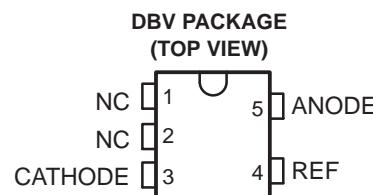
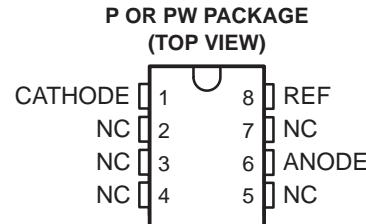
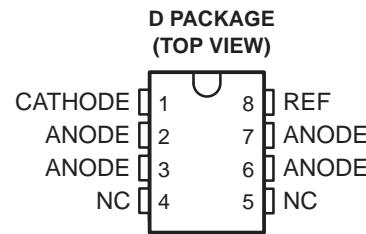
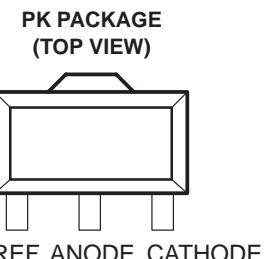
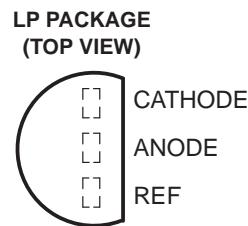
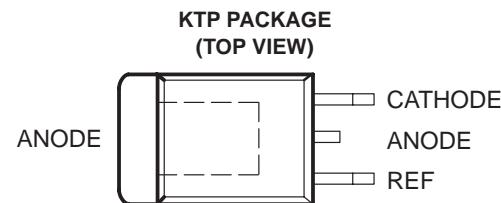


Distributed by:

www.Jameco.com ♦ 1-800-831-4242




The content and copyrights of the attached
material are the property of its owner.

- Equivalent Full-Range Temperature Coefficient . . . 30 ppm/°C
- 0.2- Ω Typical Output Impedance
- Sink-Current Capability . . . 1 mA to 100 mA
- Low Output Noise
- Adjustable Output Voltage . . . V_{ref} to 36 V
- Available in a Wide Range of High-Density Packages




description

The TL431 and TL431A are three-terminal adjustable shunt regulators with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between V_{ref} (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as onboard regulation, adjustable power supplies, and switching power supplies.

The TL431C and TL431AC are characterized for operation from 0°C to 70°C, and the TL431I and TL431AI are characterized for operation from -40°C to 85°C.

NC – No internal connection

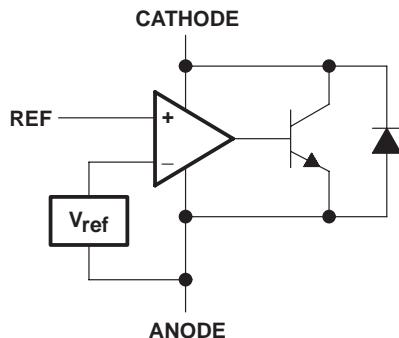
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

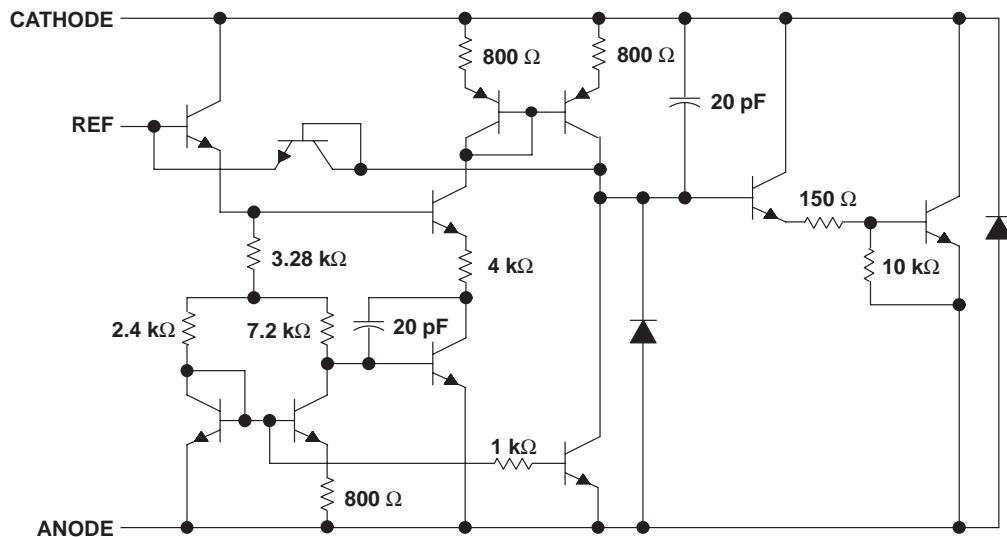
TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

AVAILABLE OPTIONS


T _A	PACKAGED DEVICES						
	SMALL-OUTLINE (D)	SOT-23 (DBV)	PLASTIC FLANGE MOUNT (KTP)	TO-226AA (LP)	PLASTIC DIP (P)	PLASTIC SHRINK SMALL-OUTLINE (PW)	SOT-89 (PK)
0°C to 70°C	TL431CD TL431ACD	TL431CDBVR	TL431CKTPR	TL431CLP TL431ACP	TL431CP TL431ACP	TL431CPWR TL431ACPWR	TL431CPKR
-40°C to 85°C	TL431ID TL431AID			TL431ILP TL431AIP	TL431IP TL431AIP		TL431IPKR

The D, LP, and PW packages are available taped and reeled. The DBV, KTP, and PK packages are only available taped and reeled. Add the suffix R to device type (e.g., TL431CDR).


symbol

functional block diagram

equivalent schematic[†]

[†] All component values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Cathode voltage, V_{KA} (see Note 1)	37 V
Continuous cathode current range, I_{KA}	–100 mA to 150 mA
Reference input current range	–50 μ A to 10 mA
Package thermal impedance, θ_{JA} (see Notes 2 and 3): D package	97°C/W
DBV package	206°C/W
KTP package	28°C/W
LP package	156°C/W
P package	85°C/W
PK package	52°C/W
PW package	149°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T_{STG}	–65°C to 150°C

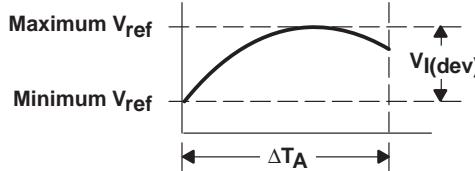
† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to the anode terminal unless otherwise noted.
 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
Cathode voltage, V_{KA}	V_{ref}	36		V
Cathode current, I_{KA}	1	100		mA
Operating free-air temperature range, T_A	TL431C, TL431AC	0	70	°C
	TL431I, TL431AI	–40	85	

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS


SLVS005M – JULY 1978 – REVISED OCTOBER 2000

electrical characteristics over recommended operating conditions, $T_A = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CIRCUIT	TEST CONDITIONS	TL431C			UNIT	
			MIN	TYP	MAX		
V_{ref}	Reference voltage	2	$V_{KA} = V_{\text{ref}}$, $I_{KA} = 10 \text{ mA}$	2440	2495	2550	mV
$V_{I(\text{dev})}$	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{\text{ref}}$, $I_{KA} = 10 \text{ mA}$, $T_A = 0^\circ\text{C}$ to 70°C	4	25		mV
$\frac{\Delta V_{\text{ref}}}{\Delta V_{KA}}$	Ratio of change in reference voltage to the change in cathode voltage	3	$I_{KA} = 10 \text{ mA}$	$\Delta V_{KA} = 10 \text{ V} - V_{\text{ref}}$	-1.4	-2.7	mV/V
				$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$	-1	-2	
I_{ref}	Reference current	3	$I_{KA} = 10 \text{ mA}$, $R1 = 10 \text{ k}\Omega$, $R2 = \infty$	2	4		μA
$I_{I(\text{dev})}$	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}$, $R1 = 10 \text{ k}\Omega$, $R2 = \infty$, $T_A = 0^\circ\text{C}$ to 70°C	0.4	1.2		μA
I_{min}	Minimum cathode current for regulation	2	$V_{KA} = V_{\text{ref}}$	0.4	1		mA
I_{off}	Off-state cathode current	4	$V_{KA} = 36 \text{ V}$, $V_{\text{ref}} = 0$	0.1	1		μA
$ z_{KA} $	Dynamic impedance (see Figure 1)	1	$I_{KA} = 1 \text{ mA}$ to 100 mA , $V_{KA} = V_{\text{ref}}$, $f \leq 1 \text{ kHz}$	0.2	0.5		Ω

The deviation parameters $V_{\text{ref(dev)}}$ and $I_{\text{ref(dev)}}$ are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, $\alpha_{V_{\text{ref}}}$, is defined as:

$$|\alpha_{V_{\text{ref}}}| \left(\frac{\text{ppm}}{^\circ\text{C}} \right) = \frac{\left(\frac{V_{I(\text{dev})}}{V_{\text{ref}} \text{ at } 25^\circ\text{C}} \right) \times 10^6}{\Delta T_A}$$

where:

ΔT_A is the recommended operating free-air temperature range of the device.

$\alpha_{V_{\text{ref}}}$ can be positive or negative, depending on whether minimum V_{ref} or maximum V_{ref} , respectively, occurs at the lower temperature.

Example: maximum $V_{\text{ref}} = 2496 \text{ mV}$ at 30°C , minimum $V_{\text{ref}} = 2492 \text{ mV}$ at 0°C , $V_{\text{ref}} = 2495 \text{ mV}$ at 25°C , $\Delta T_A = 70^\circ\text{C}$ for TL431C

$$|\alpha_{V_{\text{ref}}}| = \frac{\left(\frac{4 \text{ mV}}{2495 \text{ mV}} \right) \times 10^6}{70^\circ\text{C}} \approx 23 \text{ ppm/}^\circ\text{C}$$

Because minimum V_{ref} occurs at the lower temperature, the coefficient is positive.

Calculating Dynamic Impedance

The dynamic impedance is defined as: $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by:

$$|z'| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \left(1 + \frac{R1}{R2} \right)$$

Figure 1. Calculating Deviation Parameters and Dynamic Impedance

electrical characteristics over recommended operating conditions, $T_A = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CIRCUIT	TEST CONDITIONS	TL431I			UNIT	
			MIN	TYP	MAX		
V_{ref}	Reference voltage	2	$V_{\text{KA}} = V_{\text{ref}}$, $I_{\text{KA}} = 10 \text{ mA}$	2440	2495	2550	mV
$V_{\text{I(dev)}}$	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{\text{KA}} = V_{\text{ref}}$, $I_{\text{KA}} = 10 \text{ mA}$, $T_A = -40^\circ\text{C}$ to 85°C	5	50		mV
$\frac{\Delta V_{\text{ref}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference voltage to the change in cathode voltage	3	$I_{\text{KA}} = 10 \text{ mA}$	$\Delta V_{\text{KA}} = 10 \text{ V} - V_{\text{ref}}$	-1.4	-2.7	mV
				$\Delta V_{\text{KA}} = 36 \text{ V} - 10 \text{ V}$	-1	-2	
I_{ref}	Reference current	3	$I_{\text{KA}} = 10 \text{ mA}$, $R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$	2	4		μA
$I_{\text{I(dev)}}$	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{\text{KA}} = 10 \text{ mA}$, $R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$, $T_A = -40^\circ\text{C}$ to 85°C	0.8	2.5		μA
I_{min}	Minimum cathode current for regulation	2	$V_{\text{KA}} = V_{\text{ref}}$	0.4	1		mA
I_{off}	Off-state cathode current	4	$V_{\text{KA}} = 36 \text{ V}$, $V_{\text{ref}} = 0$	0.1	1		μA
$ z_{\text{KA}} $	Dynamic impedance (see Figure 1)	2	$I_{\text{KA}} = 1 \text{ mA}$ to 100 mA , $V_{\text{KA}} = V_{\text{ref}}$, $f \leq 1 \text{ kHz}$	0.2	0.5		Ω

electrical characteristics over recommended operating conditions, $T_A = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CIRCUIT	TEST CONDITIONS	TL431AC			UNIT	
			MIN	TYP	MAX		
V_{ref}	Reference voltage	2	$V_{\text{KA}} = V_{\text{ref}}$, $I_{\text{KA}} = 10 \text{ mA}$	2470	2495	2520	mV
$V_{\text{I(dev)}}$	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{\text{KA}} = V_{\text{ref}}$, $I_{\text{KA}} = 10 \text{ mA}$, $T_A = 0^\circ\text{C}$ to 70°C	4	25		mV
$\frac{\Delta V_{\text{ref}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference voltage to the change in cathode voltage	3	$I_{\text{KA}} = 10 \text{ mA}$	$\Delta V_{\text{KA}} = 10 \text{ V} - V_{\text{ref}}$	-1.4	-2.7	mV
				$\Delta V_{\text{KA}} = 36 \text{ V} - 10 \text{ V}$	-1	-2	
I_{ref}	Reference current	3	$I_{\text{KA}} = 10 \text{ mA}$, $R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$	2	4		μA
$I_{\text{I(dev)}}$	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{\text{KA}} = 10 \text{ mA}$, $R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$, $T_A = 0^\circ\text{C}$ to 70°C	0.8	1.2		μA
I_{min}	Minimum cathode current for regulation	2	$V_{\text{KA}} = V_{\text{ref}}$	0.4	0.6		mA
I_{off}	Off-state cathode current	4	$V_{\text{KA}} = 36 \text{ V}$, $V_{\text{ref}} = 0$	0.1	0.5		μA
$ z_{\text{KA}} $	Dynamic impedance (see Figure 1)	1	$I_{\text{KA}} = 1 \text{ mA}$ to 100 mA , $V_{\text{KA}} = V_{\text{ref}}$, $f \leq 1 \text{ kHz}$	0.2	0.5		Ω

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

electrical characteristics over recommended operating conditions, $T_A = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER	TEST CIRCUIT	TEST CONDITIONS	TL431AI			UNIT	
			MIN	TYP	MAX		
V_{ref}	Reference voltage	2	$V_{KA} = V_{\text{ref}}$, $I_{KA} = 10 \text{ mA}$	2470	2495	2520	mV
$\%I_{\text{dev}}$	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{\text{ref}}$, $I_{KA} = 10 \text{ mA}$, $T_A = -40^\circ\text{C}$ to 85°C	5	50		mV
$\frac{\Delta V_{\text{ref}}}{\Delta V_{KA}}$	Ratio of change in reference voltage to the change in cathode voltage	3	$I_{KA} = 10 \text{ mA}$	$\Delta V_{KA} = 10 \text{ V} - V_{\text{ref}}$	-1.4	-2.7	$\frac{\text{mV}}{\text{V}}$
				$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$	-1	-2	
I_{ref}	Reference current	3	$I_{KA} = 10 \text{ mA}$, $R1 = 10 \text{ k}\Omega$, $R2 = \infty$	2	4		μA
$\%I_{\text{dev}}$	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}$, $R1 = 10 \text{ k}\Omega$, $R2 = \infty$, $T_A = -40^\circ\text{C}$ to 85°C	0.8	2.5		μA
				0.4	0.7		mA
I_{off}	Off-state cathode current	4	$V_{KA} = 36 \text{ V}$, $V_{\text{ref}} = 0$	0.1	0.5		μA
$ z_{KA} $	Dynamic impedance (see Figure 1)	2	$I_{KA} = 1 \text{ mA}$ to 100 mA , $V_{KA} = V_{\text{ref}}$, $f \leq 1 \text{ kHz}$	0.2	0.5		Ω

PARAMETER MEASUREMENT INFORMATION

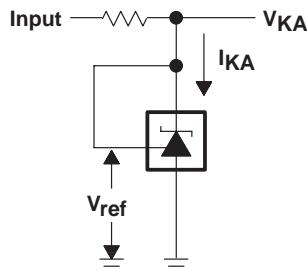


Figure 2. Test Circuit for $V_{KA} = V_{ref}$

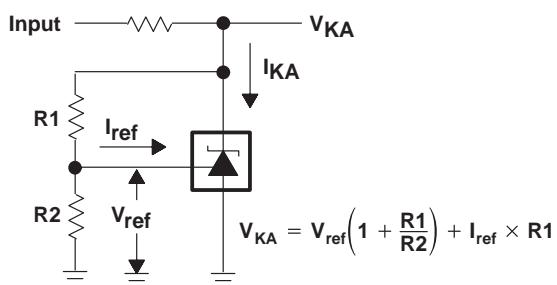


Figure 3. Test Circuit for $V_{KA} > V_{ref}$

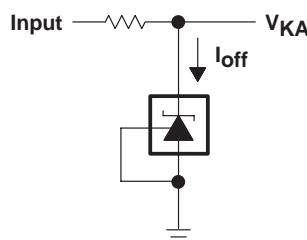


Figure 4. Test Circuit for I_{off}

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

TYPICAL CHARACTERISTICS

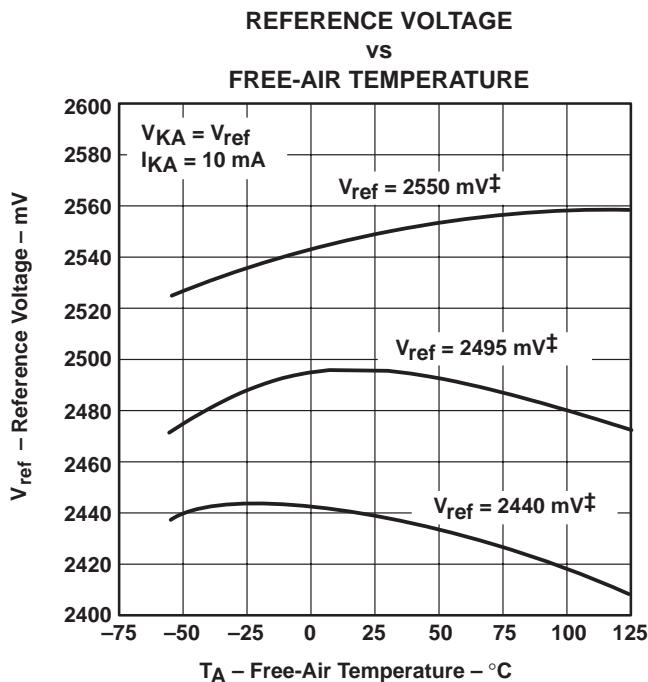

Table 1. Graphs

	FIGURE
Reference input voltage vs Free-air temperature	5
Reference input current vs Free-air temperature	6
Cathode current vs Cathode voltage	7, 8
Off-state cathode current vs Free-air temperature	9
Ratio of delta reference voltage to change in cathode voltage vs Free-air temperature	10
Equivalent input noise voltage vs Frequency	11
Equivalent input noise voltage over a 10-second period	12
Small-signal voltage amplification vs Frequency	13
Reference impedance vs Frequency	14
Pulse response	15
Stability boundary conditions	16

Table 2. Application Circuits

	FIGURE
Shunt regulator	17
Single-supply comparator with temperature-compensated threshold	18
Precision high-current series regulator	19
Output control of a three-terminal fixed regulator	20
High-current shunt regulator	21
Crowbar circuit	22
Precision 5-V 1.5-A regulator	23
Efficient 5-V precision regulator	24
PWM converter with reference	25
Voltage monitor	26
Delay timer	27
Precision current limiter	28
Precision constant-current sink	29

TYPICAL CHARACTERISTICS†

† Data is for devices having the indicated value of V_{ref} at $I_{KA} = 10 \text{ mA}$, $T_A = 25^\circ\text{C}$.

Figure 5

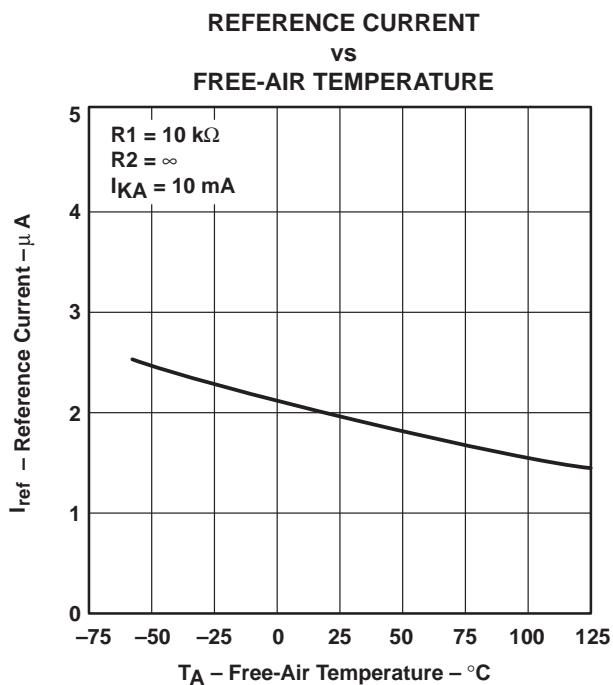


Figure 6

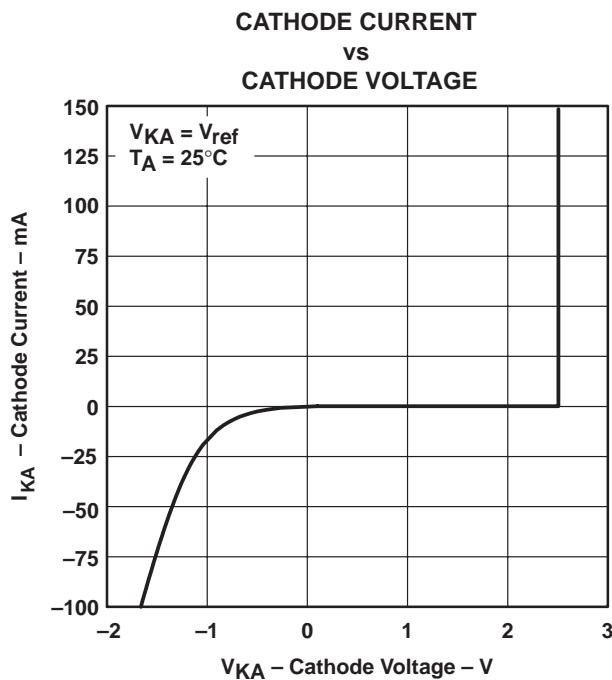


Figure 7

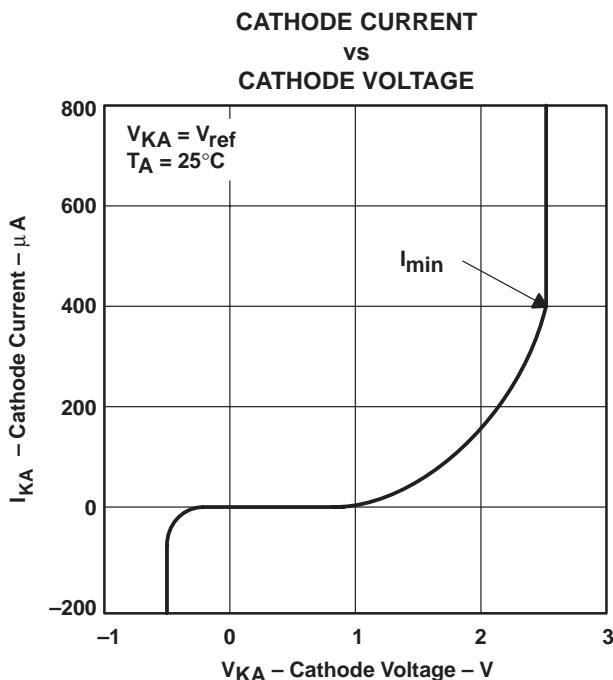


Figure 8

† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

TYPICAL CHARACTERISTICS[†]

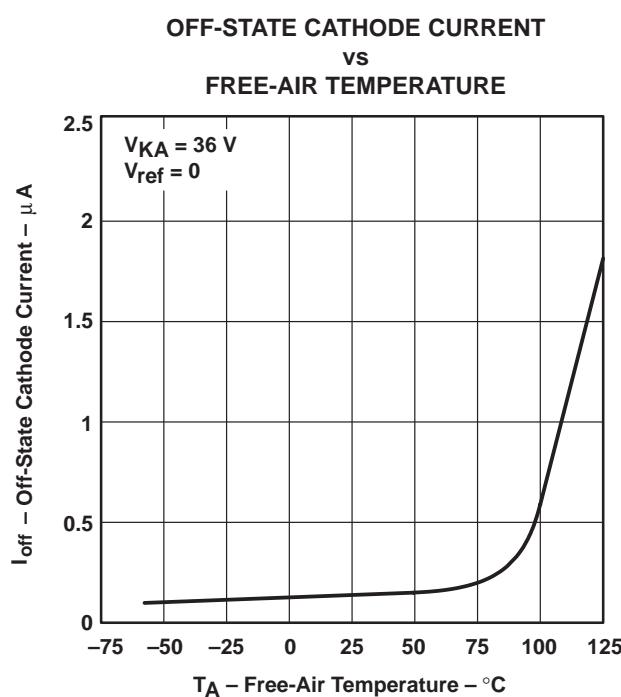


Figure 9

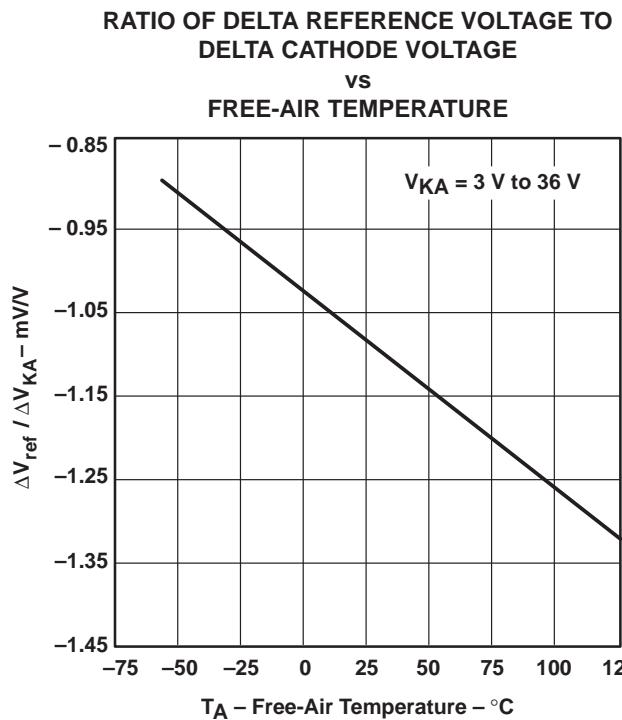


Figure 10

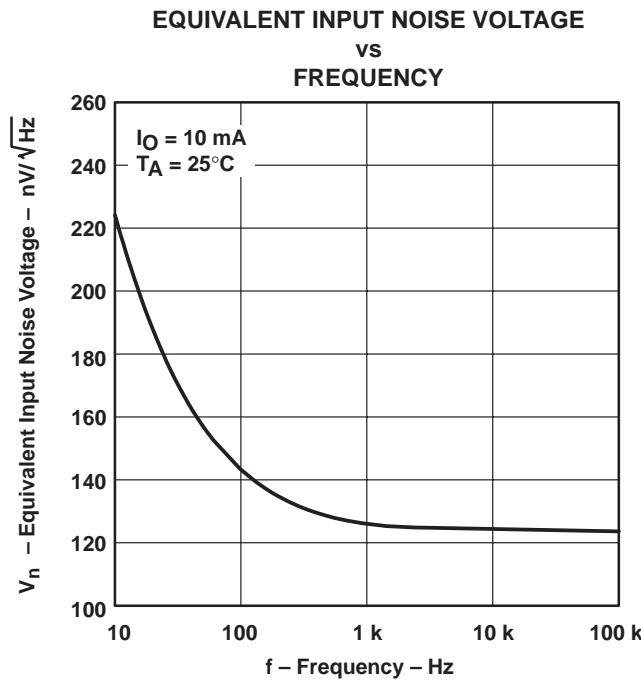


Figure 11

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-SECOND PERIOD

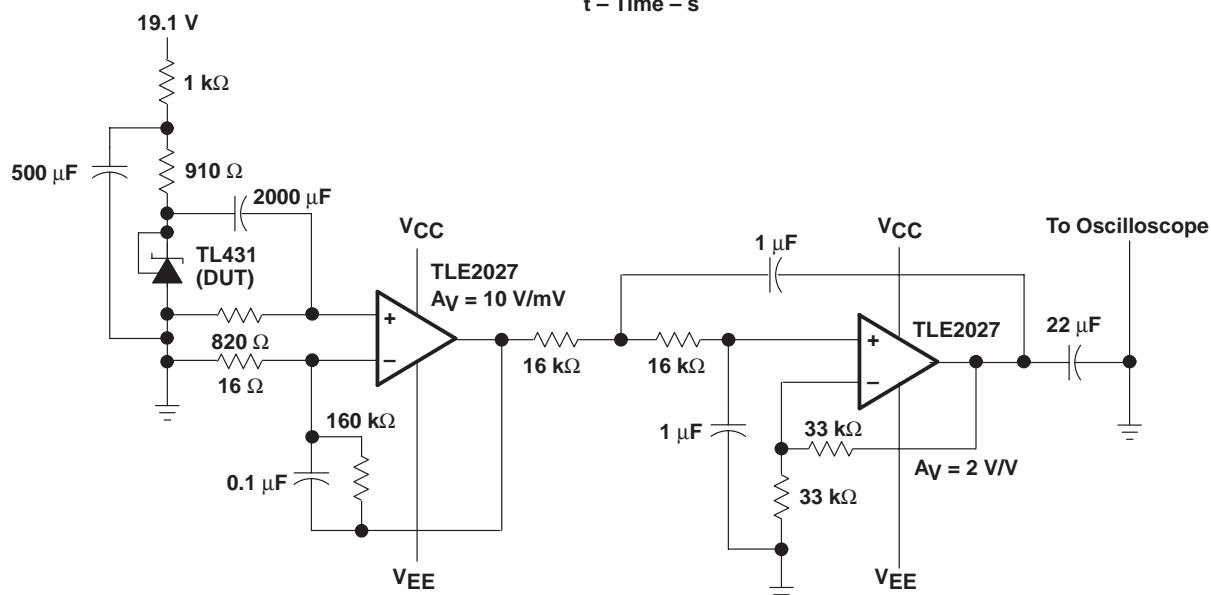
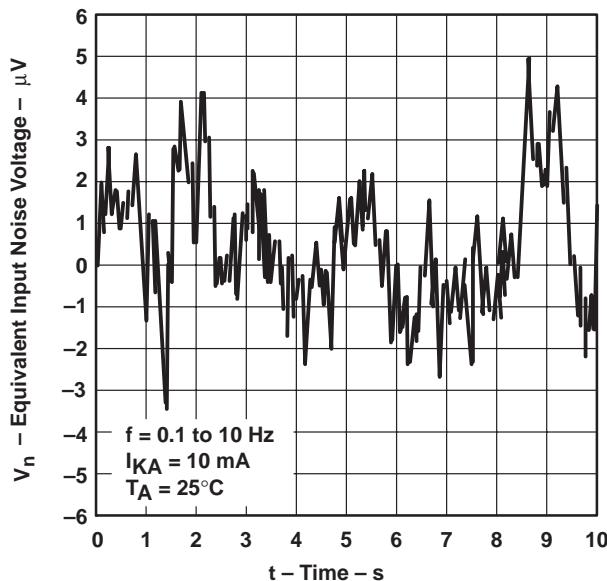
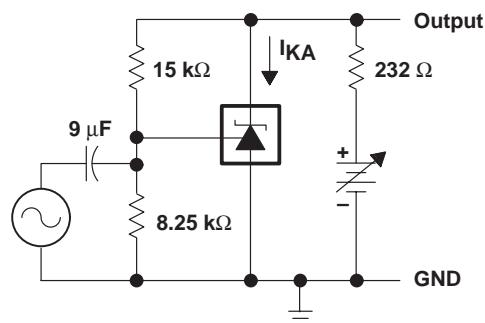
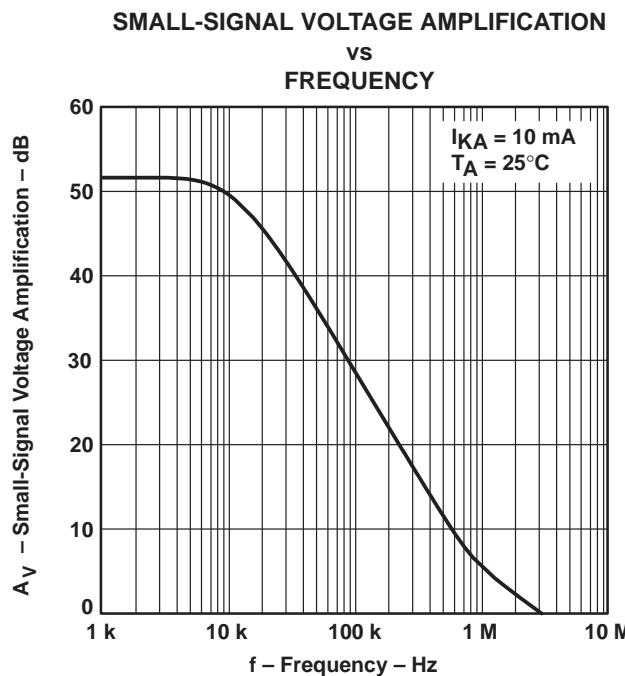
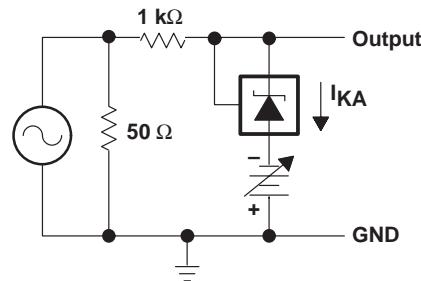
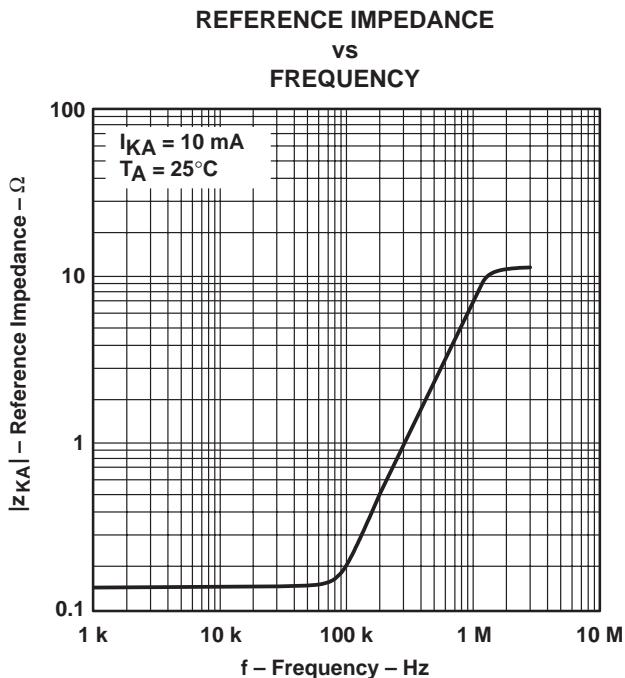





Figure 12. Test Circuit for Equivalent Input Noise Voltage

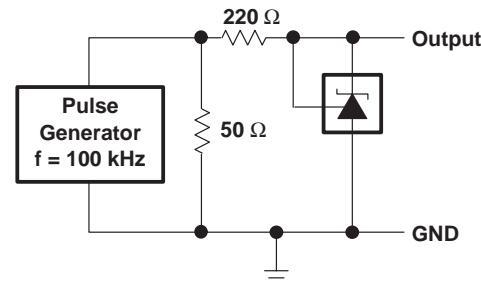
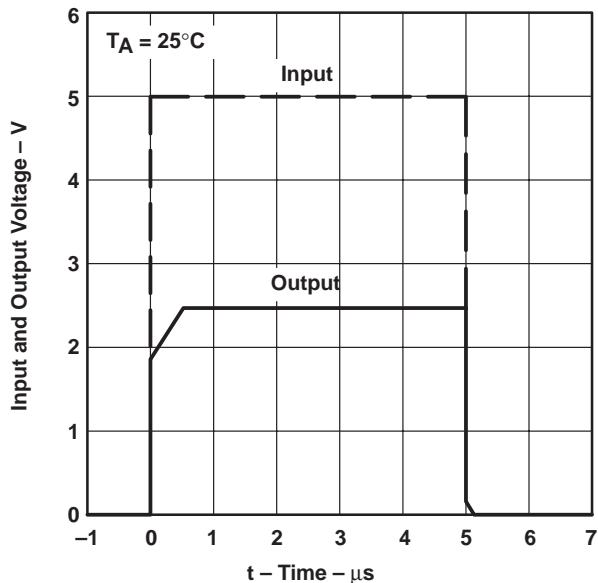
TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS



SLVS005M – JULY 1978 – REVISED OCTOBER 2000

TYPICAL CHARACTERISTICS

TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

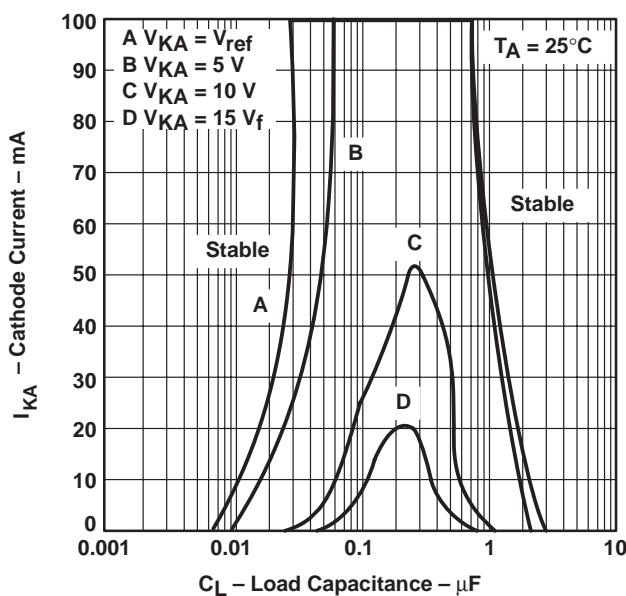
Figure 13

TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 14

TYPICAL CHARACTERISTICS


PULSE RESPONSE

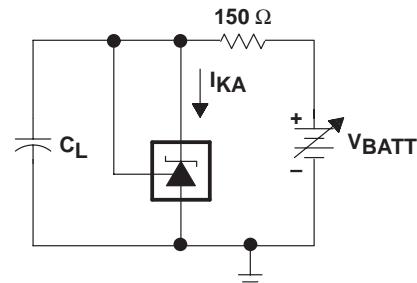
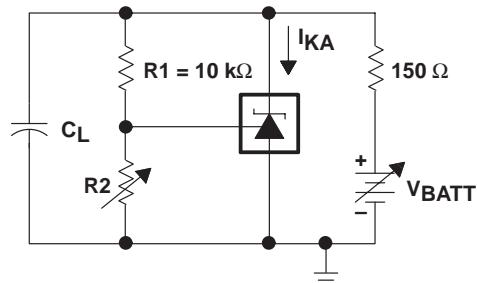

TEST CIRCUIT FOR PULSE RESPONSE

Figure 15


STABILITY BOUNDARY CONDITIONS†

† The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R₂ and V₊ were adjusted to establish the initial V_{KA} and I_{KA} conditions with C_L = 0. V_{BATT} and C_L then were adjusted to determine the ranges of stability.

TEST CIRCUIT FOR CURVE A

TEST CIRCUIT FOR CURVES B, C, AND D

Figure 16

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

APPLICATION INFORMATION

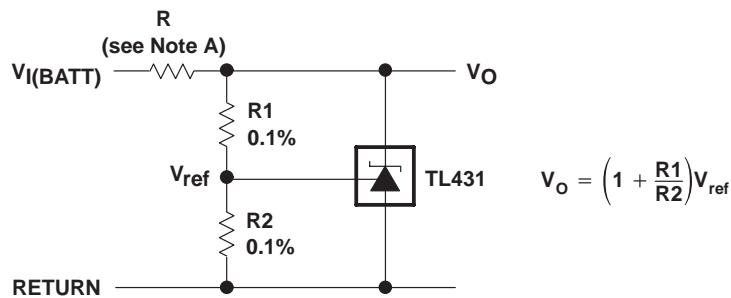


Figure 17. Shunt Regulator

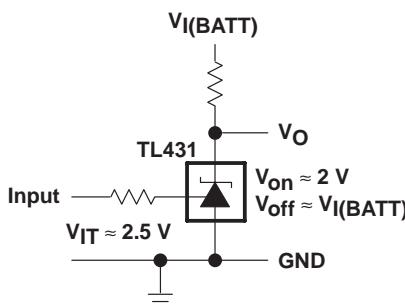


Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold

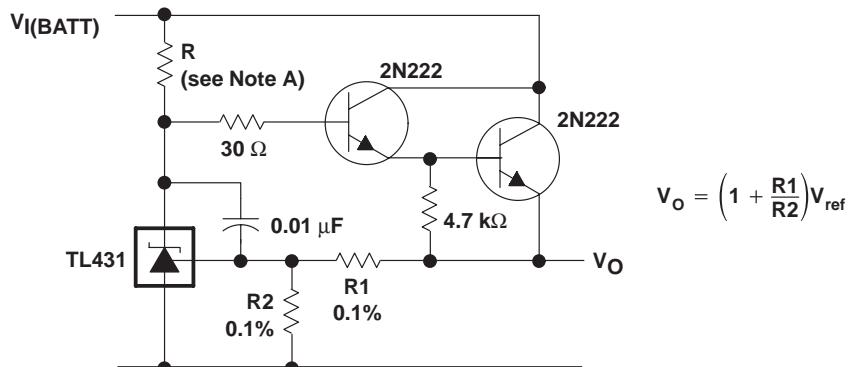


Figure 19. Precision High-Current Series Regulator

APPLICATION INFORMATION

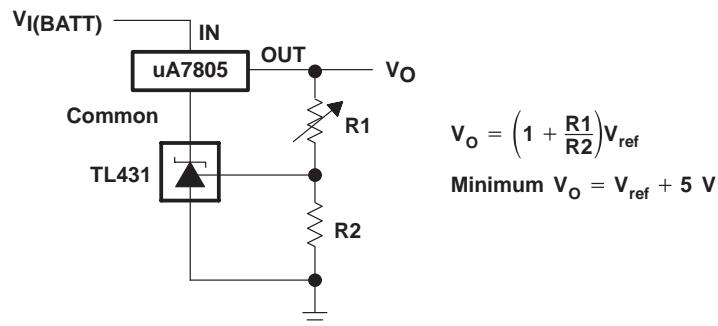


Figure 20. Output Control of a Three-Terminal Fixed Regulator

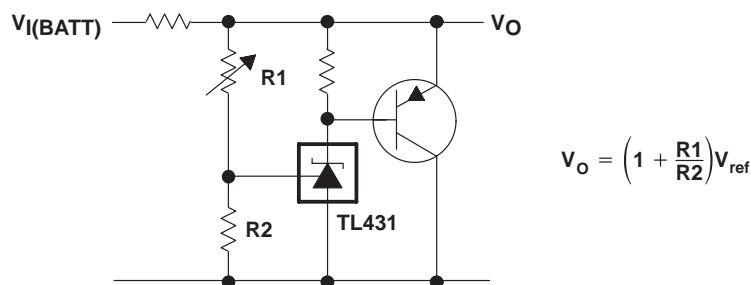


Figure 21. High-Current Shunt Regulator

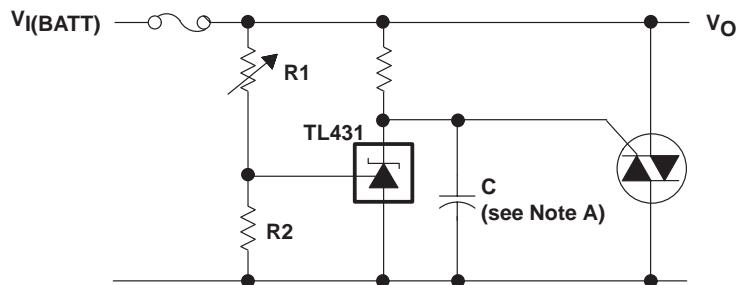


Figure 22. Crowbar Circuit

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

APPLICATION INFORMATION

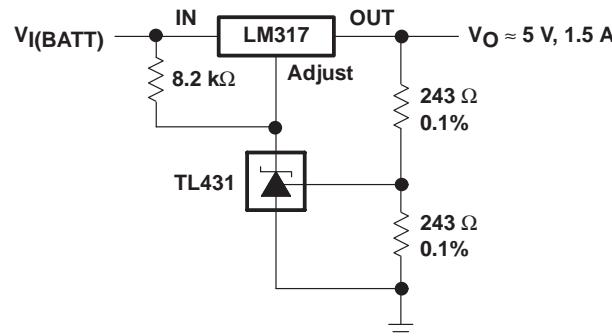
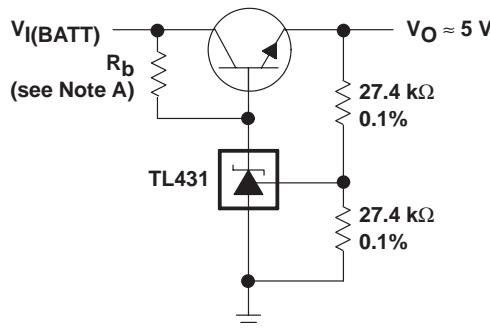



Figure 23. Precision 5-V 1.5-A Regulator

NOTE A: R_b should provide cathode current ≥ 1 mA to the TL431.

Figure 24. Efficient 5-V Precision Regulator

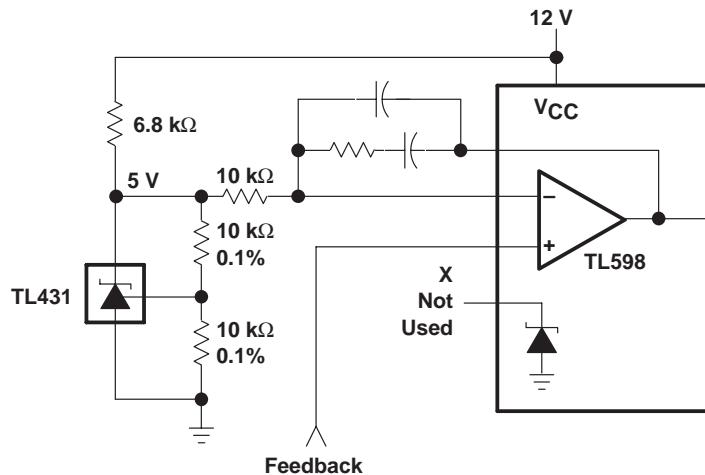
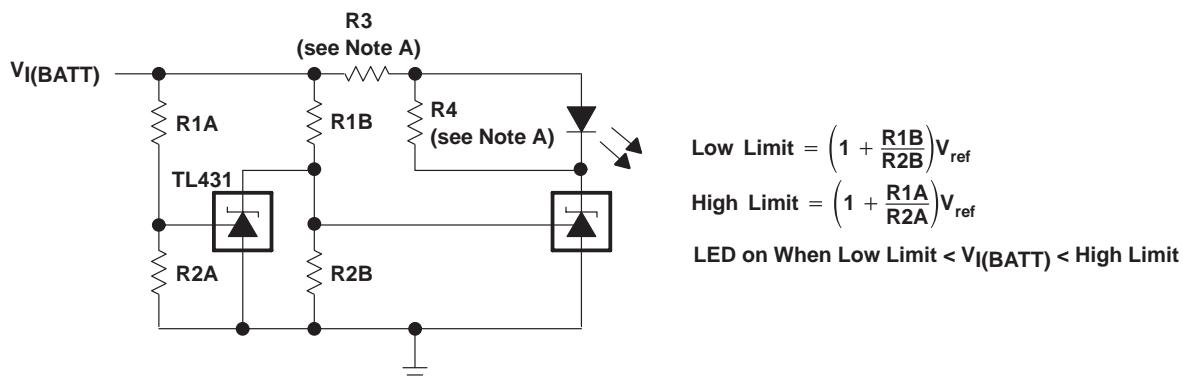



Figure 25. PWM Converter With Reference

APPLICATION INFORMATION

NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥ 1 mA to the TL431 at the available $V_I(BATT)$.

Figure 26. Voltage Monitor

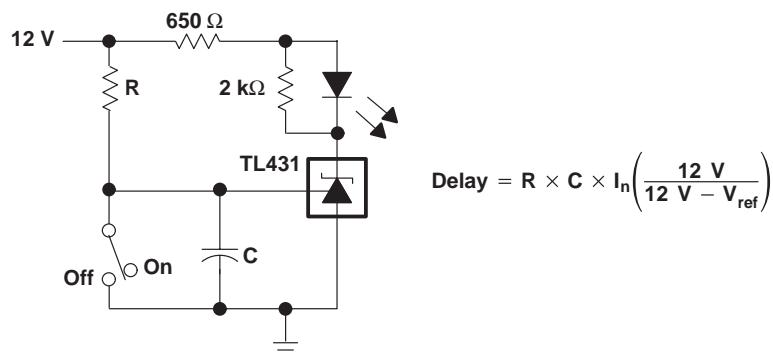


Figure 27. Delay Timer

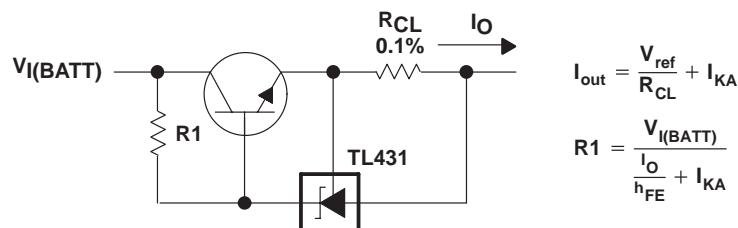


Figure 28. Precision Current Limiter

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005M – JULY 1978 – REVISED OCTOBER 2000

APPLICATION INFORMATION

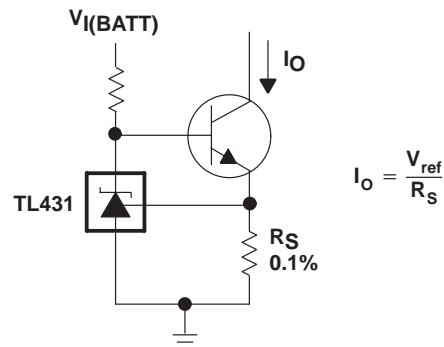


Figure 29. Precision Constant-Current Sink

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated