /O pin?
BASIC Stamp I/O pins have limitations on how much current they can deliver. Transistors
~ ™. have limitations too, but they are much higher. In the Industrial Control Student Guide, a
( ? transistor is used to drive a small DC fan. It is also used to supply large amounts of current
\./ to a small resistor that is used as a heating element. Either of these two applications would
draw so much current that they would quickly damage the BASIC Stamp, but the transistor
takes it in stride.

Build the circuit shown in Figure 9-4.

Write a program that sends high and low signals to P8 twice every second.
HINT: LedOnOff.bs2 from Chapter #2 needs only to be modified to send
high/low signals to P8 instead of P3. Remember to save it under a new name
before making the modifications.

V' Run the program and verify that it gives you on/off control of the LED.

2 2

vdd
!§ LED ZS\i 00 Fi_gur_e 9-4
BDBE Circuit that
oooo oo0ooo Gives BASIC
0oog| |ooooo Stamp
XZORO| 00000 :

P8 D So/0 ooooo || lransistor
=700 ooooo On/Off Control
0oo0| |ooooo
0oo0| |ooooo

100 kQ 0oooo| |ooooo
0oo0| |ooooo
0oo0|_jooooo

— Ooo0d 00000
Vss x| 00000 00000

ACTIVITY #2: INTRODUCING THE DIGITAL POTENTIOMETER

In this activity, you will replace the manually adjusted potentiometer with an integrated
circuit potentiometer that is digitally adjusted. You will then program the BASIC Stamp
to adjust the digital potentiometer, which will in turn adjust the LED’s brightness in the
same way the manual potentiometer did in the previous activity.



Page 268 - What's a Microcontroller?

Introducing the Digital Potentiometer

Figure 9-5 shows a pin map of the digital potentiometer you will use in this activity. This
chip has 8 pins, four on each side that are spaced to make it easy to plug into a
breadboard (1/10 inch apart). The manufacturer places a reference notch on the plastic
case so that you can tell the difference between pin 1 and pin 5. The reference notch is a
small half-circle in the chip’s case. You can use this notch as a reference for the pin
numbers on the chip. The pin numbers on the chip count upwards, counterclockwise
from the reference notch.

Part Substitutions: It is sometimes necessary for Parallax to make a part substitution. The

( ) part will function the same, but the label on it may be different. If you find that the digital

\&/ potentiometer included in your What's a Microcontroller Parts Kit is not labeled AD5220, rest
assured that it will still work the same way and perform correctly in this activity.

Reference
Notch Figure 9-5
l AD5220 Pin Map
Use the reference
i|cLk ™~ vadls]  notch to make
;oSS sure you f.7ave t'he
AD5220 right-side-
SISVWWAEYS]  up when building it
2|GND ME into your circuit on
the breadboard.
AD5220

Here is a summary of each of the AD5220’s pins and functions:

1. CLK - The pin that receives clock pulses (low-high-low signals) to move the
wiper terminal.

2. U/D - The pin that receives a high signal to make the wiper (W1) terminal move
towards Al, and a low signal to make it move towards B1. This pin just sets the
direction, the wiper terminal doesn’t actually move until a pulse (a low — high —
low signal) is sent to the CLK pin.

3. Al — The potentiometer’s A terminal.

4. GND — The ground connection. The ground on the Board of Education and
BASIC Stamp HomeWork Board is the Vss terminal.

5. WI — The potentiometer’s wiper (W) terminal.



Chapter #9: Electronic Building Blocks - Page 269

6. BI1 — The potentiometer’s B terminal.

7. CS — The chip select pin. Apply a high signal to this pin, and the chip ignores all
control signals sent to CLK and U/D. Apply a low signal to this pin, and it acts
on any control signals it receives.

8. Vdd — Connect to +5 V, which is Vdd on the Board of Education and BASIC
Stamp HomeWork Board.

The AD5220 Part Datasheet: To see the part datasheet for the AD5220: Go to

/[ & % www.analog.com. Enter AD5220 into the Search field on Analog Devices’ home page, and

\&/ click the Search button. Click the Data Sheets link. Click the link that reads “AD5220:
Increment/Decrement Digital Potentiometer Datasheet”.

Digital Pot Controlled Transistor Parts

(1) Transistor — 2N3904

(2) Resistors — 100 kQ (brown-black-yellow)
(1) LED — any color

(1) Digital potentiometer — AD5220

Building the Digital Potentiometer Circuit

Figure 9-6 shows a circuit schematic with the digital potentiometer used in place of a
manual potentiometer, and Figure 9-7 shows a wiring diagram for the circuit. The
BASIC Stamp can control the digital potentiometer by issuing control signals to P5 and
Pé6.

V' Build the circuit shown in Figure 9-6 and Figure 9-7.

Vdd Vdd
vdd
AD5220
i CL—KUVES !\\: Figure 9-6
P5 D ub  TSf5 g1 )
A a1 Digital Potentiometer
AW Controlled Transistor
Wile— Circuit Schematic

oo+ wil
_|'_ 100 kQ

Ss

<
<
»
7]



Page 270 - What's a Microcontroller?

Figure 9-7
Digital
Potentiometer
Controlled
Transistor
Wiring Diagram

m}
oo
oo
oo

m]
oo
0 0
a0
oo
oo
oo
oo
oo
oo

Programming Digital Potentiometer Control

Imagine that the knob on the manual potentiometer from the previous exercise has 128
positions. Imagine also that the potentiometer is in the middle of its range of motion.
That means you could rotate the knob one direction by 63 steps and the other direction by
64 steps.

Let’s say you turn the potentiometer’s knob one step clockwise. The LED will get only
slightly brighter. This would be the same as sending a high signal to the AD5220’s U/D
pin and sending one pulse (high-low-high) to the CLK pin.

HIGH 5
PULSOUT 6, 1

Imagine next that you turn your manual potentiometer 3 steps counterclockwise. The
LED will get a little bit dimmer. This would be the same as sending a low signal to the
U/D pin on the AD5220 and sending three pulses to the CLK pin.

LOW 5

FOR counter = 1 TO 3
PULSOUT 6, 1
PAUSE 1

NEXT



Chapter #9: Electronic Building Blocks - Page 271

Imagine next that you turn the potentiometer all the way clockwise. That’s the same as
sending a high signal to the AD5220’s U/D pin and sending 65 pulses to the CLK pin.
Now the LED should be shining brightly.

HIGH 5

FOR counter = 1 TO 65
PULSOUT 6, 1
PAUSE 1

NEXT

Finally, imagine that you turn your manual potentiometer all the way counterclockwise.
The LED should emit no light. That’s the same as sending a low signal to the U/D pin,
and applying 128 pulses to the CLK pin

LOW 5
FOR counter = 0 TO 127
PULSOUT 6, 1
PAUSE 1
NEXT
Example Program: DigitalPotUpDown.bs2

This example program adjusts the potentiometer up and down, from one end of its range
to the other, causing the LED to get gradually brighter, then gradually dimmer.

\' Enter and run DigitalPotUpDown.bs2.

' What's a Microcontroller - DigitalPotUpDown.bs2
' Sweep digital pot through values.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DEBUG "Program Running!"
counter VAR Byte
DO
LOW 5
FOR counter = 0 TO 127
PULSOUT 6, 1
PAUSE 10

NEXT

HIGH 5



Page 272 - What's a Microcontroller?

FOR counter = 0 TO 127
PULSOUT 6, 1
PAUSE 10

NEXT

LOOP

Your Turn — Changing the Rate and Condensing the Code

You can increase or decrease the rate at which the LED gets brighter and dimmer by
changing the PAUSE command’s Duration argument.

V' Modify and re-run the program using PAUSE 20 and note the difference in the
rate that the LED gets brighter and dimmer.
V' Repeat for PAUSE 5.

You can also use a command called TOGGLE to make this program simpler. TOGGLE
changes the state of a BASIC Stamp 1/O pin. If the I/O pin was sending a high signal,
TOGGLE makes it send a low signal. If the I/O pin was sending a low signal, TOGGLE
makes it send a high signal.

V' Save DigitalPotUpDown.bs2 as DigitalPotUpDownWithToggle.bs2.

V' Modify the program so that it looks like the one below.

V' Run the program and verify that it functions the same as the
DigitalPotUpDown.bs2.

V' Compare the number of lines of code it took to do the same job.

Running out of program memory is a problem many people encounter when their BASIC
/ ) Stamp projects get large and complicated. Using TOGGLE instead of two FOR..NEXT loops
\L/ is just one example of many techniques that can be used to do the same job with half the
code.

' What's a Microcontroller - DigitalPotUpDownWithToggle.bs2
' Sweep digital pot through values.

' {$sTAMP BS2}
' {$PBASIC 2.5}
DEBUG "Program Running!"

counter VAR Byte



Chapter #9: Electronic Building Blocks - Page 273

LOW 5

DO
FOR counter = 0 TO 127
PULSOUT 6,5
PAUSE 10
NEXT
TOGGLE 5
LOOP

Looking Inside the Digital Potentiometer

Figure 9-8 shows a diagram of the potentiometer inside the AD5220. The AD5220 has
128 resistive elements, each of which is 78.125 Q (nominal value). All 128 of these add
up to 10,000 Q or 10 kQ.

A Anominal value means a named value. Parts like resistors and capacitors typically have a

f

(1 ) nominal value and a tolerance. Each of the AD5220’s resistive elements has a nominal
value of 78.125 Q, with a tolerance of 30% (23.438 Q) above or below the nominal value.

Between each of these resistive elements is a switch, called a tap. Each switch is actually
a group of transistors that are switched on or off to let current pass or not pass. Only one
of these switches can be closed at one time. If one of the upper switches is closed (like
pos. 125, 126, or 127), it’s like having the manual potentiometer knob turned most or all
the way clockwise. If pos. 0 or 1 is closed, it’s like having a manual potentiometer turned
most or all the way counterclockwise.

3
A1
Ad5220 78 Q
pos. 127
78 Q
1] CLK
2| U/D
5 Wi 78Q .
7lcs 400 125 Figure 9-8
pos. Inside the AD5220
78 Q
pos. 1
78 Q
pos. 0 B1




Page 274 - What's a Microcontroller?

Imagine that Pos. 126 is closed. If you want to set the tap to 125, (open pos. 126 and
close pos. 125), set U/D low, then apply a pulse to CLK. If you want to set the tap to Pos
127, set U/D high, and apply 2 pulses. If you want to bring the tap down to 1, set U/D
low, and apply 126 pulses.

This next example program uses the Debug Terminal to ask you which tap setting you
want. Then it decides whether to set the U/D pin high or low, and applies the correct
number of pulses to move the tap from its old setting to the new setting.

With the exception of EEPROM Data, the next example program also has all the sections
you could normally expect to find in an application program:

o Title — comments that include the filename of a program, its description, and the
Stamp and PBASIC directives.

o EEPROM Data — The paTa declarations used by the program.

o I/O Definitions — constant declarations that define I/O pin numbers.

o Constants — constant declarations that define other values used in the program.

e Variables — variable declarations.

o Initialization — a routine that gets the program started on the right foot. In this
next program, the potentiometer’s tap needs to be brought down to zero.

e Main — the routine that handles the primary jobs the program has to do.

o Subroutines — the segments of code that do specific jobs, either for each other, or
in this case, for the main routine.

Example Program: TerminalControlledDigtialPot.bs2

You can use this example program and the Debug Terminal to set the digital pot’s tap.
By changing the tap setting on the digital pot, you change the brightness of the LED
connected to the transistor that the digital pot controls. Figure 9-9 shows an example of
entering the value 120 into the Debug Terminal’s Transmit Windowpane while the
program is running. Since the old tap setting was 65, the LED becomes nearly twice as
bright when it is adjusted to 120.



Chapter #9: Electronic Building Blocks - Page 275

-"5'/'Debug Terminal #1 =10l x|
| e - 00
i Data Bt Flow Control jgure 9-
Windowpanes [ A [ $a eowm eas Segnding Messages
Transmit — | |120 2| tothe BASIC Stamp
N of
Tap setting is: 65 2 Click the Transmit
(upper) Windowpane
Receive —  [BRter new tap and enter the
setting (0 TO 127): 120 numbers for the new
s = tap setting.

Cooie | Macos. | Pawa | e | Cmse | I Echooh

\' Enter and run TerminalControlledDigtialPot.bs2.
\' Enter values between 0 and 127 into the Debug Terminal. Make sure to press
the enter key after you type in the digits.

L s [ Title J--ommmmm oo m oo oo oo oo oo
' What's a Microcontroller - TerminalControlledDigitalPot.bs2
' Update digital pot's tap based on Debug Terminal user input.

' {$sTAMP BS2}
' {$PBASIC 2.5}

I [ EEPROM Data ] -=---=== === === m e oo oo

UdPin CON 5 ' Set values of I/O pins
ClkPin CON 6 ' connected to CLK and U/D.

I ===== [ Comgitemits | =======================================================

DelayPulses CON 10 ' Delay to observe LED fade.
DelayReader CON 2000

I o===== [ Veumelglolleg | =======================================================

counter VAR Byte ' Counter for FOR...NEXT.
oldTapSetting VAR Byte ' Previous tap setting.
newTapSetting VAR Byte ' New tap setting.

L [ Initialization J---------------"--"-““““ -

oldTapSetting = 0 ' Initialize new and old
newTapSetting 0 ' tap settings to zero.



Page 276 - What's a Microcontroller?

LOW UdPin

FOR counter = 0 TO 127
PULSOUT 6,5
PAUSE 1

NEXT

L [ Main Routine ]----------------

DO
GOSUB Get New Tap Setting
GOSUB Set_Ud_Pin
GOSUB Pulse Clk pin

LOOP

Get_New_Tap Setting:

DEBUG CLS, "Tap setting is: "

DEC newTapSetting, CR, CR
DEBUG "Enter new tap", CR, "setting

DEBUGIN DEC newTapSetting
RETURN

Set _Ud Pin:

IF newTapSetting > oldTapSetting THEN

HIGH UdPin

oldTapSetting = oldTapSetting + 1
ELSEIF newTapSetting < oldTapSetting THEN

LOW UdPin

oldTapSetting = oldTapSetting - 1

ELSE

DEBUG CR, "New and old settings",
"are the same, try ",

"again...", CR
PAUSE DelayReader
ENDIF
RETURN

Pulse Clk pin:

' Deliver pulses from old to new values.

----- [ Subroutines ]J-----------------

' Set U/D pin for Down.

Set tap to lowest position.

User display and get input.
Set U/D pin for up/down.
Deliver pulses.

Display instructions and
get user input for new
tap setting value.

(0 TO 127): "

Examine new and old tap values
to decide value of U/D pin.
Notify user if values are
equal.

Increment for Pulse Clk pin.

Decrement for Pulse_Clk_pin.

Give reader time to view
Message.

Keep in mind that Set_Ud Pin

' adjusted the value of oldTapSetting toward newTapSetting by one.
' This keeps the FOR...NEXT loop from executing one too many times.



FOR counter = oldTapSetting TO newTapSetting

PULSOUT ClkPin, 1
PAUSE DelayPulses
NEXT
oldTapSetting = newTapSetting

RETURN

Chapter #9: Electronic Building Blocks - Page 277

1

1

Keep track of new and old
tapSetting values.



Page 278 - What's a Microcontroller?

SUMMARY

This chapter introduced integrated circuits and how they can be used with the BASIC
Stamp. A transistor was used as a current valve, and a digital potentiometer was used to
control the amount of current passing through the transistor. Examining the digital
potentiometer introduced the reference notch and pin map as important elements of
electronic chips. The function of each of the digital potentiometer pins was discussed, as
well as the device’s internal structure. The PBASIC command ToGGLE was introduced as
a means to save program memory.

Questions

1. What are the names of the terminals on the transistor you used in this chapter?

2. Which terminal controls the current passing through the transistor?

3. What can you do to increase or decrease the current passing through the
transistor?

Exercise

1. Write a program that adjusts the tap in the digital pot to position 0 regardless of
its current setting.

Project

1. Add a photoresistor to your project and cause the brightness of the LED to adjust
with the brightness seen by the photoresistor.

Solutions

Q1. Emitter, base, and collector.

Q2. The base controls the current passing through the transistor.

Q3. Increase or decrease the current allowed into the transistor's base.

El. To solve this exercise, look at TerminalControlledDigitalPot.bs2. The first thing
it does, in the Initialization section, is to set the tap to the lowest position. This
exact code is used in the solution below.

' What's a Microcontroller - Ch9Ex01 SetTapToZero.bs2
' Turn tap on digital pot all the way down to zero

' {$sTAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"



P1.

Chapter #9: Electronic Building Blocks - Page 279

UdPin CON 5 ' Set values of I/O pins
ClkPin CON 6 ' connected to CLK and U/D.
counter VAR Byte ' Counter for FOR...NEXT.
LOW UdPin ' Set U/D pin for Down.
FOR counter = 0 TO 128 ' Set tap to lowest position.
PULSOUT ClkPin,5
PAUSE 1
NEXT
Use the digital potentiometer circuit from Figure 9-6, p. 269 and the
photoresistor circuit from Figure 7-2, p. 191.
Vdd vdd
vad -
AD5220
2200 7
N = 001pF

‘!A‘!‘Y

100 k@

‘VAV.V

100 k@ =

L L Vss
Vss Vss

This solution is based on TerminalControlledDigitalPot.bs2, except instead of
being controlled by typing in the Debug Terminal, it is controlled by reading the
photoresistor. A subroutine, Read Photoresistor, reads the photoresistor
using RCTIME as shown in Chapter 5. The reading from the photoresistor
becomes the new tap setting, and the original program does the work to set the
tap. The parts of the original program that ask for input from the Debug
Terminal were deleted, including the Get New Tap Setting subroutine.

' What's a Microcontroller - Ch9Prj0l1_ PhotoControlledDigitalPot.bs2
' Update digital pot's tap based on photoresistor reading

' {$sTAMP BS2}

' {$PBASIC 2.5}

DEBUG "Program Running!"

e [ Declarations and Initialization]----------------—-—-———~—~—~—~—~—~———-

UdPin CON 5 ' Set values of I/O pins
ClkPin CON 6 ' connected to CLK and U/D.
PhotoPin CON 2 ' Photoresistor on pin P2
DelayPulses CON 10 ' Delay to observe LED fade.

DelayReader CON 2000



Page 280 - What's a Microcontroller?

counter VAR
oldTapSetting VAR
newTapSetting VAR
lightReading VAR
oldTapSetting = 0
newTapSetting = 0
LOW UdPin
FOR counter = 0 TO 128
PULSOUT 6,5
PAUSE 1
NEXT
I coces [ Main Routine
DO

Byte ' Counter for FOR...NEXT.
Byte ' Previous tap setting.

Byte ' New tap setting.

Word ' reading from photoresistor

' Initialize new and old
' tap settings to zero.

' Set U/D pin for Down.
' Set tap to lowest position.

GOSUB Read Photoresistor

newTapSetting

GOSUB Set_Ud_Pin

GOSUB Pulse_Clk pin
LOOP

[ [ Subroutines ]
Set Ud Pin:

IF newTapSetting > oldTapSetting THEN o
ELSEIF newTapSetting < oldTapSetting THEN !

LOW UdPin
ENDIF
RETURN

Pulse Clk pin:
FOR counter
PULSOUT ClkPin, 1
PAUSE DelayPulses
NEXT
oldTapSetting
RETURN

Read Photoresistor:
HIGH PhotoPin
PAUSE 100
RCTIME PhotoPin,
RETURN

1,

Further Investigation

oldTapSetting TO newTapSetting '

newTapSetting o

lightReading

' Set U/D pin for up/down.
' Deliver pulses.

' Examine old and new
tap values to decide
value of UdPin. Notify
' user 1f values are

' equal.

' Deliver pulses
from old to new
' values.

Keep track of new and old
' tapSetting values.

lightReading

“Industrial Control”, Student Guide, Version 2.0, Parallax Inc., 2002
Industrial Control uses the transistor as an on/off switch for a resistor heating
element. It also uses a phototransistor to detect the passage of stripes on a
spinning wheel.



Chapter #10: Running the Whole Show - Page 281

Chapter #10: Running the Whole Show

SUBSYSTEM INTEGRATION

Most of the activities in this text introduce how to program the BASIC Stamp to interact
with one or two circuits at a time. Many microcontrollers have to handle tens or even
hundreds of circuits. This chapter will demonstrate a few of the techniques used to
manage a variety of circuits with a single microcontroller.  Programming the
microcontroller to orchestrate the activities of different circuits performing unique
functions is called subsystem integration.

The example in this chapter uses a sensor array consisting of two pushbutton circuits, a
potentiometer circuit and a photoresistor circuit. The activities in this chapter will guide
you through building and testing each subsystem individually. After each subsystem is
built and tested, you will then write a program that combines each subsystem into a
working unit. Figure 10-1 shows the circuit schematic for the system you will build, and
the master parts list is below.

Always remember: whenever possible, test each subsystem individually before trying to
make them work together. If you follow this rule, your projects will go much more
smoothly, and your chances of success will be greatly improved. The activities in this
chapter will guide you through the process.

Sensor Array Parts List

(4) Resistors — 220 € (red-red-brown)

(2) Resistors — 10 k€ (brown-black-orange)
(2) Pushbuttons — normally open

(2) Capacitors — 0.1 uF

(1) Potentiometer — 10 kQ

(1) Photoresistor

(5) Jumper wires




Page 282 - What's a Microcontroller?

P9 O MWV ‘
220 Q //
= 0.1yF
Vss
P7 O—AMW
2200 ”ic
Pot 1
S 1ok T OTHF .
Figure 10-1
Sensor Array
l System Schematic
V;s
Vdd Vdd
= ]
P4
220 Q
.
P3 a—MWA o]
220 Q

10 kQ 10 kQ

Vs Vss
ACTIVITY #1: BUILDING AND TESTING EACH PUSHBUTTON CIRCUIT
This activity begins with building and testing a single pushbutton circuit. Once you have

confirmed that the first pushbutton circuit is operating properly, you can then move on to
building and testing the second pushbutton circuit.



Chapter #10: Running the Whole Show - Page 283

Pushbutton Circuit Parts

(2) Pushbuttons — normally open

(2) Resistors — 10 k€ (brown-black-orange)
(2) Resistors — 220 Q (red-red-brown)

(2) Jumper wires

Building the First Pushbutton Circuit

Build the pushbutton circuit shown in Figure 10-2.

Figure 10-2
First Pushbutton Circuit

vdd

e B
P3 O—AW lo}
220 Q
10 kQ
Vgs

Testing the First Pushbutton Circuit

X3

Vdd Vin Vss

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
3

00000 00000
00000 00000
00000 100000
00000| |0Doooo
00000| |0Doooo
00000| |0Doooo
00000| |0Doooo
00000| |0Doooo
00000| |0Doooo
ooooo| |oo=Rge
00000| |00oONO
0ooooo| |ooo

0ooooo| |ooo

oooool |ooo

P
P?
P

=3 000Ee®
DDDD%QQE
poOoon

Writing a program to test this circuit should be very simple by now, especially since

you’ve already done it before.

Example Program: ReadPushbuttonState.bs2

This is a repeat of the program for testing pushbuttons from Chapter #3:

\  Enter and run the ReadPushbuttonState.bs2.

V' Verify that the BASIC Stamp is able to read the pushbutton.
\' Correct any problems you catch before moving on to the next circuit.



Page 284 - What's a Microcontroller?

' What's a Microcontroller - ReadPushbuttonState.bs2
' Check and send pushbutton state to Debug Terminal every 1/4 second.

' {$sTAMP BS2}
' {$PBASIC 2.5}

DO

DEBUG ? IN3
PAUSE 250

LOOP

Your Turn — Building and Testing the Second Pushbutton Circuit

Once the first pushbutton circuit has been built and tested, the process can be repeated for
the second pushbutton.

V' Add the pushbutton circuit shown in Figure 10-3.

\' Test the second pushbutton circuit by modifying ReadPushbuttonState.bs2 so
that it reads the circuit connected to P4. Run the program and verify that the
second pushbutton works.

V' Correct any problems you catch before moving on to the next activity.

Figure 10-3
Adding a Second Pushbutton Circuit to the Project

Vdd

1
P4 o—A|

220 Q

10 kQ




Chapter #10: Running the Whole Show - Page 285

ACTIVITY #2: BUILDING AND TESTING EACH RC-TIME CIRCUIT

Now that the two pushbutton circuits are built and tested, you can move on to the RC-
time circuits.

Extra Parts for Potentiometer and Photoresistor Circuits

(2) Resistors — 220 Q (red-red-brown)
(2) Capacitors — 0.1 uF

(4) Jumper wires

(1) Photoresistor

(1) Potentiometer — 10 kQ

Building the Potentiometer Circuit

v Add the potentiometer circuit shown in Figure 10-4 to the project.

Figure 10-4
Adding a Potentiometer Circuit

P7 O——MW
220 Q e
Pot .
=2 olg == O1wF
V;s

Testing the Potentiometer Circuit

You can test this circuit using ReadPotWithRcTime.bs2. This program was first used in
Chapter #5 to read the potentiometer circuit.

Example Program: ReadPotWithRcTime.bs2
\' Enter and run the ReadPotWithRcTime.bs2.



Page 286 - What's a Microcontroller?

V' Verify that the BASIC Stamp gets reliable measurements from the
potentiometer.
\' Correct any problems you catch before moving on to the next circuit.

' What's a Microcontroller - ReadPotWithRcTime.bs2
' Read potentiometer in RC-time circuit using RCTIME command.

' {$sTAMP BS2}
' {$PBASIC 2.5}

time VAR Word
DO

HIGH 7

PAUSE 100

RCTIME 7, 1, time

DEBUG HOME, " time = ", DEC5 time
LOOP

Your Turn — Building and Testing the Photoresistor Circuit

Once the first RC-time circuit has been built and tested, the process can be repeated for
the second RC-time circuit.

V' Add the photoresistor circuit shown in Figure 10-5 to your project on the
breadboard.

V' Modify ReadPotWithRcTime.bs2 so the photoresistor is connected to P9.

\' Correct any problems you catch before moving on to the next activity.



Chapter #10: Running the Whole Show - Page 287

Figure 10-5
Adding the Photoresistor Circuit

P9 O——AW 2
220 Q ¥y
— 0.1 pF
oo
¢ 00
m]
[Sm]m]
oo
L 500
Vss E‘S
oo
oo

ACTIVITY #3: SUBSYSTEM INTEGRATION EXAMPLE

Now that all the elements in the sensor array are built and tested, you can now write a
program that makes use of all four sensor circuits. This example will demonstrate how to
program the BASIC Stamp to display a terminal with a menu that a technician might use
to monitor the sensors.

Programming a Menu System and Using the Input/Output PIN Directive

The oN...cosuB command can be very useful for menus.

ON offset , GOSUB Targetl, {Target2, Target3,...}

In the next example program, the oN...cosuB command uses the value of a variable
named request to direct it to one of four subroutines. If the value of request is 0, the
program executes a GOSUB Read Pushbutton 1. If the Value of request is 1, the
program executes a GOSUB Read Pushbutton 2, and so on.

ON request GOSUB Read_Pushbutton 1, Read_Pushbutton_ 2,
Read Pot, Read Photoresistor

You can use the PIN directive to give a name to each I/O pin you are going to use in a
PBASIC program. The BASIC Stamp Editor will then figure out whether you are using
the I/O pin as an input or an output (or both). The PIN directive’s syntax is:

PinName PIN PinNumber



Page 288 - What's a Microcontroller?

The next example program demonstrates how you can declare and then use a PinName.
For example, the BASIC Stamp Editor assumes that you want to display the input value
of an I/O pin (1N3) if you are using the Pb1Pin PinName in a DEBUG command. This
DEBUG command will display a 1 or 0 depending on whether the pushbutton connected to
P3 is pressed or not pressed. Why? Because the BASIC Stamp Editor knows to
substitute IN3 for Pb1Pin.

PblPin PIN 3
DEBUG CLS, ? PblPin

Here is another example where the BASIC Stamp Editor knows to substitute the value of
9 because the PhotoPin PinName is used in a HIGH command and an RCTIME command.

PhotoPin PIN 9
HIGH PhotoPin
RCTIME PhotoPin, 1, time

Example Program: TerminalOperatedSensorArray.bs2

Figure 10-6 shows the Debug Terminal displayed by TerminalOperatedSensorArray.bs2.
The main menu is shown on the left, and an example of the display when ‘4’ is selected is
shown on the right. Remember to use the upper Windowpane to send your menu
selections to the BASIC Stamp.

\' Enter and run TerminalOperatedSensorArray.bs2.

V' Click the Debug Terminal’s upper Windowpane, and type digits to make your
menu selections.

\' The measurement displayed is the one taken at the instant the menu selection
is made, and it is displayed for 1.5 seconds. Keep this in mind when you press
and hold the pushbuttons, adjust the potentiometer and cast shade onto the
photoresistor.



Chapter #10: Running the Whole Show - Page 289

Figure 10-6
Using the Debug Terminal to Select from a Menu
Debug Terminal #1 : =100 x| Debug Terminal #1 =101 x|
Comn Port: Baud Rate: Pait Com Part Baud Fate: Parity:
oMt 7] [s0 7] [Hone = con 7] [ 7] [uene @
DaaBis  FowColdl o 1w [ DTR [ ATS DataBis.  FlowConidl o 15 [ TR [ ATS
8z 0" Tl @ Rx @ DR @ LTS [ = [0 2l erx e ose e crs
1122234344| — 11222343444 =
‘ o « o
1y Pushbutton 1 = time = 375 =
23y Pushbutton 2
3) Potentiometer
4y Photoresistor
4 | - 4 i -
oo, | Meoes. | Pase | Cew | ohse | I Echood Coe | Mavos. | Pase | Cea | Cime | I EchoOf
L [ Title J------mmm oo oo oo oo

' What's a Microcontroller - TerminalOperatedSensorArray.bs2
' Use Debug Terminal to choose to read one of four sensors.

' {$sTAMP BS2}
' {$PBASIC 2.5}

PblPin PIN 3

Pb2Pin PIN 4

PotPin PIN 7

PhotoPin PIN 9

L [ Constants J------------------ oo
DelayRc CON 100

DelayReader CON 1500

L [ Variables J------commmmmmm i m o e
request VAR Nib

time VAR Word

I ===== [ Wedm REUEIRNE | ====================================================
DO

GOSUB Display Menu

GOSUB Get_Request

ON request GOSUB Read Pushbutton_1, Read Pushbutton_2,
Read Pot, Read Photoresistor



Page 290 - What's a Microcontroller?

Display Menu:
DEBUG CLS, "MENU: ", CR, CR,
"1) Pushbutton 1", CR,
"2) Pushbutton 2", CR,
"3) Potentiometer", CR,
)

"4) Photoresistor", CR, CR
RETURN

Get Request:

DEBUGIN DEC1l request
request = request - 1

RETURN
I o===== [NsubrcutinelENReadBPushbuEtEon N EE e e e
Read Pushbutton 1:

DEBUG CLS, ? PblPin
PAUSE DelayReader

RETURN

e [ Sulsrouting = Reacl Pughlouiticn 2 |==================================
Read_ Pushbutton_2:

DEBUG CLS, ? Pb2Pin
PAUSE DelayReader

RETURN

Read_Pot:

HIGH PotPin

PAUSE DelayRc

RCTIME PotPin, 1, time
DEBUG CLS, ? time, " "
PAUSE DelayReader



Chapter #10: Running the Whole Show - Page 291

RETURN

Read Photoresistor:

HIGH PhotoPin

PAUSE DelayRc

RCTIME PhotoPin, 1, time
DEBUG CLS, ? time, " "
PAUSE DelayReader

RETURN

Your Turn — Modifying Subroutines

Terminals are not the only application for ox..cosuB. For example, if you want to call
the four different subroutines one after another, here is a way to do it:

DO

' GOSUB Display Menu
' GOSUB Get_ Request
FOR request = 0 TO 3
ON request GOSUB Read_Pushbutton 1, Read_Pushbutton_ 2,
Read Pot, Read Photoresistor
NEXT

LOOP

Notice that the two subroutines that do the terminal work were commented and the
ON..GosUB command was placed in a FOR..NEXT loop.

\  Save your example program under the new name:
TerminalOperatedSensorArray Y ourTurn.bs2.

V' Modify the main routine by making the changes just discussed.

V' Run the program and verify that it cycles through the measurements.

ACTIVITY #4: DEVELOPING AND ADDING A SOFTWARE SUBSYSTEM

Let’s say that your sensor array is getting placed in a device that only certain employees
are allowed to use, and they have to supply a password. This means you will have to
expand your program so that it saves and verifies a password. It’s better to write a
password program that functions on its own first, and then add it to your larger program.



Page 292 - What's a Microcontroller?

Programming a Password Checker

You can save a password in a PBASIC program by using a baTa directive. For example:

Password DATA "pass!"
lf-‘ . ‘-.l The same as: This DATA directive is the same as Password DATA "p", "a", "s",
1 ) g,
You will need a few variables for storing other values in the program:
index VAR Nib
temp VAR Byte

If you are using a five character password, there is a special kind of variable declaration
(called an array declaration) that you use to declare five variables with the same name.

userEntry VAR Byte(5)

Now you have five byte variables named userEntry: userEntry(0), userEntry (1),
userEntry (2), userEntry (3), and userEntry (4).

The pEBUGIN command has a formatter called sTR that automatically loads characters
into an array. For example, you can use:

DEBUGIN STR userEntry \5

If you type five characters in the Debug Terminal’s Transmit Windowpane, the first will
get placed in userEntry (0), the second will get placed in userEntry (1), etc.

There is a PBASIC keyword called exIT that you can use to break out of a loop. To
check a password, you can use an IF..THEN statement with an EXIT command to cause
the loop to end early if not all the characters are identical. When the loop ends early, it
means that index has not counted all the way up to five, which in turn means the
password was not correct:
FOR index = 0 TO 4
READ Password + index, temp

IF temp <> userEntry(index) THEN EXIT
NEXT

IF index <> 5 THEN
DEBUG CR, "Password not correct.", CR
ENDIF



Chapter #10: Running the Whole Show - Page 293

This next example program places the DEBUGIN command, the FOR..NEXT loop, and the
IF..THEN statement inside a DO..LOOP UNTIL statement that keeps executing until the
value of index gets to 5 (indicating the correct password was entered).

Example Program: PasswordChecker.bs2
Figure 10-7 shows the Debug Terminal displayed by PasswordChecker.bs2. When run,

this program will wait for you to type the letters “pass!” in response to the prompt.

\' Enter and run PasswordChecker.bs2.
V' Try entering some letter combinations that are not the password, then enter the
letter combination that is the password: “pass!”.

#Debug Terminal #1 —1o x|
ComPot_ BaudFate:  Parl
comt =l s = [wone 5
DataBils  FlwContol o 1w [ pTR [ ATS
5z 9" Tl @Rx @DSR @ CTS Figure 10-7
abcdefghijpass! -

Entering Password
r L3 | into the Transmit
Windowpane

Enter password: abcde =

Password not correct. . .
Enter password: fghi] Ckathe.nanmﬂ”
Password not correct. (upper) Windowpane
Enter password: pass! and enter the
Password is correct. password.

4 ﬂv

Cotue, | Meoos. | Pawe | Cea | Dhse | I Echood

' What's a Microcontroller - PasswordChecker.bs2
' Check password entered in Debug Terminal's Transmit Windowpane.

' {$sTAMP BS2}
' {$PBASIC 2.5}

Password DATA "pass!" ' Store "secret" password here.
index VAR Nib ' Index variable.

temp VAR Byte ' Stores single char.
userEntry VAR Byte (5) ' Store user entered password.
DO

DEBUG "Enter password: " ' User instructions.



Page 294 - What's a Microcontroller?

DEBUGIN STR userEntry \5 ' Get user input password.

FOR index = 0 TO 4
READ Password + index, temp
IF temp <> userEntry(index) THEN EXIT

Check array against DATA
Get next password char
Compare to user input,

NEXT exit if not equal.
IF index <> 5 THEN ' If exit, then index not equal
DEBUG CR, "Password not correct.", CR ' to 5 and pass 1s not correct.
ENDIF
LOOP UNTIL index = 5 ' Only get out of loop when
' index = 5.
DEBUG CR, "Password is correct;", CR, ' Program can move on when
"program can continue..." ' password is correct.
END

Your Turn — Modifying Passwords

\ Modify the Password DATA directive so that it uses a different five character
password.

\' By changing five different values in the program, you can also modify it so
that it accepts a four character password instead of a five character password.

Modifying Password Checker for Use in a Larger Program

The goal is to make it easy to fit the PasswordChecker.bs2 program into the example
program from Activity #3. Two things will help. First, the password checking program
should be modified so that it does most of its work in a subroutine. The different parts of
the program should also be labeled with commented headings to help make it clear how
to combine the two programs.

Example Program: ReusablePasswordChecker.bs2
ReusablePasswordChecker.bs2 works the same as PasswordChecker.bs2, but it now uses

a subroutine to do the work, and it has been reorganized into labeled sections.

\' Verify that the program still works the same as PasswordChecker.bs2.
V' Examine how the Do..LooP UNTIL code block was placed into a subroutine.



Chapter #10: Running the Whole Show - Page 295

L e [ Title J--mmmmm oo m oo oo o oo oo
' What's a Microcontroller - ReusablePasswordChecker.bs2
' Check password entered in Debug Terminal's Transmit Windowpane.

' {$sTAMP BS2}
' {$PBASIC 2.5}

L [ DATA Directives J---------------m oo oo oo oo -
Password DATA "pass!" ' Store "secret" password here.

L [ Variable Declarations J-------------—--—-—-—-—-——— -

index VAR Nib ' Index variable.
temp VAR Byte ' Stores single char.
userEntry VAR Byte (5) ' Store user entered password.

----- [ Initialization Routine J--------------oocommmm oo
GOSUB Check Password

----- [ Main Routine J---------ccomommmm oo e oo oo e -
' There is no main routine in this program.

DEBUG CR, "All Done"

END

L [ Subroutine - Check for Correct Password ] ---------------——————————-

Check_ Password:

DO
DEBUG "Enter password: " ' User instructions.
DEBUGIN STR userEntry \5 ' Get user input password.
FOR index = 0 TO 4 ' Check array against DATA
READ Password + index, temp ' Get next password char
IF temp <> userEntry(index) THEN EXIT ' Compare to user input,
NEXT ' exit if not equal.
IF index <> 5 THEN ' If exit, then index not equal
DEBUG CR, "Password not correct.", CR ' to 5 and pass is not correct.
ENDIF
LOOP UNTIL index = 5 ' Only get out of loop when

' index = 5.



Page 296 - What's a Microcontroller?

DEBUG CR, "Password is correct." ' Program can move on when
' password is correct.

RETURN ' Return when pass is correct.

Advanced Topic: Your Turn — Combining the two Programs

Now that both TerminalOperatedSensorArray.bs2 and ReusablePasswordChecker.bs2
have both been tested, the task is to combine the two. The final program should check
your password before allowing you to choose which sensor to read using the Debug
Terminal.

Y You can open both programs (ReusablePasswordChecker.bs2 and
TerminalOperatedSensorArray.bs2) in the BASIC Stamp Editor.
\' Save TerminalOperatedSensorArray.bs2 as PasswordedSensorTerminal.bs2

You will need to tab between each program while copying sections from
ReusablePasswordChecker.bs2 and pasting them into PasswordedSensorTerminal.bs2.

\' Copy the Password DaTa directive (including the commented heading with
the dashed line) from ReusablePasswordChecker.bs2 into
PasswordedSensorTerminal.bs2 just before the I/0 Definitions section.

V' Copy and paste the variable declarations from ReusablePasswordChecker.bs2
into PasswordedSensorTerminal.bs2. These variable declarations are added to
the ones in PasswordedSensorTerminal.bs2, so don’t worry about copying and
pasting the commented variables heading.

V' Copy the Initialization section (including the commented heading) from
ReusablePasswordChecker.bs2, and paste it between the variables section
and the Main Routine in PasswordedSensorTerminal.bs2.

V' Copy the entire subroutine section from ReusablePasswordChecker.bs2 and
paste it after the end of the last subroutine in PasswordedSensorTerminal.bs2.

v Test PasswordedSensorTerminal.bs2, and see if it works, debug as needed.



Chapter #10: Running the Whole Show - Page 297

SUMMARY

This chapter introduced the technique of individually testing each circuit-subsystem
before integrating it into a larger system. This chapter also introduced the ON..GosUB
command, which is particularly useful for menu systems. The useful pIN directive was
demonstrated as a way to name your I/O pins and then let the BASIC Stamp Editor figure
out whether to read an input or write to an output. A password program was used to
introduce variable arrays, the EXIT command, and the DEBUGIN command’s STR
formatter. The password program was then integrated into a larger sensor terminal
program to give it more functionality.

uestions

1. When should you test subsystems individually before trying to make them work
together? Why?

2. How many programs did you use in this chapter that were from other chapters?

3. How does the pIN directive differ from the con and var directives?

4. What’s the difference between EXIT and END?

Exercises

1. Describe the general 3-step process you would use to add a piezospeaker circuit
to your project.

2. Modify PasswordChecker.bs2 from page 293 so that the message "you entered: "
appears in the Debug Terminal along with the text of the password.

Projects

1. Add a piezospeaker circuit to the sensor array you developed in this chapter, and
write a program to test it.

2. Modify TerminalOperatedSensorArray.bs2 so that it has a 5™ menu item that
makes the piezospeaker beep at 2 kHz for 1.5 seconds.

3. While working on one of the activities and projects in this book you may have
thought to yourself, “hey, I could use this to build a >> insert your project here:

<<I” Use the material you have learned in this book to

invent a gadget or gizmo of your own design.




Page 298 -

What's a Microcontroller?

Solutions

Ql.
Q2.

Q3.

Q4.

El.

E2.

PI1.

P2.

Whenever possible! It is much easier to find, isolate and prevent problems.

Two. ReadPushbuttonState.bs2 from Chapter #3 and ReadPotWithRcTime.bs2
from Chapter #5.

While the con directive assigns a name to a number, and while the var directive
assigns a name to RAM, the p1IN directive assigns a name to a BASIC Stamp I/O
pin. This name can then be used in place of the I/O pin number throughout the
program. PBASIC figures out whether you are using it as an output to send a
high/low signal or as an input variable to store the state sensed by the I/O pin (1
or 0).

END ends the program, it doesn't run anymore. By contrast EXIT just breaks out
of the loop, and then the program keeps on running.

a. Build the piezospeaker circuit on the breadboard.

b. Run TestPiezoWithFreqout.bs2 from Chapter 8 to test the speaker.

c. Integrate the piezospeaker into the program.

The key to solving this problem is to use the sTR formatter with pEBuG. The text
introduced the sTR formatter with DEBUGIN, so it makes sense to guess that the
sTR formatter will also work with bEBUG. This can be done by adding this line of

code below the DEBUGIN statement.
DEBUG CR, CR, "You entered: ", STR userEntry, CR

Project 1 uses the same schematic as Figure 10-1. p. 282 with the addition of a
piezo speaker connected to P11.

What's a Microcontroller -
TestPiezoWithFreqgout .bs2

Send a tone to the piezo speaker
using the FREQOUT command.
'{$sTAMP BS2}

'{$pPBASIC 2.5}

P11

DEBUG "Tone sending...", CR
FREQOUT 11, 1500, 2000
DEBUG "Tone done."

Project 2 uses the same schematic as Project 1.

What's a Microcontroller - Chl0Prj02 AddSpeakerToSensorArray.bs2
Use Debug Terminal to choose to read one of five sensors.
Project 2 - Add a 5th menu item that makes a piezo speaker beep
for 1.5 seconds at a frequency of 2kHz.

{$sTAMP BS2}

{$pBASIC 2.5}

1
1
1
1
1
1



Chapter #10: Running the Whole Show - Page 299

PblPin CON 3

Pb2Pin CON 4

PotPin CON 7

PhotoPin CON 9

SpkrPin CON 11

I coces [ ConScanEs ] eererererorororororonononononomoromoroononenenoneos
DelayRc CON 100

DelayReader CON 1500

I coces [ Vamilgloleg ] eerererorororosorosonononononononomomoonononononeos
request VAR Nib

time VAR Word

DO
GOSUB Display Menu
GOSUB Get_Request
ON request GOSUB Read Pushbutton 1, Read Pushbutton 2,
Read Pot, Read Photoresistor, Beep Speaker
LOOP

I o===== [ Suereuitimed)] ==================s======s=======s==c=s===c=======
Display Menu:

DEBUG CLS, "MENU: ", CR,CR,
"1l) Pushbutton 1", CR,

"2) Pushbutton 2", CR,
"3) Potentiometer", CR,
"4) Photoresistor", CR,
"5) Piezo Speaker", CR, CR

RETURN

Get_Request:
DEBUGIN DEC1 request
request = request - 1
RETURN

Read_Pushbutton 1:
DEBUG CLS, ? IN3
PAUSE DelayReader
RETURN

Read Pushbutton 2:



Page 300 - What's a Microcontroller?

DEBUG CLS, ? IN4
PAUSE DelayReader
RETURN

Read Pot:
HIGH 7
PAUSE DelayRc
RCTIME 7, 1, time
DEBUG CLS, DEC time, " "
PAUSE DelayReader
RETURN

Read_ Photoresistor:
HIGH 9
PAUSE DelayRc
RCTIME 9, 1, time
DEBUG CLS, DEC time, " "
PAUSE DelayReader
RETURN

Beep Speaker:
DEBUG CLS, "2000 Hz beep for 1.5 seconds", CR
FREQOUT SpkrPin, 1500, 2000 ' 2000 Hz beep for 1.5 s
RETURN

P3. If you have created an interesting application with your What’s a
Microcontroller? Kit and you want to share it with other students and teachers,
consider joining our Stamps In Class Yahoo Group. See the Web Site and
Discussion Lists section right after the title page at the front of this book for
details.

Further Investigation

Please go back to the Preface and read the section titles The Stamps in Class Curriculum.
All of the books listed there are available for free download from www.parallax.com and
are also on the Parallax CD. They contain a wealth of knowledge and instructions for
continuing your explorations into electronics, programming, robotics, and engineering. In
addition, we highly recommend that you visit www.parallax.com and check out our many
free downloads and applications for industry professionals, educators, students,
hobbyists, and the naturally curious.



Appendix A: USB to Serial Adapter - Page 301

Appendix A: USB to Serial Adapter

At the time of this writing, the US232B/LC USB to Serial Adapter made by Future
Technology Devices International is the recommended adapter for use with Parallax
products. The US232B/LC comes with the hardware shown in Figure A-1 and a mini-
CD ROM with drivers for use with various operating systems including Microsoft
Windows®.

Figure A-1
FTDI's
US232B/LC USB
to Serial Adapter

This adapter is
Parallax Stock#
800-00030. It
comes with a
software CD (not
shown).

= US232B/LC Driver Software Downloads: The software drivers and other information about
\&/ this product can be downloaded from: http://www.ftdichip.com/FT232.htm.




Appendix B: Equipment and Parts Lists - Page 303

Appendix B: Equipment and Parts Lists

Parts lists are subject to change: Please note that the part numbers and bills of materials
( ) cited in this appendix are subject to change without notice. If you have questions about a
\&/ particular part or quantity, please contact the Parallax using www.parallax.com — Company
— Contact Parallax link, or email stampsinclass@parallax.com.

To complete the exercises in this book, you need to have one of the following Parallax
hardware options:

Option 1:
e Board of Education® Full Kit (#28102) - AND-
e What'saMicrocontroller PartsKit (#28152 with text, #28122 without text)

These two kits are also sold separately. The Board of Education Full Kit (contents listed
below) is the core equipment of the Stamps in Class curriculum, and it can be used with
any of the Stamps in Class texts and kits.

Board of Education® Full Kit (#28102)
Parts and quantities subject to change without notice

Parallax Part # | Description Quantity
550-00022 Board of Education 1
800-00016 Pluggable wires 10
BS2-IC BASIC Stamp® 2 module 1
800-00003 Serial cable 1
750-00008 DC power supply — 9 V, 300 mA 1
27000 Parallax CD — includes software 1
700-00037 Rubber feet — set of 4 1

You may purchase the What’s a Microcontroller Parts Kit alone (#28122), or with the
parts and the What’s a Microcontroller? printed text together (#28152). These parts kits
are assembled to support the activities and projects in the current printed version of the
text. The What’s a Microcontroller Parts Kit contents are listed in the table on the
following page.



Page 304 -

What's a Microcontroller?

What's a Microcontroller Parts Kit #28122

What's a Microcontroller Parts & Text #28152

Parts and quantities subject to change without notice

Parallax Part # | Description Quantity
150-01020 Resistor, 5%, 1/4W, 1 kQ 10
150-01030 Resistor, 5%, 1/4W, 10 kQ 4
150-01040 Resistor, 5%, 1/4W, 100 kQ 2
150-02020 Resistor, 5%, 1/4W, 2 kQ 2
150-02210 Resistor, 5%, 1/4W, 220 Q 6
150-04710 Resistor, 5%, 1/4W, 470 Q 6
152-01031 Potentiometer - 10 kQ 1
200-01031 Capacitor, 0.01 uF, 50 V 1
200-01040 Capacitor, 0.1 uF, 100 V 2
201-01080 Capacitor, 1000 uF, 10V 1
201-03080 Capacitor 3300 uF, 16 V 1
; : >

28123 (noluded in #26152 oy ) 1
350-00001 LED - Green - T1 3/4 2
350-00005 LED - Bi-Color - T1 3/4 1
350-00006 LED-Red -T1 3/4 2
350-00007 LED - Yellow - T1 3/4 2
350-00009 Photoresistor 1
350-00027 7-segment LED Display 1
400-00002 Pushbutton — Normally Open 2
451-00303 3 Pin Header — Male/Male 1
500-00001 Transistor — 2N3904 1
604-00010 10 kQ digital potentiometer 1
800-00016 3” Jumper Wires — Bag of 10 2
900-00001 Piezo Speaker 1
900-00005 Parallax Standard Servo 1




Appendix B: Equipment and Parts Lists - Page 305

Option 2:
e BASIC Stamp What'sa Microcontroller Kit (#90005)

This kit features the What’s a Microcontroller Parts & Text, with a HomeWork Board
and accessories that are otherwise sold separately. The BASIC Stamp HomeWork Board
can be used with the What’s a Microcontroller? text in place of the Board of Education
and BASIC Stamp 2 module. The HomeWork Board can also be used in the majority of
the activities in the Stamps in Class curriculum, though occasional circuit modifications
are necessary for certain activities. The BASIC Stamp What’s a Microcontroller Kit
includes the following items:

BASIC Stamp® What's a Microcontroller Kit (#90005)
Parts and quantities subject to change without notice

Parallax Part # | Description Quantity
555-28158 HomeWork Board™ with breadboard 1
28123 What's a Microcontroller Text 1
27000 Parallax CD — includes software 1
800-00003 Serial cable 1
28122 What's a Microcontroller Parts Kit 1
700-00037 Rubber feet — set of 4 1

A note to educators: The HomeWork board is available separately in packs of 10 as an
economical solution for classroom use, costing significantly less than the Board of
Education + BASIC Stamp 2 module. Please contact the Parallax Sales Team toll free at
(888) 512-1024 for quantity pricing.

BASIC Stamp® HomeWork Board™ Ten-Pack (#28158)
Parallax Part # | Description Quantity

BASIC Stamp®HomeWork Board™
(BASIC Stamp 2 is built into the board.)

28158 10




Appendix C: BASIC Stamp and Carrier Board Components and Functions - Page 307

Appendix C: BASIC Stamp and Carrier Board
Components and Functions

The BASIC STAMP® 2

Figure C-1 shows a close-up of Parallax Inc.’s BASIC Stamp® 2 microcontroller module.
Its major components and their functions are indicated by labels.

Figure C-1: Parallax Inc.’s BASIC Stamp® 2 Microcontroller Module
Components and their Functions



Page 308 - What's a Microcontroller?

The Board of Education® Rev C

Parallax Inc.’s Board of Education® Rev C carrier board is shown in Figure C-2. Its major
components and their functions are indicated by labels.

Figure C-2: Parallax. Inc.’s Board of Education® Rev C Carrier Board
for BASIC Stamp® Microcontroller Modules



Appendix C: BASIC Stamp and Carrier Board Components and Functions - Page 309

The BASIC Stamp® HomeWork Board™

Parallax Inc.’s BASIC Stamp® HomeWork Board™ project platform is shown in Figure
C-3. Its major components and their functions are indicated by labels.

Figure C-3: Parallax Inc.’s BASIC Stamp® HomeWork Board™ project platform
features a surface-mounted BASIC Stamp® 2 microcontroller module.



Page 310 - What's a Microcontroller?

The Board of Education® Rev B

Figure C-4 shows Parallax, Inc.’s Board of Education® Rev B carrier board. Its major
components and their functions are indicated by labels.

Figure C-4: Parallax. Inc.’s Board of Education® Rev B Carrier Board
for BASIC Stamp® modules



Appendix D: Batteries and Power Supplies - Page 311

Appendix D: Batteries and Power Supplies

9V BATTERIES

For best results, 9 V batteries are recommended.

9V battery specifications: Look for batteries with ratings similar these:

Not Rechargeable Rechargeable
e  Alkaline . Ni-Cad (Nickel Cadmium)
~ e  Ni-MH (Nickel Metal Hydride)
™, For best results, the battery’s milliamp hour (mAh) rating should be
100 or higher.

Not all chargers work for both types of batteries. Make sure that
your charger is recommended for the battery you are using (either
Ni-Cad or Ni-MH).

Follow all battery and charger instructions and caution statements.

PARALLAX DC SUPPLIES

Parallax carries several power supplies that can be used with the Board of Education Rev
C only. For the servo experiments in this text, the jumper between the X4 and X5 servo
headers should be set to Vdd. The supplies listed in Table D-1 are designed for AC
outlets in the USA, and both have 2.1 mm center-positive barrel plugs that connect to the
Board of Education’s barrel jack.

Table D-1: Power Supplies You Can Get from Parallax, Inc.

Input Output
Parallax Part #
VAC Hz VDC mA
750-00008 120 60 9 300
750-00009 120 60 7.5 1000




Page 312 - What's a Microcontroller?

GENERIC DC SUPPLIES

For best results with the BASIC Stamp HomeWork Board or any of the Board of
Education Revisions, use a DC supply (also called an AC adapter) with the following
ratings:

Input

This depends on which country you live in and the amplitude and frequency of the AC
power at the wall outlets. For the USA and Canada, the input should be 120 VAC, 60
Hz.

Qutput

6 VDC, 800 mA
The mA rating can be higher. A 6 V, 1000 mA supply would be acceptable, for example.

Plug

The Board of Education has both a barrel jack, which can be connected to a barrel plug,
and a 9 V battery connector, which can be connected to a 9 V battery extension. The
HomeWork Board has only the 9 V battery connector.

Barrel Plug

Figure D-1 shows DC supply commonly used with the BASIC Stamp and Board of
Education. It has a 2.1 mm center-positive barrel plug along with the center positive
symbol that is evident on its label.



Appendix D: Batteries and Power Supplies - Page 313

Figure D-1
DC Supply with Barrel Plug
and Center Positive Symbol

O Can©)

9 V Battery Extension

Figure D-2 shows an AC adapter connected to a 9 V battery extension that can be used
with the BASIC Stamp HomeWork Board. See WARNING discussed next.

Figure D-2
AC Adapter with 9 V
Battery Extension



Page 314 - What's a Microcontroller?

WARNING - Beware of Universal AC Adapters and Reversed Supply Terminals

Figure D-3 shows a common mistake that should be avoided with universal adapters.
Many of these allow you to reverse the terminals on the 9 V battery extension. Although
it cannot hurt the BASIC Stamp, Board of Education or Homework Board, it can destroy
the Parallax Standard Servo connected to Vin in a matter of seconds. The only system
that can protect the servo from this mistake is the Board of Education Rev C (with jumper
set to Vdd).

—>

N

TIP

Figure D-3
Polarity on
Universal
Adapters

Beware of “Battery Replacers”

Many battery replacers are designed to supply appliances with low current draw. With
current ratings in the neighborhood of 10 mA, their output capacities are insufficient for
many of the activities in this text. For example, two LEDs connected to 220 € resistors
draw a total of 14.5 mA, and the BASIC Stamp takes an additional 3 to 7 mA. A servo
draws upwards of 100 mA, and that definitely won’t work with a “battery replacer”.

NOTE: It’s pretty easy to tell when a circuit is drawing more current that the supply can
deliver because the Pwr LED on the Board of Education (or HomeWork Board) flickers
and/or goes dim.



Appendix E: Trouble-Shooting - Page 315

Appendix E: Trouble-Shooting

Here is a list of things to try to quickly fix any difficulties getting the BASIC Stamp
Editor to communicate with the BASIC Stamp:

\/
\/

\/

If you are using a Board of Education Rev C, make sure the power switch is set
to position-1.

Rule out dead batteries and incorrect or malfunctioning power supplies by using
anew 9 V battery.

Make sure the serial cable is firmly connected to both the computer’s COM port
and the DB9 connector on the Board of Education or BASIC Stamp HomeWork
Board.

Make sure that your serial cable is a normal serial cable. DO NOT USE A
NULL MODEM CABLE. Most null modem cables are labeled NULL or Null
Modem; visually inspect the cable for any such labeling. If you find that label,
do not try to use it to program the BASIC Stamp.

Disable any palmtop communication software.

If you are using a BASIC Stamp and Board of Education, also check the following:

\/
\/

Make sure the BASIC Stamp was inserted into the socket right-side-up, aligning
the reference notch as shown in Figure 1-28 on page 17.

If you are using a DC power supply that plugs into the wall, make sure it is
plugged in to both the wall and the Board of Education. Verify that the green
Pwr light on the Board of Education emits light when the DC supply is plugged
in.

Make sure the BASIC Stamp is firmly inserted into the socket. Visually inspect
the BASIC Stamp to make sure that none of the pins folded under the module
instead of sinking into their sockets on the Board of Education. Disconnect
power first, then press down firmly on the module with your thumb.

If your Identification Window looks similar to Figure E-1, it means that the BASIC
Stamp Editor cannot find your BASIC Stamp on any COM port. Note that the Loopback
and Echo columns show “No.” If you have this problem, try the following:



Page 316 - What's a Microcontroller?

2L 2 =2 2

\/

Figure E-1
Fait Status: Identification Window
Port._ [Device Type [Version: [Loopback: [Eche: |
COMI: Na Mo
COM2; No No Example: BASIC Stamp
Edi Pot Lis | Relizsh | T e | 2 not found on COM
ports.

Close the Identification Window.

Make sure the serial cable is properly connected.

Try the Run — Identify test again.

If you know the number of the COM port, but it does not appear in the
Identification Window, use the Edit Port List button to add that COM port, and
then try the Run — Identify test again.

If you have more than one COM port, try connecting your Board of Education or
BASIC Stamp HomeWork Board to a different COM port and see if Run —
Identify works then.

If you have a second computer, try it on the different computer.

If you get the error message “No BASIC Stamp Found” but the Run — Identify test
shows a “Yes” in both columns for one of the COM ports, you may need to change a
setting to your FIFO Buffers. This is happens occasionally with Microsoft Windows® 98
and XP users. Make a note of the COM port with the “Yes” messages, and try this:

Windows® 98:

2 2 =2 2 <2 2

Click on your computer desktop’s Start button.

Select Settings— Control Panel — System — Device Manager — Ports (COM
& LPT).

Select the COM port that was noted by the Run — Identify test.

Select Properties — Port Settings — Advanced.

Uncheck the box labeled “Use FIFO Buffers” then click OK.

Click OK as needed to close each window and return to the BASIC Stamp
Editor.

V' Try downloading a program once more.
Windows® 2000:
V' Click on your computer desktop’s Start button.



2 2 2 2 <

Appendix E: Trouble-Shooting - Page 317

Select Settings — Control Panel — System — Hardware — Device Manager —
Ports (COM & LPT).

Select the COM port that was noted by the Run — Identify test.

Select — Port Settings — Advanced.

Uncheck the box labeled “Use FIFO Buffers” then click OK.

Click OK as needed to close each window and return to the BASIC Stamp
Editor.

Try downloading a program once more.

Windows® XP:

2L 2 2 2 2 2 2 2

Click on your computer desktop’s Start button.

Select Control Panel — Printers and Other Hardware.

In the “See Also” box select System.

Select Hardware — Device Manager — Ports.

Enter the COM port number noted by the Run— Identify test.

Select Port Settings — Advanced.

Uncheck the box labeled “Use FIFO Buffers” then click OK.

Click OK to close each window as needed and return to the BASIC Stamp
Editor.

Try downloading a program once more.

Windows® XP Pro:

<_ 2 2 2 2 < 2

Click on your computer desktop’s Start button.

Select Control Panel — System — Hardware — Device Manager —
Ports(COM & LPTI).

Select the Communications Port number noted by the Run — Identify test.

Select Properties — Port Settings — Advanced.

Uncheck the box labeled “Use FIFO Buffers” then click OK.

Click OK to close each window as needed and return to the BASIC Stamp
Editor.

Try downloading a program once more.

If none of these solutions work, you may go to www.parallax.com and follow the Support
link. Or, email support@parallax.com or call Tech Support toll free at 1-888-99-STAMP.



Appendix F: More about Electricity - Page 319

Appendix F: More about Electricity

What's an Electron? An electron is one of the three fundamental parts of an atom; the
other two are the proton and the neutron. One or more protons and neutrons stick together
in the center of the molecule in an area called the nucleus. Electrons are very small in
comparison to protons and neutrons, and they orbit around the nucleus. Electrons repel
each other, and electrons and protons attract to each other.

What’s Charge? The tendency for an electron to repel from another electron and attract to
a nearby proton is called negative charge. The tendency for a proton to repel from another
proton and attract an electron is called positive charge. When a molecule has more
electrons than protons, it is said to be negatively charged. If a molecule has fewer electrons
than protons, it is said to be positively charged. If a molecule has the same number of
protons and electrons, it is called neutrally charged.

What's Voltage? Voltage is like electrical pressure. When a negatively charged molecule is
near a positively charged molecule, the extra electron on the negatively charged molecule
tries to get from the negatively charged molecule to the positively charged molecule.
Batteries keep a compound with negatively charged molecules separated from a compound
with positively charged molecules. Each of these compounds is connected to one of the
battery’s terminals; the positively charged compound is connected to the positive (+)
terminal, and the negative compound is connected to the negative (-) terminal.

The volt is a measurement of electric pressure, and it's abbreviated with a capital V. You
may already be familiar with the nine volt (9 V) battery used to supply power to the Board of
Education or HomeWork Board. Other common batteries include the 12 V batteries found in
cars and the 1.5 V AA batteries used in calculators, handheld games, and other devices.

What's Current? Current is a measure of the number of electrons per second passing
through a circuit. Sometimes the molecules bond in a chemical reaction that creates a
compound (that is neutrally charged). Other times, the electron leaves the negatively
charged molecule and joins the positively charged molecule by passing though a circuit like
the one you just built and tested. The letter most commonly used to refer to current in
schematics and books is capital ‘I".

What's an amp? An amp is the basic unit of current, and the notation for the amp is the
capital ‘A’. Compared to the circuits you are using with the BASIC Stamp, an amp is a very
large amount of current. It's a convenient value for describing the amount of current that a
car battery supplies to headlights, the fan that cool a car’'s engine, and other high power
devices.

What's Resistance? Resistance is the element in a circuit that slows down the flow of
electrons (the current) from a battery’s negative terminal to its positive terminal.

The ohm is the basic measurement of resistance. It has already been introduced and it's
abbreviated with the Greek letter omega (Q).

What's a Conductor? Copper wire has almost no resistance, and it's called a conductor.




Page 320 - What's a Microcontroller?

BONUS ACTIVITY: OHMS LAW, VOLTAGE, AND CURRENT

This activity applies some of the definitions just discussed.

Ohm’s Law Parts

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 470 Q (yellow-violet-brown)
(1) Resistor — 1 kQ  (brown-black-red)
(1) Resistor — 2 kQ  (red-black-red)

(1) LED — any color

Test Circuit

The resistance value of R; in Figure F-1 can be changed. Lower resistance allows more
current through the LED, and it glows more brightly. Higher resistance values will cause
the LED to look dim because they do not allow as much current to pass through the
circuit.

Disconnect power to your Board of Education or HomeWork Board whenever
you modify the circuit.

Build the circuit shown starting with a 220 € resistor.

Modify the circuit by replacing the 220 Q resistor with a 470 Q resistor. Was
the LED less bright?

Repeat using the 1 k€ resistor, then the 2 k€ resistor, checking the change in
brightness each time.

R e



Vdd

Vdd 3
ooog

R, R, R, R, EE Slalals

r1sfl| DOOOO

pof| 00000

R 9 . [REI=]s]s]s

rioffl| DOOOO

o ooooo

o8 ooooo

< R,=220Q b7 ooooo

LED - ooooo

Y R, =470 Q ﬁ ooooo

R,=1kQ o ooooo

_ ooooo

L R.=2kQ r> M| ooooo

Vs > ooooo

ss 50 ooooo

2 00000d

Appendix F: More about Electricity - Page 321

Figure F-1
LED Current Monitor

If you are using a 9 V battery, you can also compare the brightness of a different voltage
source, Vin. Vin is connected directly to the 9 V battery’s + terminal, and Vss is
connected directly to the battery’s negative terminal. Vdd is called regulated 5 V. That’s

about half the voltage of the 9 V battery.

Disconnect power

into Vin.

If you are not using a 9 V battery, stop here and skip to the Calculating the
Current section below. Otherwise, continue.
Start with the circuit shown in Figure F-1, but use a 1 k€ resistor.
Make a note of how bright the LED is.

Modify the circuit by disconnecting the resistor lead from Vdd and plugging it

When you plug the power back in, is the LED brighter? How much brighter?

more current than it is rated for.

@
< 2L 2 =2 =2 <

DO NOT try the Vin experiment with a 220 or 470 Q resistor, it will supply the LED with

Calculating the Current

The BASIC Stamp Manual has some rules about how much current it can supply to
circuits. If you don’t follow these rules, you may end up damaging your BASIC Stamp.



Page 322 - What's a Microcontroller?

The rules have to do with how much current an I/O pin is allowed to deliver and how
much current a group of I/O pins is allowed to deliver.

Current Rules for BASIC Stamp I/O Pins

e An /O pin can “source” 20 mA. In other words, if you send the HIGH signal to an
1/0 pin, it should not supply the LED circuit with more than 20 mA.

o™\
( i ) e If you rewire the LED circuit so that the BASIC Stamp makes the LED turn on
\-/ when you send the Low command, an I/O pin can “sink” up to 25 mA.

. PO through P7 can only source up to 20 mA. Likewise with P8 through P15. If
you have lots of LED circuits, you will need larger resistors so that you don’t draw
too much current.

If you know how to calculate how much current your circuit will use, then you can decide
if it’s OK to make your LEDs glow that brightly. Every electronic component has rules
for what it does with voltage, resistance, and current. For the light emitting diode, the
rule is a value called the diode forward voltage. For the resistor, the rule is called Ohm’s
Law. You need to figure out how much current your LED circuit is using. There are also
rules for how current and voltage add up in circuits. These are called Kirchoff’s Voltage
and Current Laws.



Appendix F: More about Electricity - Page 323

Vdd — Vss = 5 V The voltage (electrical pressure) from Vdd to Vss is 5 V. This is called
regulated voltage, and it works about the same as a battery that is exactly 5 V.

Vin —Vss =9V If you are using 9 V battery, the voltage from Vin to Vss is 9 V. Be careful.
If you are using a voltage regulator that plugs into the wall, even if it says 9 V, it could go as
high as 18 V.

Ground and/or reference refer to the negative terminal of a circuit. When it comes to the
BASIC Stamp and Board of Education, Vss is considered the ground reference. It is zero
volts, and if you are using a 9 V battery, it is that battery’s negative terminal. The battery’s
positive terminal is 9 V. Vdd is 5 V (above the Vss reference of 0 V), and it is a special
voltage made by a voltage regulator chip to supply the BASIC Stamp with power.

(1 )/ Ohm’'sLaw: V =1 x R The voltage measured across a resistor's terminals (V) equals the
& current passing through the resistor (I) times the resistor’s resistance (R).

Diode Forward Voltage: When an LED is emitting light, the voltage measured from anode
to cathode will be around 1.6 V. Regardless of whether the current passing through it is a
large or a small value, the voltage will continue to be approximately 1.6 V.

Kirchoff's Voltage Law Simplified: voltage used equals voltage supplied. If you supply
a circuit with 5 V, the number of volts all the parts use had better add up to 5 V.

Kirchoff's Current Law Simplified: current in equals current out. The current that
enters an LED circuit from Vdd is the same amount of current that leaves it through Vss.
Also, if you connect three LEDs to the BASIC Stamp, and each LED circuit draws 5 mA, it
means the BASIC Stamp has to supply all the circuits with a total of 15 mA.

Example Calculation: One Circuit, Two Circuits

Calculating how much current an LED circuit draws takes two steps:

1. Figure out the voltage across the resistor
2. Use Ohm’s Law to figure out the current through the resistor.

Figure F-2 shows how to figure out the voltage across the resistor. The voltage supplied
is on the left; it’s 5 V. The voltages used are on the right. The voltage we don’t know at
the start is Vg, the voltage across the resistor. But, we do know that the voltage across
the LED is 1.6 V (the diode forward voltage). We also know that the voltage across the
parts has to add up to 5 V because of Kirchoff’s Voltage Law. The difference between 5
Vand 1.6 Vis 3.4 V, so that must be the voltage across the resistor Vg.



Page 324 - What's a Microcontroller?

+ Vdd
+
V=2V i -
: Ve+l6y =5y Flgurer2
5V _ Voltage Across
. Ve =5V =16V  the Circuit,
Resistor, and
A = ’
s 16V Ve =34V LED
B Vss

Kilo is metric for 1000. The metric way of saying 1000 is kilo, and it's abbreviated with the
lower-case k. Instead of writing 1000 Q, you can write 1 kQ. Either way, it's pronounced
one-kilo-ohm. Likewise, 2000 Q is written 2 kQ.

Milli is metric for 1/1000, and it is abbreviated with a lower-case m. If the BASIC Stamp
supplies an LED circuit with 3.4 thousandths of an amp, that’s 3.4 milliamps, or 3.4 mA.

L~ What’s a mA? Pronounced milliamp, it's the notation for one-one-thousandth-of-an-amp.
( i | The ‘m’in mA is the metric notation for milli, which stands for 1/1000. The ‘A’ in mA stands
\-/ for amps. Put the two together, and you have milliamps, and it's very useful for describing
the amount of current drawn by the BASIC Stamp and the circuits connected to it.

How much current is 7.23 mA? It's the amount of current the LED shown on the right side
of Figure F-3 conducts. You can replace the 470 Q resistor with a 220 Q resistor, and the
circuit will conduct 15.5 mA, and the LED will glow more brightly. If you use a 1000 Q
resistor, the circuit will conduct 3.4 mA, and the LED will glow less brightly. A 2000 Q
resistor will cause the LED to glow less brightly still, and the current will be 1.7 mA.

Figure F-3 shows an example of how to calculate the current the circuit uses if the
resistor is 470 Q. Start with Ohm’s Law. You know the answers to V (3.4 V) and R
(470 Q). Now, all you have to do is solve for I (the current).



Appendix F: More about Electricity - Page 325

V=IXR
34V =1x470Q
347V
+ 470Q .
Figure F-3
34V I X470 Q 1=amnmﬁ6 Current through
the Resistor
) 1=0.007234
= 7.23 4
1000
1=723mA
I ™\
(1 ) VYes,it'strue! 1A =1V/Q (One amp is one volt per ohm).
-’

Let’s say you turned two LEDs on at the same time. That means that inside the BASIC
Stamp, it is supplying the circuits as shown in Figure F-4. Have we exceeded the 20 mA
limit? Let’s find out. Remember that the simplified version of Kirchoff’s Current Law
says that the total current drawn from the supply equals the current supplied to all the
circuits. That means that I in Figure F-4 has to equal the total of the two currents being
drawn. Simply add the two current draws, and you’ll get an answer of 14.5 mA. You are
still under the 20 mA limit, so your circuit is a safe design.

Vdd

£

7.23 mA l 470 Q 7.23 mA l 470 Q
§ LED \\: LED
V;s V;s

I=5L+1,+..1
1=723mA+723mA
I=14.5mA

Figure F-4
Total Current
Supplied to
Two LED
Circuits



Page 326 - What's a Microcontroller?

Your Turn — Modifying the Circuit

\/

\/
\/
\/

Repeat the exercise in Figure F-2, but use Vin — Vss = 9V. The answer is Vg
=74V

Repeat the exercise in Figure F-3, but use a 1 kQ resistor. Answer: [ = 3.4
mA.

Use Vg = 7.4 V to do the exercise in Figure F-3 with a 1 kC resistor. Answer:
[=7.4 mA.

Repeat the exercise shown in Figure F-4 with one of the resistors at 470 € and
the other at 1 kQ. Answer: [ =7.23 mA + 3.4 mA = 10.63 mA.



Appendix G: RTTTL Format Summary - Page 327

Appendix G: RTTTL Format Summary

This is a summary intended to help make sense out of RTTTL format. The full RTTTL
specification can be found published at various web sites. Using any search engine, use
the keywords RTTTL specification, to review web pages that include the specification.

Here is an example of an RTTTL format ringtone:

TakeMeOutToTheBallgame:d=4,0=7,b=225:2c6,c,a6,96,e6,2g9.6,2d6,p,
2c6,c,a6,96,e6,29.6,96,p,p,a6,9#6,a6,e6,£6,g96,a6,p,£6,2d6,p, 2a6
,a6,a6,b6,c, d,b6,a6,g6

The text before the first colon is what the cell phone displays as the name of the song. In
this case, the ringtone is named:

TakeMeOutToTheBallGame:

Between the first and second colon, the default settings for the song are entered using d,
0, and b. Here is what they mean:

d - duration
o - octave
b - beats per minute or tempo.

In the TakeMeOutToTheBallGame, the default settings are:
d=4,0=7,b=225:

The notes in the melody are entered after the second colon, and they are separated by
commas. If just the note letter is used, that note will be played for the default duration in
the default octave. For example, the second note in TakeMeOutToTheBallGame is:

1 Cy

Since it has no other information, it will be played for the default quarter note duration
(d=4), in the seventh octave (0=7).

A note could have up to five characters between the commas; here is what each character
specifies:

,duration note sharp dot octave,
For example:

,2g9#.6,



Page 328 - What's a Microcontroller?

means play the half note G-sharp for 1 4 the duration of a half note, and play it in the
sixth octave.

Here are a few examples from TakeMeOutToTheBallGame:

,2g.6, — half note, G, dotted, sixth octave
,a6, —default quarter note duration, A note played in the sixth octave
,g#6, —quarter duration, g note, sharp (denoted by #), sixth octave

The character:
D,

stands for pause, and it is used for rests. With no extra information, the p plays for the
default quarter-note duration. You could also play a half note’s worth of rest by using:

/2P,
Here is an example of a dotted rest:
12D,

In this case the rest would last for a half note plus a quarter note’s duration.



Index - Page 329

Index
-% - BASIC Stamp Editor
%, 177 Identification Window, 19
_* Identify, 316, 317
* 04 Memory Map, 263
** 244 Software, 5
*/,95, 244 Trouble-Shooting, 315
-3- BASIC Stamp HomeWork Board, 14
3-position switch, 16 BASIC Stamp HomeWork Board
-7 - Components, 309
7-Segment Display, 165-70 Battery, 44
Beat, 226
-A- Bi-Color LED, 61
Active-High, 79 Binary Numbers, 20, 77, 177
Active-Low, 79 Bit, 55, 175, 247
ADS5220 Digital Potentiometer Board of Education, 13
Pin Map, 268 Components, 308
Pin Names and Functions, 268 Full Kit, 303
Algorithm, 96 Revision label, 105
American Standard Code for Servo Header, 106
Information Interchange, 30 Board of Education Rev B
Amp, 319 oard o ucation Rev
Anode, 40 Components, 310
f:g?fi 23902 253 Boe-Bot, 3
> Breadboard. See Prototyping Area
-B- Byte, 55, 247
Base, 265 -C-
BASIC Stamp Cadmium Sulfide, 189
BASIC Stamp 2 Module, 1 Capacitor, 143-45, 149
Components, 307 Ceramic, 150

HomeWork Board, 305 Polar — identifying terminals, 143



Page 330 - What's a Microcontroller

Carriage return, 25
Cathode, 40

Charge, 319

Circuit, 41

Collector, 265

COM Port, 15, 196
Comment, 24

Comment, 52

Compiler directives, 21, 24
Components

BASIC Stamp, 307

BASIC Stamp HomeWork Board, 309
Board of Education, 308

Board of Education Rev B, 310

Conductor, 319
Counting, 90

CR, 25

Current, 38, 44, 45, 319

Flow, 45
Milliamp, 324
Cycle, 219
-D-
DATA, 230
DEBUG
Command, 25
DEBUG Formatters
CR, 25
DEC, 25
Debug Terminal, 23
Receive Windowpane, 120, 121
Transmit Windowpane, 120, 121

DEBUGIN, 120-23, 292
DEBUGIN Formatters

STR, 292

DEC, 25, 120

Digital Potentiometer, 267-77
Diode Forward Voltage, 323
DIRH, 175-78

Disconnect power, 32

Dot Notes, 238

Duration, 222, 229, 231, 233-38

-E-

Echo, 120, 121

EEPROM, 197-203, 230, 263
Electron, 45, 319

Embedded system, 1

Emitter, 265

END, 25

EXIT, 292

-F-
Fetch and Execute, 263
Flat, 228
FOR...NEXT, 53-56, 114

FREQOUT, 221
Frequency

Duration, 222
Mixing, 222, 225-27
Musical Notes, 227-30
-G-
GOSUB, 206

Ground, 323
Guarantee, 3



Index - Page 331

-H- Current, 323
Hertz, 219 Voltage, 323
HIGH, 49 KVL, 323
Hz. See Hertz L
-1-
. . Label, 206
I/O Pins. See Input/Output Pins Light Emitting Diode, 3738, 40-41

IC. See Integrated Circuit

Identification Window, 19 Anode, 40
Identify, 316, 317 Bi-Color, 61
IF...ELSEIF...ELSE, 85 Cathode, 40
IF... THEN...ELSE, 81
IN3. 77 Circuit Calculations, 323
IN7, 151 Schematic Symbol, 40
Indicator light, 37 .
? T Is, 40
Input/Output Pin erminars
Inout. 71 LOOKDOWN, 182
put LOOKUP, 179-81
Input/Output Pins, 42 LOW, 49
Default Direction, 177 -M -
Integer, 244 mA, 324
Integrated Circuit, 264 Math Operations, 242
Pin Map, 268 Memory Map, 198, 263
Menu, 287
Reference Notch, 268 Metric units of measure, 324
Interference, 226 Microcontroller, 1
J Microsecond, 114
o Milli, 324
Jumper, 106 Millisecond, 49, 114
K- Mixing, 222, 225-27
Multiply, 94
kB, 199 Music
KB, 199
> Dot, 238
KCL, 323 o
Kilo, 324 Flat, 228
Kilobyte, 199 FREQOUT and Notes, 229

Kirchoff’s Laws (Simplified) Natural. 228



Page 332 - What's a Microcontroller

Note Duration, 229, 231, 233-38

Notes, 227
Piano Keyboard, 227
Rest, 233
Ringtone, 245
RTTTL Format, 327-28
RTTTL Format, 245, 251-57
Sharp, 228
Tempo, 233
-N -
Natural, 228
nc, 167
Nested Loop, 223-25
Neutral, 45
Nib, 55, 247
No-Connect, 167

Notes, 227
NPN, 265

-0-

Offset, 155

Ohm, 38, 319

Ohm’s Law, 323
Omega, 38
ON...GOSUB, 287-96
Operator, 95

OUTH \r, 174
Overflow, 247

-P-

Parallax Standard Servo, 103
Caution, 104, 154
Parts, 104

Power Supply Caution, 314

Parallel

Bus, 173
Device, 173

Part Drawing

7-Segment Display, 165
Bi-Color LED, 61

LED, 40

Photoresistor, 190

Piezoelectric Speaker, 219
Potentiometer, 140

Pushbutton — Normally Open, 71
Resistor, 38

Transistor (NPN), 265

PAUSE, 49
PBASIC Commands

DEBUG, 25

DEBUGIN, 120-23, 292
DEC, 120

DO...LOOP, 49

END, 25

EXIT, 292
FOR...NEXT, 53-56, 114
FREQOUT, 221
GOSUB, 206

HIGH, 49
IF...ELSEIF...ELSE, 85
IF...THEN...ELSE, 81



LOOKDOWN, 182
LOOKUP, 179-81
LOW, 49
ON...GOSUB, 287
PAUSE, 49
PULSOUT, 113
RANDOM, 95
RCTIME, 151-52, 152
READ, 202-3, 230
RETURN, 206
SELECT...CASE, 246-50
TOGGLE, 272
UNTIL, 93
WRITE, 199-201, 230
PBASIC Directives
DATA, 230-33
PBASIC, 24
PIN, 287
Stamp, 24
PBASIC I/O Registers
DIRH, 175-78
IN3, 77
OUTH, 175-78
PBASIC Operators
%, 177
*, 94
* 244
*/ 95, 244

Index

DCD, 243

Order of Execution, 242

Parenthesis, 242
Photoresistor, 189-90

RC-Time Circuit, 190

Piano Keyboard, 227
Piezoelectric

Element, 220
Speaker, 219

Pin Map, 166, 268
Pitch, 219

Polling, 90
Potentiometer, 13941

Digital, 267-77
Terminals, 140
Prototyping Area
Input/Output Pins, 41
Power Terminals, 41
Prototyping Areas
Socket, 41

Pseudo Random, 96

Pull-Up Resistor, 79

Pulse, 113

PULSOUT, 113

Pushbutton, 71-72
Circuit, 75-77
Normally Open, 72

-R-

Radio Control, 153
RANDOM, 95

- Page 333



Page 334 - What's a Microcontroller

RCTIME, 151-52, 152

READ, 199, 230

Receive Windowpane, 120, 121
Reference, 323

Reference Notch, 268
Resistance, 319

Resistor, 38-40, 48

Color Codes, 3940
Leads, 38
Pull-Down, 79
Pull-Up, 79
Tolerance, 39

Rest, 233
RETURN, 206
Ringtone, 245
Robot, 24

RTTTL Format, 245, 251-57, 327-28

-S-

Scaling, 155

Schematic
Dots Indicate Connections, 84
Drawing, 45

Schematic Symbol
7-Segment Display, 166
Bi-Color LED, 61
LED, 40
Photoresistor, 190
Piezoelectric Speaker, 219
Potentiometer, 140

Pushbutton — Normally Open, 71

Resistor, 38
Transistor (NPN), 265

Seed, 96
SELECT...CASE, 246
Sensor, 189

Sensor Array, 281, 287
Servo, 1034

Cable, 103
Case, 103
Caution Statement, 104, 154

Connecting to BASIC Stamp, 10513

Header, 106

Horn, 103

Jack, 103

Potentiometer Controlled, 153

Power Supply Caution, 314

Sharp, 228

Speaker, piezoelectric, 220
Stamp Plot Lite, 193-97
Status indicator, 37

STR, 292

Subroutine, 206—13

Label, 206

Subsystem Integration, 281

Superposition, 226

Syntax highlighting, 24
-T-

Tempo, 233

Terminal

Piezoelectric Speaker, 220



TOGGLE, 272

Token, 263

Tolerance, 39
Transistor, 264, 265-67

2N3904, 265
Base, 265
Base Current, 266
Collector, 265
Emitter, 265
NPN, 265
Switching, 266
Transmit Windowpane, 120, 121
-U-
UNTIL, 93

US232B, 301
USB to Serial Adapter, 6, 16, 301

-V-
Variables, 53, 55, 247

Index

Array, 292
Bit, 55, 247
Byte, 55, 247
Nib, 55, 247
Word, 55, 247

Vdd, 41, 46, 323
Vin, 41, 323
Volt, 319
Voltage, 45, 319
Vss, 41, 46, 323

-W -

What’s a Microcontroller
Parts Kit, 303
Text, 303

Word, 55, 247
WRITE, 199-201

- Page 335



Parts and quantities in the various What’s a Microcontroller kits are subject to change
without notice. Parts may differ from what is shown in this picture. Please contact
stampsinclass@parallax.com if you have any questions about your Kkit.





