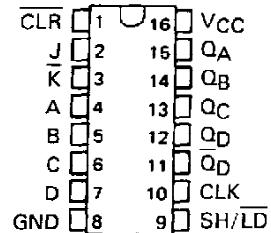


Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 47061TI


**SN54195, SN54LS195A, SN54S195,
SN74195, SN74LS195A, SN74S195**
4-BIT PARALLEL-ACCESS SHIFT REGISTERS

MARCH 1974—REVISED MARCH 1988

- Synchronous Parallel Load
- Positive-Edge-Triggered Clocking
- Parallel Inputs and Outputs from Each Flip-Flop
- Direct Overriding Clear
- J and \bar{K} Inputs to First Stage
- Complementary Outputs from Last Stage
- For Use in High Performance:
Accumulators/Processors
Serial-to-Parallel, Parallel-to-Serial
Converters

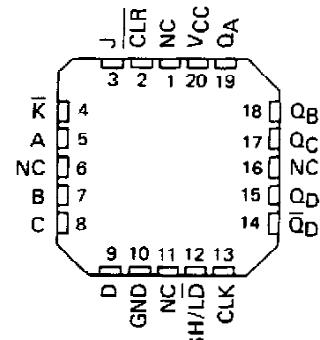
SN54195, SN54LS195A, SN54S195 . . . J OR W PACKAGE
SN74195 . . . N PACKAGE
SN74LS195A, SN74S195 . . . D OR N PACKAGE

(TOP VIEW)

description

These 4-bit registers feature parallel inputs, parallel outputs, J- \bar{K} serial inputs, shift/load (SH/LD) control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The register has two modes of operation:

Parallel (broadside) load


Shift (in the direction QA toward QD)

Parallel loading is accomplished by applying the four bits of data and taking SH/LD low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when SH/LD is high. Serial data for this mode is entered at the J- \bar{K} inputs. These inputs permit the first stage to perform as a J- \bar{K} , D-, or T-type flip-flop as shown in the function table.

The high-performance 'S195, with a 105-megahertz typical maximum shift-frequency, is particularly attractive for very-high-speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottky-clamped shift register.

SN54LS195, SN54S195 . . . FK PACKAGE
(TOP VIEW)

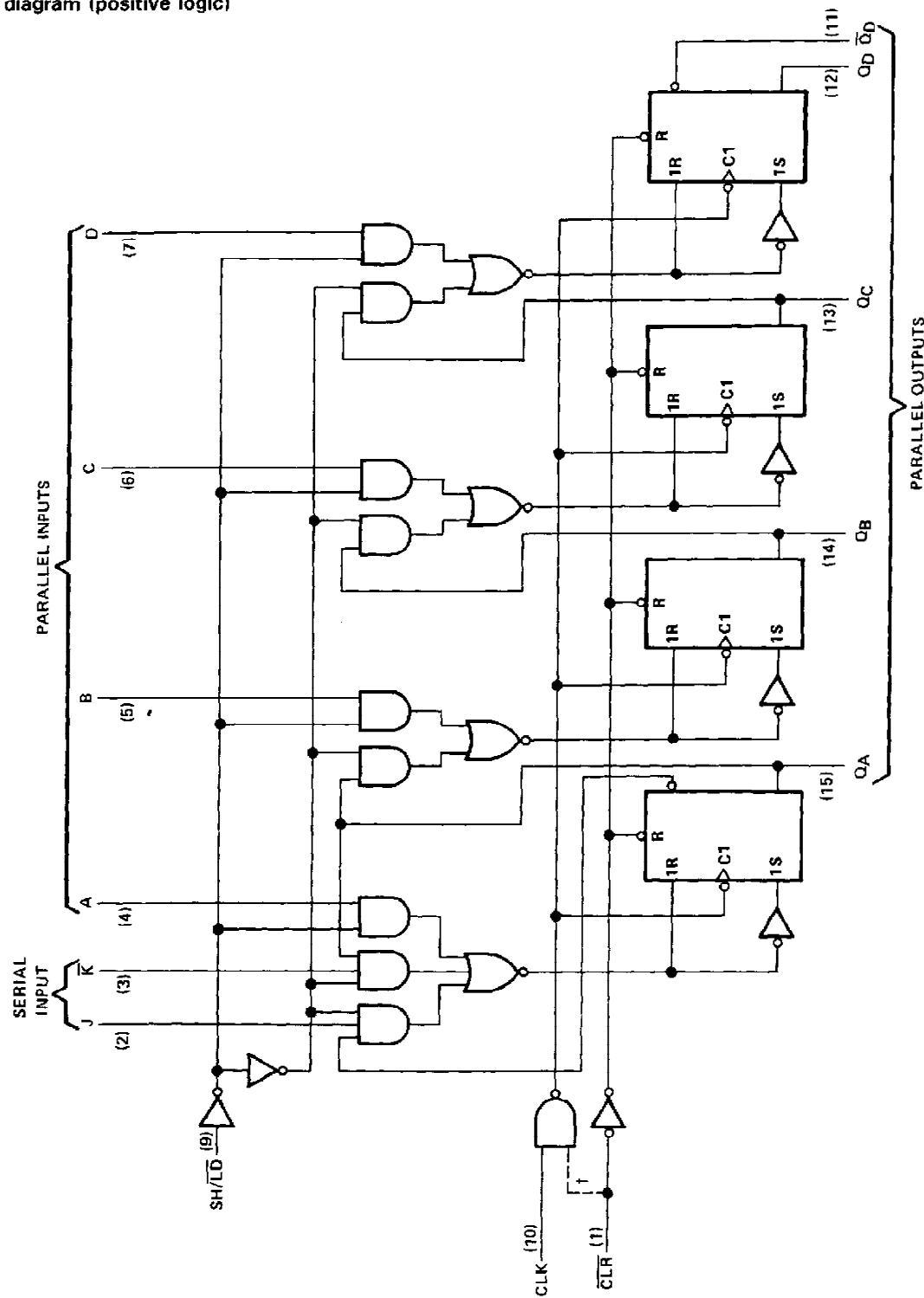
NC - No internal connection

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'195	39 MHz	195 mW
'LS195A	39 MHz	70 mW
'S195	105 MHz	350 mW

H = high level (steady state)
L = low level (steady state)
X = irrelevant (any input, including transitions)
↑ = transition from low to high level
a, b, c, d = the level of steady-state input at A, B, C, or D, respectively
 $Q_{A0}, Q_{B0}, Q_{C0}, Q_{D0}$ = the level of Q_A, Q_B, Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established
 Q_{An}, Q_{Bn}, Q_{Cn} = the level of Q_A, Q_B , or Q_C , respectively, before the most-recent transition of the clock

FUNCTION TABLE

CLEAR	INPUTS					OUTPUTS						
	SHIFT/ LOAD	CLOCK	SERIAL		PARALLEL		Q_A	Q_B	Q_C	Q_D	\bar{Q}_D	
			J	K	A	B	C	D	Q_A	Q_B	Q_C	
L	X	X	X	X	X	X	X	X	L	L	L	H
H	L	↑	X	X	a	b	c	d	a	b	c	d
H	H	L	X	X	X	X	X	X	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
H	H	↑	L	H	X	X	X	X	Q_{A0}	Q_{A0}	Q_{Bn}	Q_{Cn}
H	H	↑	L	L	X	X	X	X	L	Q_{An}	Q_{Bn}	Q_{Cn}
H	H	↑	H	H	X	X	X	X	H	Q_{An}	Q_{Bn}	Q_{Cn}
H	H	↑	H	L	X	X	X	X	\bar{Q}_{An}	Q_{An}	Q_{Bn}	Q_{Cn}

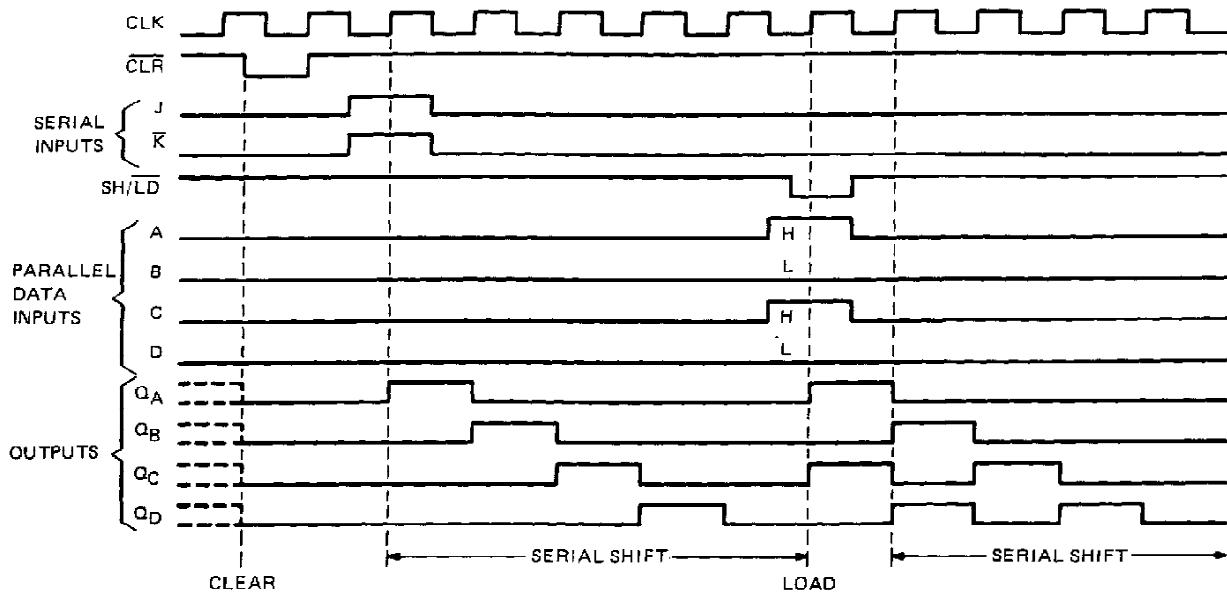

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

**TEXAS
INSTRUMENTS**

POST OFFICE BOX 555012 • DALLAS, TEXAS 75265

**SN54195, SN54LS195A, SN54S195,
SN74195, SN74LS195A, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

logic diagram (positive logic)


^fThis connection is made on '195 only.
Pin numbers shown are for D, J, N, and W packages.

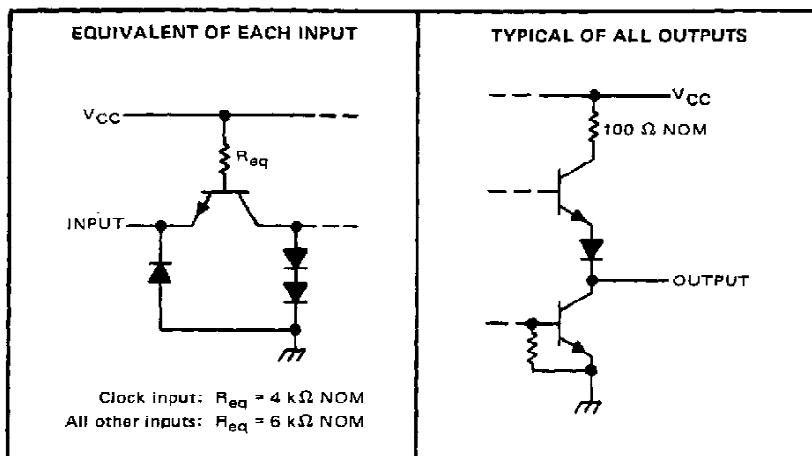
TEXAS
INSTRUMENTS

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

**SN54195, SN54LS195A, SN54S195,
SN74195, SN74LS195A, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

typical clear, shift, and load sequences

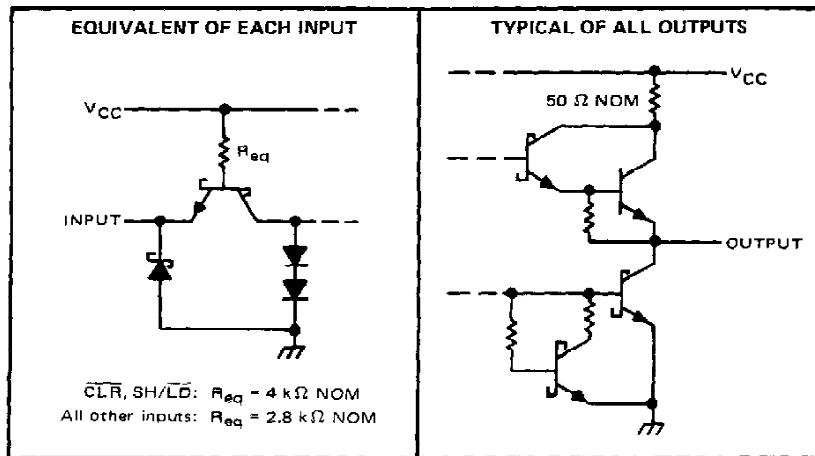
logic symbols[†]



[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
Pin numbers are for D, J, N, and W packages.

SN54195, SN54LS195A, SN54S195, SN74195, SN74LS195A, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS

schematics of inputs and outputs


'195

'LS195A

'S195

**TEXAS
 INSTRUMENTS**

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN54195, SN74195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range: SN54195	-55°C to 125°C
SN74195	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54195			SN74195			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-800			-800	μA
Low-level output current, I_{OL}			16			16	mA
Clock frequency, f_{clock}	0	30	0	0	30	0	MHz
Width of clock input pulse, $t_w(clock)$	16		16			ns	
Width of clear input pulse, $t_w(clear)$	12		12			ns	
Setup time, t_{SU} (see Figure 1)	Shift/load	25	25				ns
	Serial and parallel data	20	20				
	Clear inactive-state	25	25				
Shift/load release time, $t_{release}$ (see Figure 1)			10			10	ns
Serial and parallel data hold time, t_H (see Figure 1)	0		0			ns	
Operating free-air temperature, T_A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
V_{IH} High-level input voltage		2			V
V_{IL} Low-level input voltage			0.8		V
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -12 \text{ mA}$			-1.5	V
V_{OH} High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -800 \mu A$	2.4	3.4		V
V_{OL} Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OL} = 16 \text{ mA}$		0.2	0.4	V
I_I Input current at maximum input voltage	$V_{CC} = \text{MAX}$, $V_I = 5.5 \text{ V}$		1		mA
I_{IH} High-level input current	$V_{CC} = \text{MAX}$, $V_I = 2.4 \text{ V}$		40		μA
I_{IL} Low-level input current	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$			-1.6	mA
I_{OS} Short-circuit output current [§]	$V_{CC} = \text{MAX}$	SN54195	-20	-57	mA
		SN74195	-18	-57	
I_{CC} Supply current	$V_{CC} = \text{MAX}$, See Note 2		39	63	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions, $T_A = 25^\circ\text{C}$.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§]Not more than one output should be shorted at a time.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clear and then applying a momentary ground, followed by 4.5 V, to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max} Maximum clock frequency	$C_L = 15 \text{ pF}$, $R_L = 400 \Omega$, See Figure 1	30	39		MHz
t_{PHL} Propagation delay time, high-to-low-level output from clear		19	30		ns
t_{PLH} Propagation delay time, low-to-high-level output from clock		14	22		ns
t_{PHL} Propagation delay time, high-to-low-level output from clock		17	26		ns

TEXAS
INSTRUMENTS

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN54LS195A, SN74LS195A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	7 V
Operating free-air temperature range: SN54LS195A	-55°C to 125°C
SN74LS195A	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54LS195A	SN74LS195A			UNIT		
		MIN	NOM	MAX			
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-400		-400	μ A
Low-level output current, I_{OL}				4		8	mA
Clock frequency, f_{clock}	0		30	0		30	MHz
Width of clock or clear pulse, $t_w(clock)$	16			16			ns
Width of clear input pulse, $t_w(clear)$	12			12			ns
Setup time, t_{SU} (see Figure 1)	Shift/load	25		25			ns
	Serial and parallel data	15		15			
	Clear inactive-state	25		25			
Shift/load release time, $t_{release}$ (see Figure 1)		10			20		ns
Serial and parallel data hold time, t_h (see Figure 1)	0			0			ns
Operating free-air temperature, T_A	-65		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS195A			SN74LS195A			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IH} High-level input voltage		2			2			V
V_{IL} Low-level input voltage				0.7			0.8	V
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -18 \text{ mA}$			-1.5			-1.5	V
V_{OH} High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = V_{IL} \text{ max}$, $I_{OH} = 400 \mu\text{A}$	2.5	3.4		2.7	3.4		V
V_{OL} Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $I_{OL} = 4 \text{ mA}$ $V_{IL} = V_{IL} \text{ max}$, $I_{OL} = 8 \text{ mA}$		0.25	0.4	0.25	0.4		V
I_I Input current at maximum input voltage	$V_{CC} = \text{MAX}$, $V_I = 7 \text{ V}$			0.1			0.1	mA
I_{IH} High-level input current	$V_{CC} = \text{MAX}$, $V_I = 2.7 \text{ V}$			20			20	μA
I_{IL} Low-level input current	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$			-0.4			-0.4	mA
I_{OS} Short-circuit output current [§]	$V_{CC} = \text{MAX}$	-20		-100	-20		-100	mA
I_{CC} Supply current	$V_{CC} = \text{MAX}$, See Note 2		14	21	14	21		mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ }^\circ\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clear and then applying a momentary ground, followed by 4.5 V, to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ }^\circ\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max} Maximum clock frequency	$C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, See Figure 1	30	39		MHz
t_{PHL} Propagation delay time, high-to-low-level output from clear		19	30		ns
t_{PLH} Propagation delay time, low-to-high-level output from clock		14	22		ns
t_{PHL} Propagation delay time, high-to-low-level output from clock		17	26		ns

TEXAS
INSTRUMENTS

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN54S195, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range: SN54S195	-55°C to 125°C
SN74S195	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54S195			SN74S195			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}		-1			-1		mA
Low-level output current, I_{OL}		20			20		mA
Clock frequency, f_{clock}	0	70	0	0	70	0	MHz
Width of clock input pulse, t_w (clock)	7			7			ns
Width of clear input pulse, t_w (clear)	12			12			ns
Setup time, t_{SU} (see Figure 1)	Shift/load	11		11			ns
	Serial and parallel data	5		5			
	Clear inactive-state	9		9			
Shift/load release time, $t_{release}$ (see Figure 1)		2		6			ns
Serial and parallel data hold time, t_h (see Figure 1)	3		3				ns
Operating free-air temperature, T_A	-55	125	0	0	70	0	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP [‡]	MAX	UNIT
	MIN	MAX				
V_{IH} High-level input voltage				2		V
V_{IL} Low-level input voltage				0.8		V
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$,	$I_I = -18 \text{ mA}$			-1.2	V
V_{OH} High-level output voltage	$V_{CC} = \text{MIN}$,	$V_{IH} = 2 \text{ V}$,	SN54S195	2.5	3.4	V
	$V_{IL} = 0.8 \text{ V}$,	$I_{OH} = -1 \text{ mA}$	SN74S195	2.7	3.4	
V_{OL} Low-level output voltage	$V_{CC} = \text{MIN}$,	$V_{IH} = 2 \text{ V}$,			0.5	V
	$V_{IL} = 0.8 \text{ V}$,	$I_{OL} = 20 \text{ mA}$				
I_I Input current at maximum input voltage	$V_{CC} = \text{MAX}$,	$V_I = 5.5 \text{ V}$			1	mA
I_{IH} High-level input current	$V_{CC} = \text{MAX}$,	$V_I = 2.7 \text{ V}$			50	μA
I_{IL} Low-level input current	$V_{CC} = \text{MAX}$,	$V_I = 0.5 \text{ V}$			-2	mA
I_{OS} Short-circuit output current [§]	$V_{CC} = \text{MAX}$			-40	-100	mA
I_{CC} Supply current	$V_{CC} = \text{MAX}$,	See Note 2	SN54S195	70	99	mA
			SN74S195	70	109	

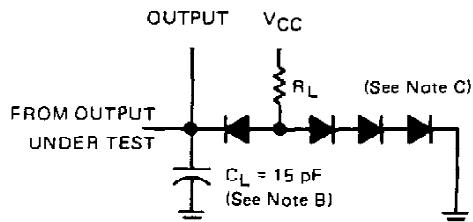
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

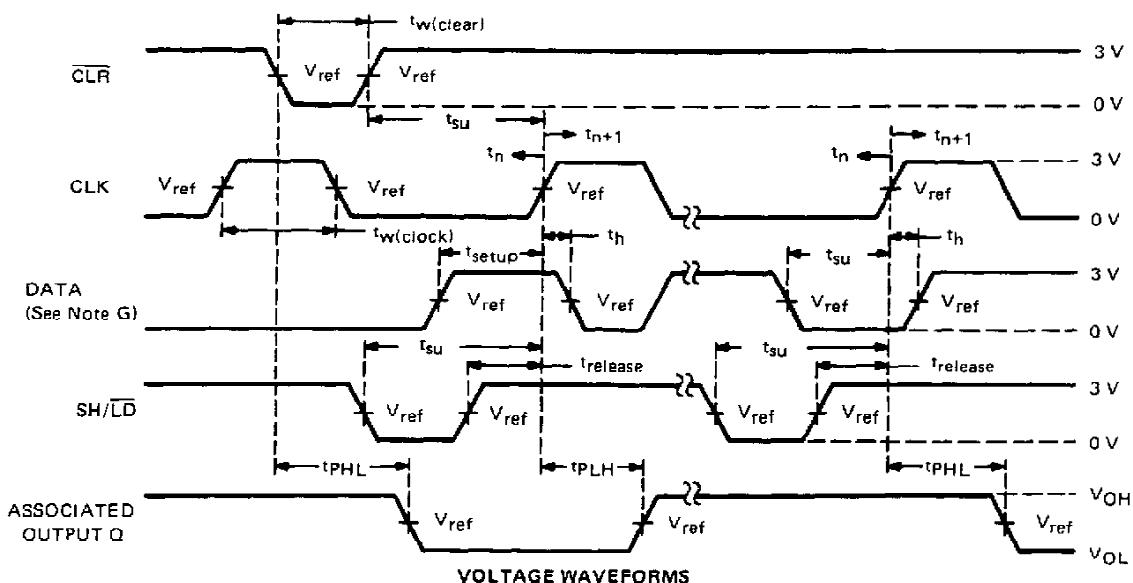
[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open, shift/load grounded, and 4.5 V applied to the J, K, and data inputs, I_{CC} is measured by applying a momentary ground, followed by 4.5 V, to clear, and then applying a momentary ground, followed by 4.5 V, to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		MIN	NOM	MAX	
f_{max} Maximum clock frequency		70	105		MHz
t_{PHL} Propagation delay time, high-to-low-level output from clear	$C_L = 15 \text{ pF}$,			12.5	18.5
t_{PLH} Propagation delay time, low-to-high-level output from clock	$R_L = 280 \Omega$,			8	12
t_{PLH} Propagation delay time, high-to-low-level output from clock	See Figure 1			11	16.5

TEXAS
INSTRUMENTS


POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

**SN54195, SN54LS195A, SN54S195,
SN74195, SN74LS195A, SN74S195
4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

PARAMETER MEASUREMENT INFORMATION

LOAD FOR OUTPUT UNDER TEST

NOTES: A. The clock pulse generator has the following characteristics: $Z_{out} \approx 50 \Omega$ and $PRR \leq 1 \text{ MHz}$. For '195, $t_r \leq 7 \text{ ns}$ and $t_f \leq 7 \text{ ns}$. For 'LS195A, $t_r \leq 15 \text{ ns}$ and $t_f \leq 6 \text{ ns}$. For 'S195, $t_r = 2.5 \text{ ns}$ and $t_f = 2.5 \text{ ns}$. When testing f_{max} , vary the clock PRR.
 B. C_L includes probe and jig capacitance.
 C. All diodes are 1N3064 or equivalent.
 D. A clear pulse is applied prior to each test.
 E. For '195 and 'S195, $V_{ref} = 1.5 \text{ V}$; for 'LS195A, $V_{ref} = 1.3 \text{ V}$.
 F. Propagation delay times (t_{PLH} and t_{PHL}) are measured at t_{n+1} . Proper shifting of data is verified at t_{n+4} with a functional test.
 G. J and K inputs are tested the same as data A, B, C, and D inputs except that shift/load input remains high.
 H. t_n = bit time before clocking transition.
 t_{n+1} = bit time after one clocking transition.
 t_{n+4} = bit time after four clocking transitions.

FIGURE 1—SWITCHING TIMES

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated