
The content and copyrights of the attached
 material are the property of its owner.

Distributed by:

www.Jameco.com ✦ 1-800-831-4242

JMendiola
Text Box
Jameco Part Number 323133

 2466N–AVR–10/06

8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATmega16
ATmega16L
Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

• Nonvolatile Program and Data Memories
– 16K Bytes of In-System Self-Programmable Flash

Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles

– 1K Byte Internal SRAM
– Programming Lock for Software Security

• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC

8 Single-ended Channels
7 Differential Channels in TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

– Byte-oriented Two-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby

and Extended Standby
• I/O and Packages

– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

• Operating Voltages
– 2.7 - 5.5V for ATmega16L
– 4.5 - 5.5V for ATmega16

• Speed Grades
– 0 - 8 MHz for ATmega16L
– 0 - 16 MHz for ATmega16

• Power Consumption @ 1 MHz, 3V, and 25°C for ATmega16L
– Active: 1.1 mA
– Idle Mode: 0.35 mA
– Power-down Mode: < 1 µA

Pin Configurations Figure 1. Pinout ATmega16

Disclaimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

(XCK/T0) PB0
(T1) PB1

(INT2/AIN0) PB2
(OC0/AIN1) PB3

(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

(OC1B) PD4
(OC1A) PD5
(ICP1) PD6

PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PC0 (SCL)
PD7 (OC2)

PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
GND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)

(MOSI) PB5
(MISO) PB6
(SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2

(IN
T1

)
P

D
3

(O
C

1B
)

P
D

4
(O

C
1A

)
P

D
5

(IC
P

1)
 P

D
6

(O
C

2)
 P

D
7

V
C

C
G

N
D

(S
C

L)
 P

C
0

(S
D

A
)

P
C

1
(T

C
K

)
P

C
2

(T
M

S
)

P
C

3

P
B

4
 (S

S
)

P
B

3
 (A

IN
1/

O
C

0)
P

B
2

 (A
IN

0/
IN

T2
)

P
B

1
 (T

1)
P

B
0

 (X
C

K
/T

0)
G

N
D

V
C

C
PA

0
 (A

D
C

0)
PA

1
 (A

D
C

1)
PA

2
 (A

D
C

2)
PA

3
 (A

D
C

3)

PDIP

TQFP/QFN/MLF

NOTE:
Bottom pad should
be soldered to ground.
2 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Overview The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega16 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Block Diagram Figure 2. Block Diagram

INTERNAL
OSCILLATOR

OSCILLATOR

WATCHDOG
TIMER

MCU CTRL.
& TIMING

OSCILLATOR

TIMERS/
COUNTERS

INTERRUPT
UNIT

STACK
POINTER

EEPROM

SRAM

STATUS
REGISTER

USART

PROGRAM
COUNTER

PROGRAM
FLASH

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

PROGRAMMING
LOGIC SPI

ADC
INTERFACE

COMP.
INTERFACE

PORTA DRIVERS/BUFFERS

PORTA DIGITAL INTERFACE

GENERAL
PURPOSE

REGISTERS

X

Y

Z

ALU

+
-

PORTC DRIVERS/BUFFERS

PORTC DIGITAL INTERFACE

PORTB DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

PORTD DIGITAL INTERFACE

PORTD DRIVERS/BUFFERS

XTAL1

XTAL2

RESET

CONTROL
LINES

VCC

GND

MUX &
ADC

AREF

PA0 - PA7 PC0 - PC7

PD0 - PD7PB0 - PB7

AVR CPU

TWI

AVCC

INTERNAL
CALIBRATED
OSCILLATOR
3
2466N–AVR–10/06

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega16 provides the following features: 16K bytes of In-System Programmable
Flash Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1K
byte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a
JTAG interface for Boundary-scan, On-chip Debugging support and programming, three
flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial
programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit
ADC with optional differential input stage with programmable gain (TQFP package only),
a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six
software selectable power saving modes. The Idle mode stops the CPU while allowing
the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and
interrupt system to continue functioning. The Power-down mode saves the register con-
tents but freezes the Oscillator, disabling all other chip functions until the next External
Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues
to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchro-
nous Timer and ADC, to minimize switching noise during ADC conversions. In Standby
mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption. In Extended
Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega16 is
a powerful microcontroller that provides a highly-flexible and cost-effective solution to
many embedded control applications.

The ATmega16 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers have symmetrical drive characteristics with both high sink and source capability.
When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-stated when
a reset condition becomes active, even if the clock is not running.
4 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega16 as listed
on page 58.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running. If the JTAG interface is
enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be acti-
vated even if a reset occurs.

Port C also serves the functions of the JTAG interface and other special features of the
ATmega16 as listed on page 61.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega16 as listed
on page 63.

RESET Reset Input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 38. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter.

AREF AREF is the analog reference pin for the A/D Converter.
5
2466N–AVR–10/06

Resources A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.
6 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
About Code
Examples

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C Compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.
7
2466N–AVR–10/06

AVR CPU Core

Introduction This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Architectural Overview Figure 3. Block Diagram of the AVR MCU Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
– with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File – in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ir
e
ct

 A
d
d
re

ss
in

g

In
d
ir
e
ct

 A
d
d
re

ss
in

g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n
8 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
global interrupt enable bit in the Status Register. All interrupts have a separate interrupt
vector in the interrupt vector table. The interrupts have priority in accordance with their
interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, $20 - $5F.

ALU – Arithmetic Logic
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

Status Register The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
9
2466N–AVR–10/06

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.
10 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
General Purpose
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register Low Byte

R27 $1B X-register High Byte

R28 $1C Y-register Low Byte

R29 $1D Y-register High Byte

R30 $1E Z-register Low Byte

R31 $1F Z-register High Byte
11
2466N–AVR–10/06

The X-register, Y-register and
Z-register

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the Instruction Set
Reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer. If software reads the Program Counter
from the Stack after a call or an interrupt, unused bits (15:13) should be masked out.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call or interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when data is popped from the Stack with return
from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

15 XH XL 0

X - register 7 0 7 0

R27 ($1B) R26 ($1A)

15 YH YL 0

Y - register 7 0 7 0

R29 ($1D) R28 ($1C)

15 ZH ZL 0

Z - register 7 0 7 0

R31 ($1F) R30 ($1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
12 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Instruction Execution
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation

Reset and Interrupt
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
reset vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 262 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 45.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INT0

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
13
2466N–AVR–10/06

– the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Register
(GICR). Refer to “Interrupts” on page 45 for more information. The Reset Vector can
also be moved to the start of the boot Flash section by programming the BOOTRST
Fuse, see “Boot Loader Support – Read-While-Write Self-Programming” on page 249.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding Interrupt Flag(s) will be set and remembered until the global interrupt enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */
14 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

sei ; set global interrupt enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
15
2466N–AVR–10/06

AVR ATmega16

Memories
This section describes the different memories in the ATmega16. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega16 features an EEPROM Memory for data storage. All three mem-
ory spaces are linear and regular.

In-System
Reprogrammable Flash
Program Memory

The ATmega16 contains 16K bytes On-chip In-System Reprogrammable Flash memory
for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is orga-
nized as 8K x 16. For software security, the Flash Program memory space is divided
into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega16 Program Counter (PC) is 13 bits wide, thus addressing the 8K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support – Read-
While-Write Self-Programming” on page 249. “Memory Programming” on page 262 con-
tains a detailed description on Flash data serial downloading using the SPI pins or the
JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM – Load Program Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 13.

Figure 8. Program Memory Map

$0000

$1FFF

Application Flash Section

Boot Flash Section
16 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
SRAM Data Memory Figure 9 shows how the ATmega16 SRAM Memory is organized.

The lower 1120 Data Memory locations address the Register File, the I/O Memory, and
the internal data SRAM. The first 96 locations address the Register File and I/O Mem-
ory, and the next 1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, and the 1024 bytes of inter-
nal data SRAM in the ATmega16 are all accessible through all these addressing modes.
The Register File is described in “General Purpose Register File” on page 11.

Figure 9. Data Memory Map

Register File

R0
R1
R2

R29
R30
R31

I/O Registers
$00
$01
$02

...

$3D
$3E
$3F

...

$0000
$0001
$0002

$001D
$001E
$001F

$0020
$0021
$0022

...

$005D
$005E
$005F

...

Data Address Space

$0060
$0061

$045E
$045F

...

Internal SRAM
17
2466N–AVR–10/06

Data Memory Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkCPU cycles as described in Figure
10.

Figure 10. On-chip Data SRAM Access Cycles

EEPROM Data Memory The ATmega16 contains 512 bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG, and Parallel data downloading to the EEPROM,
see page 276, page 281, and page 265, respectively.

EEPROM Read/Write Access The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, VCC is likely to rise or fall slowly on Power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
22 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

clk

WR

RD

Data

Data

Address Address Valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction
18 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The EEPROM Address
Register – EEARH and EEARL

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM address
in the 512 bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 511. The initial value of EEAR is undefined. A proper value must be writ-
ten before the EEPROM may be accessed.

The EEPROM Data Register –
EEDR

• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

The EEPROM Control Register
– EECR

• Bits 7..4 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
19
2466N–AVR–10/06

When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support – Read-While-Write Self-Programming” on
page 249 for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM Access, the EEAR or EEDR reGister will be
modified, causing the interrupted EEPROM Access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal – EERE – is the read strobe to the EEPROM. When
the correct address is set up in the EEAR Register, the EERE bit must be written to a
logic one to trigger the EEPROM read. The EEPROM read access takes one instruction,
and the requested data is available immediately. When the EEPROM is read, the CPU
is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Symbol
Number of Calibrated RC

Oscillator Cycles(1) Typ Programming Time

EEPROM write (from CPU) 8448 8.5 ms
20 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by dis-
abling interrupts globally) so that no interrupts will occur during execution of these
functions. The examples also assume that no Flash Boot Loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any
ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

21
2466N–AVR–10/06

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

EEPROM Write During Power-
down Sleep Mode

When entering Power-down Sleep mode while an EEPROM write operation is active,
the EEPROM write operation will continue, and will complete before the Write Access
time has passed. However, when the write operation is completed, the Oscillator contin-
ues running, and as a consequence, the device does not enter Power-down entirely. It is
therefore recommended to verify that the EEPROM write operation is completed before
entering Power-down.

Preventing EEPROM
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

22 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
EEPROM data corrupt ion can easi ly be avoided by fo l lowing th is design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low VCC Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

I/O Memory The I/O space definition of the ATmega16 is shown in “Register Summary” on page 334.

All ATmega16 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the I/O space. I/O Registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the Instruction Set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O Registers as
data space using LD and ST instructions, $20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters $00 to $1F only.

The I/O and Peripherals Control Registers are explained in later sections.
23
2466N–AVR–10/06

System Clock and
Clock Options

Clock Systems and their
Distribution

Figure 11 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 32. The clock systems
are detailed Figure 11.

Figure 11. Clock Distribution

CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clkI/O is halted, enabling TWI address recep-
tion in all sleep modes.

Flash Clock – clkFLASH The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

General I/O
Modules

Asynchronous
Timer/Counter

ADC CPU Core RAM

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

clkADC

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog Clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External RC
Oscillator

External Clock
24 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Asynchronous Timer Clock –
clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode.

ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from Reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 3. The frequency of the Watchdog Oscil-
lator is voltage dependent as shown in “ATmega16 Typical Characteristics” on page
302.

Default Clock Source The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source
setting is therefore the 1 MHz Internal RC Oscillator with longest startup time. This
default setting ensures that all users can make their desired clock source setting using
an In-System or Parallel Programmer.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 12. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operat-
ing in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.

Table 2. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1010

External Low-frequency Crystal 1001

External RC Oscillator 1000 - 0101

Calibrated Internal RC Oscillator 0100 - 0001

External Clock 0000

Table 3. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)
25
2466N–AVR–10/06

This mode has a limited frequency range and it can not be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 12. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 4.

Note: 1. This option should not be used with crystals, only with ceramic resonators.

Table 4. Crystal Oscillator Operating Modes

CKOPT CKSEL3..1
 Frequency Range

(MHz)
Recommended Range for Capacitors
C1 and C2 for Use with Crystals (pF)

1 101(1) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 ≤ 12 - 22

XTAL2

XTAL1

GND

C2

C1
26 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 5.

Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

0 00 258 CK(1) 4.1 ms
Ceramic resonator, fast
rising power

0 01 258 CK(1) 65 ms
Ceramic resonator, slowly
rising power

0 10 1K CK(2) –
Ceramic resonator, BOD
enabled

0 11 1K CK(2) 4.1 ms
Ceramic resonator, fast
rising power

1 00 1K CK(2) 65 ms
Ceramic resonator, slowly
rising power

1 01 16K CK –
Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1 ms
Crystal Oscillator, fast
rising power

1 11 16K CK 65 ms
Crystal Oscillator, slowly
rising power
27
2466N–AVR–10/06

Low-frequency Crystal
Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
quency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001”. The
crystal should be connected as shown in Figure 12. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTAL2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 6.

Note: 1. These options should only be used if frequency stability at start-up is not important
for the application.

External RC Oscillator For timing insensitive applications, the external RC configuration shown in Figure 13
can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should
be at least 22 pF. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND, thereby removing the need for an external
capacitor. For more information on Oscillator operation and details on how to choose R
and C, refer to the External RC Oscillator application note.

Figure 13. External RC Configuration

The Oscillator can operate in four different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..0 as shown in
Table 7.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 1K CK(1) 4.1 ms Fast rising power or BOD enabled

01 1K CK(1) 65 ms Slowly rising power

10 32K CK 65 ms Stable frequency at start-up

11 Reserved

Table 7. External RC Oscillator Operating Modes

 CKSEL3..0 Frequency Range (MHz)

0101 0.1 ≤ 0.9

XTAL2

XTAL1

GND
C

R

VCC

NC
28 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 8.

Note: 1. This option should not be used when operating close to the maximum frequency of
the device.

Calibrated Internal RC
Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All
frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During Reset, hardware loads the calibration
byte into the OSCCAL Register and thereby automatically calibrates the RC Oscillator.
At 5V, 25°C and 1.0 MHz Oscillator frequency selected, this calibration gives a fre-
quency within ± 3% of the nominal frequency. Using calibration methods as described in
application notes available at www.atmel.com/avr it is possible to achieve ±1% accuracy
at any given VCC and Temperature. When this Oscillator is used as the Chip Clock, the
Watchdog Oscillator will still be used for the Watchdog Timer and for the reset time-out.
For more information on the pre-programmed calibration value, see the section “Calibra-
tion Byte” on page 264.

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 10. XTAL1 and XTAL2 should be left unconnected (NC).

0110 0.9 - 3.0

0111 3.0 - 8.0

1000 8.0 - 12.0

Table 8. Start-up Times for the External RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 18 CK – BOD enabled

01 18 CK 4.1 ms Fast rising power

10 18 CK 65 ms Slowly rising power

11 6 CK(1) 4.1 ms Fast rising power or BOD enabled

Table 7. External RC Oscillator Operating Modes

 CKSEL3..0 Frequency Range (MHz)

Table 9. Internal Calibrated RC Oscillator Operating Modes

 CKSEL3..0 Nominal Frequency (MHz)

0001(1) 1.0

0010 2.0

0011 4.0

0100 8.0
29
2466N–AVR–10/06

Note: 1. The device is shipped with this option selected.

Oscillator Calibration Register
– OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove pro-
cess variations from the Oscillator frequency. This is done automatically during Chip
Reset. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the Internal Oscillator. Writing
$FF to the register gives the highest available frequency. The calibrated Oscillator is
used to time EEPROM and Flash access. If EEPROM or Flash is written, do not cali-
brate to more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash
write may fail. Note that the Oscillator is intended for calibration to 1.0, 2.0, 4.0, or
8.0 MHz. Tuning to other values is not guaranteed, as indicated in Table 11.

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10(1) 6 CK 65 ms Slowly rising power

11 Reserved

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 11. Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequency in Percentage of

Nominal Frequency (%)
Max Frequency in Percentage of

Nominal Frequency (%)

$00 50 100

$7F 75 150

$FF 100 200
30 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 14. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000”. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND.

Figure 14. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 12.

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in reset during such changes in the clock
frequency.

Timer/Counter Oscillator For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the
crystal is connected directly between the pins. No external capacitors are needed. The
Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock source to TOSC1 is not recommended.
Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency

Oscillator and the internal capacitors have the same nominal value of 36 pF.

Table 12. Start-up Times for the External Clock Selection

SUT1..0

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK – BOD enabled

01 6 CK 4.1 ms Fast rising power

10 6 CK 65 ms Slowly rising power

11 Reserved

EXTERNAL
CLOCK
SIGNAL
31
2466N–AVR–10/06

Power Management
and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the
MCUCR Register select which sleep mode (Idle, ADC Noise Reduction, Power-down,
Power-save, Standby, or Extended Standby) will be activated by the SLEEP instruction.
See Table 13 for a summary. If an enabled interrupt occurs while the MCU is in a sleep
mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the
start-up time, it executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a Reset occurs during sleep mode, the MCU wakes
up and executes from the Reset Vector.

Figure 11 on page 24 presents the different clock systems in the ATmega16, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

MCU Control Register –
MCUCR

The MCU Control Register contains control bits for power management.

• Bits 7, 5, 4 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13.

Note: 1. Standby mode and Extended Standby mode are only available with external crystals
or resonators.

• Bit 6 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

Bit 7 6 5 4 3 2 1 0

SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Extended Standby(1)
32 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-
wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue
operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the other
clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register – ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

ADC Noise Reduction
Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External Inter-
rupts, the Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog
to continue operating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clk-

FLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart form the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface Address Match Inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External level
interrupt on INT0 or INT1, or an external interrupt on INT2 can wake up the MCU from
ADC Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the External
interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, an External level interrupt on INT0 or
INT1, or an External interrupt on INT2 can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 68 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
Fuses that define the reset time-out period, as described in “Clock Sources” on page 25.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
f low or Output Compare event from Timer/Counter2 i f the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable
bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is rec-
ommended instead of Power-save mode because the contents of the registers in the
33
2466N–AVR–10/06

Asynchronous Timer should be considered undefined after wake-up in Power-save
mode if AS2 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asyn-
chronous modules, including Timer/Counter2 if clocked asynchronously.

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

Extended Standby Mode When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Extended Standby mode. This mode is
identical to Power-save mode with the exception that the Oscillator is kept running.
From Extended Standby mode, the device wakes up in six clock cycles..

Notes: 1. External Crystal or resonator selected as clock source.
2. If AS2 bit in ASSR is set.
3. Only INT2 or level interrupt INT1 and INT0.

Table 14. Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Active Clock domains Oscillators Wake-up Sources

Sleep
Mode clkCPU clkFLASH clkIO clkADC clkASY

Main Clock
Source Enabled

Timer Osc.
Enabled

INT2
INT1
INT0

TWI
Address
Match

Timer
2

SPM /
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X

ADC
Noise
Redu-
ction

X X X X(2) X(3) X X X X

Power
Down

X(3) X

Power
Save

X(2) X(2) X(3) X X(2)

Standby(1) X X(3) X

Exten-
ded
Standby(1)

X(2) X X(2) X(3) X X(2)
34 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Minimizing Power
Consumption

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

Analog to Digital Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog to Digital Con-
verter” on page 205 for details on ADC operation.

Analog Comparator When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In the
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 202 for details on how to configure the Analog Comparator.

Brown-out Detector If the Brown-out Detector is not needed in the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all
sleep modes, and hence, always consume power. In the deeper sleep modes, this will
contribute significantly to the total current consumption. Refer to “Brown-out Detection”
on page 40 for details on how to configure the Brown-out Detector.

Internal Voltage Reference The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tor, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 42 for details on the
start-up time.

Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 42 for details on how
to configure the Watchdog Timer.

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power.
The most important thing is then to ensure that no pins drive resistive loads. In sleep
modes where the both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the
input buffers of the device will be disabled. This ensures that no power is consumed by
the input logic when not needed. In some cases, the input logic is needed for detecting
wake-up conditions, and it will then be enabled. Refer to the section “Digital Input
Enable and Sleep Modes” on page 54 for details on which pins are enabled. If the input
buffer is enabled and the input signal is left floating or have an analog signal level close
to VCC/2, the input buffer will use excessive power.
35
2466N–AVR–10/06

JTAG Interface and
On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power
down or Power save sleep mode, the main clock source remains enabled. In these
sleep modes, this will contribute significantly to the total current consumption. There are
three alternative ways to avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP
controller is not shifting data. If the hardware connected to the TDO pin does not pull up
the logic level, power consumption will increase. Note that the TDI pin for the next
device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the
JTAG interface.
36 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
System Control and
Reset

Resetting the AVR During Reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
– absolute jump – instruction to the reset handling routine. If the program never enables
an interrupt source, the Interrupt Vectors are not used, and regular program code can
be placed at these locations. This is also the case if the Reset Vector is in the Applica-
tion section while the Interrupt Vectors are in the Boot section or vice versa. The circuit
diagram in Figure 15 shows the reset logic. Table 15 defines the electrical parameters of
the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
Internal Reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the
CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 25.

Reset Sources The ATmega16 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the
Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 229 for details.
37
2466N–AVR–10/06

Figure 15. Reset Logic

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT
(falling).

2. VBOT may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to VCC = VBOT during the
production test. This guarantees that a Brown-out Reset will occur before VCC drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 1 for ATmega16L and BODLEVEL = 0 for
ATmega16. BODLEVEL = 1 is not applicable for ATmega16.

Table 15. Reset Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset
Threshold Voltage (rising)

1.4 2.3 V

Power-on Reset
Threshold Voltage
(falling)(1)

1.3 2.3 V

VRST
 RESET Pin Threshold
Voltage

0.1 VCC 0.9VCC V

tRST
Minimum pulse width on
RESET Pin

1.5 µs

VBOT

Brown-out Reset
Threshold Voltage(2)

BODLEVEL = 1 2.5 2.7 3.2
V

BODLEVEL = 0 3.6 4.0 4.5

tBOD

Minimum low voltage
period for Brown-out
Detection

BODLEVEL = 1 2 µs

BODLEVEL = 0 2 µs

VHYST
Brown-out Detector
hysteresis

50 mV

MCU Control and Status
Register (MCUCSR)

BODEN
BODLEVEL

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

JTAG Reset
Register

Watchdog
Oscillator

SUT[1:0]

Watchdog
Timer

Reset Circuit

Brown-out
Reset Circuit

Power-on
Reset Circuit

IN
T

E
R

N
A

L
R

E
S

E
T

C
O

U
N

T
E

R
 R

E
S

E
T

38 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 15. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after VCC rise. The RESET signal is activated
again, without any delay, when VCC decreases below the detection level.

Figure 16. MCU Start-up, RESET Tied to VCC.

Figure 17. MCU Start-up, RESET Extended Externally

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC
39
2466N–AVR–10/06

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 15) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay
counter starts the MCU after the Time-out period tTOUT has expired.

Figure 18. External Reset During Operation

Brown-out Detection ATmega16 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and VCC decreases to a value below the trigger level
(VBOT- in Figure 19), the Brown-out Reset is immediately activated. When VCC increases
above the trigger level (VBOT+ in Figure 19), the delay counter starts the MCU after the
Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 15.

Figure 19. Brown-out Reset During Operation

CC

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT
40 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 42 for details on operation of the Watchdog Timer.

Figure 20. Watchdog Reset During Operation

MCU Control and Status
Register – MCUCSR

The MCU Control and Status Register provides information on which reset source
caused an MCU Reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then reset the MCUCSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

CK

CC

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
41
2466N–AVR–10/06

Internal Voltage
Reference

ATmega16 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC. The
2.56V reference to the ADC is generated from the internal bandgap reference.

Voltage Reference Enable
Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 16. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1
MHz. This is the typical value at VCC = 5V. See characterization data for typical values at
other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 17 on page 43. The WDR – Watchdog Reset
– instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega16 resets and executes from the Reset Vector. For timing
details on the Watchdog Reset, refer to page 41.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be
followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer
Control Register for details.

Figure 21. Watchdog Timer

Table 16. Internal Voltage Reference Characteristics

Symbol Parameter Min Typ Max Units

VBG Bandgap reference voltage 1.15 1.23 1.4 V

tBG Bandgap reference start-up time 40 70 µs

IBG Bandgap reference current consumption 10 µA

WATCHDOG
OSCILLATOR
42 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Watchdog Timer Control
Register – WDTCR

• Bits 7..5 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 4 – WDTOE: Watchdog Turn-off Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure.

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDTOE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

1. In the same operation, write a logic one to WDTOE and WDE. A logic one must
be written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 17.

Bit 7 6 5 4 3 2 1 0

– – – WDTOE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT
Oscillator Cycles

Typical Time-out
at VCC = 3.0V

Typical Time-out
at VCC = 5.0V

0 0 0 16K (16,384) 17.1 ms 16.3 ms

0 0 1 32K (32,768) 34.3 ms 32.5 ms

0 1 0 64K (65,536) 68.5 ms 65 ms

0 1 1 128K (131,072) 0.14 s 0.13 s

1 0 0 256K (262,144) 0.27 s 0.26 s

1 0 1 512K (524,288) 0.55 s 0.52 s

1 1 0 1,024K (1,048,576) 1.1 s 1.0 s

1 1 1 2,048K (2,097,152) 2.2 s 2.1 s
43
2466N–AVR–10/06

The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (for example by disabling
interrupts globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

WDT_off:

; Reset WDT

WDR

; Write logical one to WDTOE and WDE

in r16, WDTCR

ori r16, (1<<WDTOE)|(1<<WDE)

out WDTCR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCR, r16

ret

C Code Example

void WDT_off(void)

{

/* Reset WDT*/

_WDR();

/* Write logical one to WDTOE and WDE */

WDTCR |= (1<<WDTOE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}

44 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Interrupts This section describes the specifics of the interrupt handling as performed in
ATmega16. For a general explanation of the AVR interrupt handling, refer to “Reset and
Interrupt Handling” on page 13.

Interrupt Vectors in
ATmega16

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support – Read-While-Write Self-Programming”
on page 249.

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the
Boot Flash section. The address of each Interrupt Vector will then be the address in
this table added to the start address of the Boot Flash section.

Table 19 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa.

Table 18. Reset and Interrupt Vectors

Vector No.
Program

Address(2) Source Interrupt Definition

1 $000(1) RESET External Pin, Power-on Reset, Brown-out
Reset, Watchdog Reset, and JTAG AVR
Reset

2 $002 INT0 External Interrupt Request 0

3 $004 INT1 External Interrupt Request 1

4 $006 TIMER2 COMP Timer/Counter2 Compare Match

5 $008 TIMER2 OVF Timer/Counter2 Overflow

6 $00A TIMER1 CAPT Timer/Counter1 Capture Event

7 $00C TIMER1 COMPA Timer/Counter1 Compare Match A

8 $00E TIMER1 COMPB Timer/Counter1 Compare Match B

9 $010 TIMER1 OVF Timer/Counter1 Overflow

10 $012 TIMER0 OVF Timer/Counter0 Overflow

11 $014 SPI, STC Serial Transfer Complete

12 $016 USART, RXC USART, Rx Complete

13 $018 USART, UDRE USART Data Register Empty

14 $01A USART, TXC USART, Tx Complete

15 $01C ADC ADC Conversion Complete

16 $01E EE_RDY EEPROM Ready

17 $020 ANA_COMP Analog Comparator

18 $022 TWI Two-wire Serial Interface

19 $024 INT2 External Interrupt Request 2

20 $026 TIMER0 COMP Timer/Counter0 Compare Match

21 $028 SPM_RDY Store Program Memory Ready
45
2466N–AVR–10/06

Note: 1. The Boot Reset Address is shown in Table 100 on page 260. For the BOOTRST
Fuse “1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATmega16 is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

$006 jmp TIM2_COMP ; Timer2 Compare Handler

$008 jmp TIM2_OVF ; Timer2 Overflow Handler

$00A jmp TIM1_CAPT ; Timer1 Capture Handler

$00C jmp TIM1_COMPA ; Timer1 CompareA Handler

$00E jmp TIM1_COMPB ; Timer1 CompareB Handler

$010 jmp TIM1_OVF ; Timer1 Overflow Handler

$012 jmp TIM0_OVF ; Timer0 Overflow Handler

$014 jmp SPI_STC ; SPI Transfer Complete Handler

$016 jmp USART_RXC ; USART RX Complete Handler

$018 jmp USART_UDRE ; UDR Empty Handler

$01A jmp USART_TXC ; USART TX Complete Handler

$01C jmp ADC ; ADC Conversion Complete Handler

$01E jmp EE_RDY ; EEPROM Ready Handler

$020 jmp ANA_COMP ; Analog Comparator Handler

$022 jmp TWSI ; Two-wire Serial Interface Handler

$024 jmp EXT_INT2 ; IRQ2 Handler

$026 jmp TIM0_COMP ; Timer0 Compare Handler

$028 jmp SPM_RDY ; Store Program Memory Ready Handler

;

$02A RESET: ldi r16,high(RAMEND) ; Main program start

$02B out SPH,r16 ; Set Stack Pointer to top of RAM

$02C ldi r16,low(RAMEND)

$02D out SPL,r16

$02E sei ; Enable interrupts

$02F <instr> xxx

...

Table 19. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset address Interrupt Vectors Start Address

1 0 $0000 $0002

1 1 $0000 Boot Reset Address + $0002

0 0 Boot Reset Address $0002

0 1 Boot Reset Address Boot Reset Address + $0002
46 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and
the IVSEL bit in the GICR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

$000 RESET: ldi r16,high(RAMEND) ; Main program start

$001 out SPH,r16 ; Set Stack Pointer to top of RAM

$002 ldi r16,low(RAMEND)

$003 out SPL,r16

$004 sei ; Enable interrupts

$005 <instr> xxx

;

.org $1C02

$1C02 jmp EXT_INT0 ; IRQ0 Handler

$1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

$1C28 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $002

$002 jmp EXT_INT0 ; IRQ0 Handler

$004 jmp EXT_INT1 ; IRQ1 Handler

... ;

$028 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org $1C00
$1C00 RESET: ldi r16,high(RAMEND) ; Main program start

$1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

$1C02 ldi r16,low(RAMEND)

$1C03 out SPL,r16

$1C04 sei ; Enable interrupts

$1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the
IVSEL bit in the GICR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $1C00
$1C00 jmp RESET ; Reset handler
$1C02 jmp EXT_INT0 ; IRQ0 Handler

$1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

$1C28 jmp SPM_RDY ; Store Program Memory Ready Handler

;

$1C2A RESET: ldi r16,high(RAMEND) ; Main program start

$1C2B out SPH,r16 ; Set Stack Pointer to top of RAM

$1C2C ldi r16,low(RAMEND)

$1C2D out SPL,r16

$1C2E sei ; Enable interrupts

$1C2F <instr> xxx
47
2466N–AVR–10/06

Moving Interrupts Between
Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector
table.

General Interrupt Control
Register – GICR

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the interrupt vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support – Read-While-Write Self-Programming” on page 249 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.
Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-

grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support – Read-While-Write Self-Programming” on page 249
for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below

Bit 7 6 5 4 3 2 1 0

INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
48 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
.

Assembly Code Example

Move_interrupts:

; Enable change of interrupt vectors

ldi r16, (1<<IVCE)

out GICR, r16

; Move interrupts to boot Flash section

ldi r16, (1<<IVSEL)

out GICR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of interrupt vectors */

GICR = (1<<IVCE);

/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL);

}

49
2466N–AVR–10/06

I/O Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
VCC and Ground as indicated in Figure 22. Refer to “Electrical Characteristics” on page
294 for a complete list of parameters.

Figure 22. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case
“x” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. i.e., PORTB3 for bit no. 3 in Port B, here documented generally as
PORTxn. The physical I/O Registers and bit locations are listed in “Register Description
for I/O Ports” on page 66.

Three I/O memory address locations are allocated for each port, one each for the Data
Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. In addition, the Pull-up Disable – PUD bit in SFIOR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on
page 51. Most port pins are multiplexed with alternate functions for the peripheral fea-
tures on the device. How each alternate function interferes with the port pin is described
in “Alternate Port Functions” on page 55. Refer to the individual module sections for a
full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure 23
"General Digital I/O" for

Details

Pxn
50 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Ports as General Digital
I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 23 shows a
functional description of one I/O-port pin, here generically called Pxn.

Figure 23. General Digital I/O(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

Configuring the Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Register Description for I/O Ports” on page 66, the DDxn bits are accessed at the DDRx
I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx
I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when a
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O
51
2466N–AVR–10/06

enabled state is fully acceptable, as a high-impedant environment will not notice the dif-
ference between a strong high driver and a pull-up. If this is not the case, the PUD bit in
the SFIOR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 20 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 23, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
24 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min
respectively.

Figure 24. Synchronization when Reading an Externally Applied Pin Value

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the

Table 20. Port Pin Configurations

DDxn PORTxn
PUD

(in SFIOR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

SYSTEM CLK

INSTRUCTIONS

SYNC LATCH

PINxn

r17

in r17, PINx

0xFF0x00

tpd, max

XXXXXX

tpd, min
52 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
succeeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a
single signal transition on the pin will be delayed between ½ and 1½ system clock
period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 25. The out instruction sets the “SYNC LATCH” signal at the positive
edge of the clock. In this case, the delay tpd through the synchronizer is one system
clock period.

Figure 25. Synchronization when Reading a Software Assigned Pin Value

nop in r17, PINx

0xFF

0x00 0xFF

tpd

out PORTx, r16

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
53
2466N–AVR–10/06

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep
Modes

As shown in Figure 23, the digital input signal can be clamped to ground at the input of
the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, Standby mode, and Extended
Standby mode to avoid high power consumption if some input signals are left floating, or
have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External
Interrupt Request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 55.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
External Interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned sleep modes, as the clamping in these sleep
modes produces the requested logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example(1)

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
54 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Unconnected pins If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to VCC or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.

Alternate Port Functions Most port pins have alternate functions in addition to being General Digital I/Os. Figure
26 shows how the port pin control signals from the simplified Figure 23 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 26. Alternate Port Functions(1)

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O
55
2466N–AVR–10/06

Table 21 summarizes the function of the overriding signals. The pin and port indexes
from Figure 26 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.

Table 21. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by
the PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when
PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is
controlled by the DDOV signal. If this signal is cleared,
the Output driver is enabled by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled
when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled,
the port value is controlled by the PVOV signal. If
PVOE is cleared, and the Output Driver is enabled, the
port Value is controlled by the PORTxn Register bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV,
regardless of the setting of the PORTxn Register bit.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by
the DIEOV signal. If this signal is cleared, the Digital
Input Enable is determined by MCU-state (Normal
Mode, sleep modes).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled
when DIEOV is set/cleared, regardless of the MCU
state (Normal Mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the
schmitt trigger but before the synchronizer. Unless the
Digital Input is used as a clock source, the module with
the alternate function will use its own synchronizer.

AIO Analog Input/ output This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad,
and can be used bi-directionally.
56 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Special Function I/O Register
– SFIOR

• Bit 2 – PUD: Pull-up disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn
and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).
See “Configuring the Pin” on page 51 for more details about this feature.

Alternate Functions of Port A Port A has an alternate function as analog input for the ADC as shown in Table 22. If
some Port A pins are configured as outputs, it is essential that these do not switch when
a conversion is in progress. This might corrupt the result of the conversion.

Table 23 and Table 24 relate the alternate functions of Port A to the overriding signals
shown in Figure 26 on page 55.

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7 ADC7 (ADC input channel 7)

PA6 ADC6 (ADC input channel 6)

PA5 ADC5 (ADC input channel 5)

PA4 ADC4 (ADC input channel 4)

PA3 ADC3 (ADC input channel 3)

PA2 ADC2 (ADC input channel 2)

PA1 ADC1 (ADC input channel 1)

PA0 ADC0 (ADC input channel 0)

Table 23. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/ADC7 PA6/ADC6 PA5/ADC5 PA4/ADC4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT
57
2466N–AVR–10/06

Alternate Functions of Port B The Port B pins with alternate functions are shown in Table 25.

The alternate pin configuration is as follows:

• SCK – Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB7.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB7. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTB7 bit.

• MISO – Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is
enabled as a Master, this pin is configured as an input regardless of the setting of
DDB6. When the SPI is enabled as a Slave, the data direction of this pin is controlled by

Table 24. Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PA0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 25. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

PB3
AIN1 (Analog Comparator Negative Input)
OC0 (Timer/Counter0 Output Compare Match Output)

PB2
AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PB0
T0 (Timer/Counter0 External Counter Input)

XCK (USART External Clock Input/Output)
58 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
DDB6. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTB6 bit.

• MOSI – Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a Slave, this pin is configured as an input regardless of the setting of DDB5.
When the SPI is enabled as a Master, the data direction of this pin is controlled by
DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be con-
trolled by the PORTB5 bit.

• SS – Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDB4. As a Slave, the SPI is activated when this pin is
driven low. When the SPI is enabled as a Master, the data direction of this pin is con-
trolled by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still be
controlled by the PORTB4 bit.

• AIN1/OC0 – Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the inter-
nal pull-up switched off to avoid the digital port function from interfering with the function
of the analog comparator.

OC0, Output Compare Match output: The PB3 pin can serve as an external output for
the Timer/Counter0 Compare Match. The PB3 pin has to be configured as an output
(DDB3 set (one)) to serve this function. The OC0 pin is also the output pin for the PWM
mode timer function.

• AIN0/INT2 – Port B, Bit 2

AIN0, Analog Comparator Positive input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of
the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt
source to the MCU.

• T1 – Port B, Bit 1

T1, Timer/Counter1 Counter Source.

• T0/XCK – Port B, Bit 0

T0, Timer/Counter0 Counter Source.

XCK, USART External Clock. The Data Direction Register (DDB0) controls whether the
clock is output (DDB0 set) or input (DDB0 cleared). The XCK pin is active only when the
USART operates in Synchronous mode.

Table 26 and Table 27 relate the alternate functions of Port B to the overriding signals
shown in Figure 26 on page 55. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.
59
2466N–AVR–10/06

Table 26. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name PB7/SCK PB6/MISO PB5/MOSI PB4/SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB7 • PUD PORTB6 • PUD PORTB5 • PUD PORTB4 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPI SS

AIO – – – –

Table 27. Overriding Signals for Alternate Functions in PB3..PB0

Signal
Name PB3/OC0/AIN1 PB2/INT2/AIN0 PB1/T1 PB0/T0/XCK

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0 ENABLE 0 0 UMSEL

PVOV OC0 0 0 XCK OUTPUT

DIEOE 0 INT2 ENABLE 0 0

DIEOV 0 1 0 0

DI – INT2 INPUT T1 INPUT XCK INPUT/T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –
60 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Alternate Functions of Port C The Port C pins with alternate functions are shown in Table 28. If the JTAG interface is
enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be acti-
vated even if a reset occurs.

The alternate pin configuration is as follows:

• TOSC2 – Port C, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PC7 is disconnected from the port, and
becomes the inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an I/O pin.

• TOSC1 – Port C, Bit 6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PC6 is disconnected from the port, and
becomes the input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator
is connected to this pin, and the pin can not be used as an I/O pin.

• TDI – Port C, Bit 5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin.

• TDO – Port C, Bit 4

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Regis-
ter. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

The TD0 pin is tri-stated unless TAP states that shifts out data are entered.

• TMS – Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O
pin.

Table 28. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 TOSC2 (Timer Oscillator Pin 2)

PC6 TOSC1 (Timer Oscillator Pin 1)

PC5 TDI (JTAG Test Data In)

PC4 TDO (JTAG Test Data Out)

PC3 TMS (JTAG Test Mode Select)

PC2 TCK (JTAG Test Clock)

PC1 SDA (Two-wire Serial Bus Data Input/Output Line)

PC0 SCL (Two-wire Serial Bus Clock Line)
61
2466N–AVR–10/06

• TCK – Port C, Bit 2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

• SDA – Port C, Bit 1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PC1 is disconnected from the port and
becomes the Serial Data I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation. When this pin is used by
the Two-wire Serial Interface, the pull-up can still be controlled by the PORTC1 bit.

• SCL – Port C, Bit 0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PC0 is disconnected from the port and
becomes the Serial Clock I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation. When this pin is used by
the Two-wire Serial Interface, the pull-up can still be controlled by the PORTC0 bit.

Table 29 and Table 30 relate the alternate functions of Port C to the overriding signals
shown in Figure 26 on page 55.

Table 29. Overriding Signals for Alternate Functions in PC7..PC4

Signal
Name PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO

PUOE AS2 AS2 JTAGEN JTAGEN

PUOV 0 0 1 0

DDOE AS2 AS2 JTAGEN JTAGEN

DDOV 0 0 0 SHIFT_IR + SHIFT_DR

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

DIEOE AS2 AS2 JTAGEN JTAGEN

DIEOV 0 0 0 0

DI – – – –

AIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI –
62 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output
pins PC0 and PC1. This is not shown in the figure. In addition, spike filters are con-
nected between the AIO outputs shown in the port figure and the digital logic of the
TWI module.

Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 31.

The alternate pin configuration is as follows:

• OC2 – Port D, Bit 7

OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an
external output for the Timer/Counter2 Output Compare. The pin has to be configured
as an output (DDD7 set (one)) to serve this function. The OC2 pin is also the output pin
for the PWM mode timer function.

• ICP1 – Port D, Bit 6

ICP1 – Input Capture Pin: The PD6 pin can act as an Input Capture pin for
Timer/Counter1.

Table 30. Overriding Signals for Alternate Functions in PC3..PC0(1)

Signal
Name PC3/TMS PC2/TCK PC1/SDA PC0/SCL

PUOE JTAGEN JTAGEN TWEN TWEN

PUOV 1 1 PORTC1 • PUD PORTC0 • PUD

DDOE JTAGEN JTAGEN TWEN TWEN

DDOV 0 0 SDA_OUT SCL_OUT

PVOE 0 0 TWEN TWEN

PVOV 0 0 0 0

DIEOE JTAGEN JTAGEN 0 0

DIEOV 0 0 0 0

DI – – – –

AIO TMS TCK SDA INPUT SCL INPUT

Table 31. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 OC2 (Timer/Counter2 Output Compare Match Output)

PD6 ICP1 (Timer/Counter1 Input Capture Pin)

PD5 OC1A (Timer/Counter1 Output Compare A Match Output)

PD4 OC1B (Timer/Counter1 Output Compare B Match Output)

PD3 INT1 (External Interrupt 1 Input)

PD2 INT0 (External Interrupt 0 Input)

PD1 TXD (USART Output Pin)

PD0 RXD (USART Input Pin)
63
2466N–AVR–10/06

• OC1A – Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output
for the Timer/Counter1 Output Compare A. The pin has to be configured as an output
(DDD5 set (one)) to serve this function. The OC1A pin is also the output pin for the
PWM mode timer function.

• OC1B – Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output
for the Timer/Counter1 Output Compare B. The pin has to be configured as an output
(DDD4 set (one)) to serve this function. The OC1B pin is also the output pin for the
PWM mode timer function.

• INT1 – Port D, Bit 3

INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt
source.

• INT0 – Port D, Bit 2

INT0, External Interrupt Source 0: The PD2 pin can serve as an external interrupt
source.

• TXD – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

• RXD – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is
enabled this pin is configured as an input regardless of the value of DDD0. When the
USART forces this pin to be an input, the pull-up can still be controlled by the PORTD0
bit.

Table 32 and Table 33 relate the alternate functions of Port D to the overriding signals
shown in Figure 26 on page 55.

Table 32. Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/OC2 PD6/ICP1 PD5/OC1A PD4/OC1B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE

PVOV OC2 0 OC1A OC1B

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – ICP1 INPUT – –

AIO – – – –
64 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)

Table 33. Overriding Signals for Alternate Functions in PD3..PD0

Signal Name PD3/INT1 PD2/INT0 PD1/TXD PD0/RXD

PUOE 0 0 TXEN RXEN

PUOV 0 0 0 PORTD0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE 0 0 TXEN 0

PVOV 0 0 TXD 0

DIEOE INT1 ENABLE INT0 ENABLE 0 0

DIEOV 1 1 0 0

DI INT1 INPUT INT0 INPUT – RXD

AIO – – – –
65
2466N–AVR–10/06

Register Description for
I/O Ports

Port A Data Register – PORTA

Port A Data Direction Register
– DDRA

Port A Input Pins Address –
PINA

Port B Data Register – PORTB

Port B Data Direction Register
– DDRB

Port B Input Pins Address –
PINB

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
66 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Port C Data Register – PORTC

Port C Data Direction Register
– DDRC

Port C Input Pins Address –
PINC

Port D Data Register – PORTD

Port D Data Direction Register
– DDRD

Port D Input Pins Address –
PIND

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
67
2466N–AVR–10/06

External Interrupts The External Interrupts are triggered by the INT0, INT1, and INT2 pins. Observe that, if
enabled, the interrupts will trigger even if the INT0..2 pins are configured as outputs.
This feature provides a way of generating a software interrupt. The external interrupts
can be triggered by a falling or rising edge or a low level (INT2 is only an edge triggered
interrupt). This is set up as indicated in the specification for the MCU Control Register –
MCUCR – and MCU Control and Status Register – MCUCSR. When the external inter-
rupt is enabled and is configured as level triggered (only INT0/INT1), the interrupt will
trigger as long as the pin is held low. Note that recognition of falling or rising edge inter-
rupts on INT0 and INT1 requires the presence of an I/O clock, described in “Clock
Systems and their Distribution” on page 24. Low level interrupts on INT0/INT1 and the
edge interrupt on INT2 are detected asynchronously. This implies that these interrupts
can be used for waking the part also from sleep modes other than Idle mode. The I/O
clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog Oscillator
clock. The period of the Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The
frequency of the Watchdog Oscillator is voltage dependent as shown in “Electrical Char-
acteristics” on page 294. The MCU will wake up if the input has the required level during
this sampling or if it is held until the end of the start-up time. The start-up time is defined
by the SUT Fuses as described in “System Clock and Clock Options” on page 24. If the
level is sampled twice by the Watchdog Oscillator clock but disappears before the end
of the start-up time, the MCU will still wake up, but no interrupt will be generated. The
required level must be held long enough for the MCU to complete the wake up to trigger
the level interrupt.

MCU Control Register –
MCUCR

The MCU Control Register contains control bits for interrupt sense control and general
MCU functions.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the
corresponding interrupt mask in the GICR are set. The level and edges on the external
INT1 pin that activate the interrupt are defined in Table 34. The value on the INT1 pin is
sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last
longer than one clock period will generate an interrupt. Shorter pulses are not guaran-
teed to generate an interrupt. If low level interrupt is selected, the low level must be held
until the completion of the currently executing instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 34. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.
68 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the
corresponding interrupt mask are set. The level and edges on the external INT0 pin that
activate the interrupt are defined in Table 35. The value on the INT0 pin is sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer
than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt.

MCU Control and Status
Register – MCUCSR

• Bit 6 – ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG
I-bit and the corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a
falling edge on INT2 activates the interrupt. If ISC2 is written to one, a rising edge on
INT2 activates the interrupt. Edges on INT2 are registered asynchronously. Pulses on
INT2 wider than the minimum pulse width given in Table 36 will generate an interrupt.
Shorter pulses are not guaranteed to generate an interrupt. When changing the ISC2
bit, an interrupt can occur. Therefore, it is recommended to first disable INT2 by clearing
its Interrupt Enable bit in the GICR Register. Then, the ISC2 bit can be changed. Finally,
the INT2 Interrupt Flag should be cleared by writing a logical one to its Interrupt Flag bit
(INTF2) in the GIFR Register before the interrupt is re-enabled.

General Interrupt Control
Register – GICR

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and

Table 35. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Table 36. Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT
Minimum pulse width for
asynchronous external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

INT1 INT0 INT2 – – – IVSEL IVCE GICR

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
69
2466N–AVR–10/06

ISC10) in the MCU General Control Register (MCUCR) define whether the External
Interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from the INT1 inter-
rupt Vector.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU General Control Register (MCUCR) define whether the External
Interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INT0 inter-
rupt vector.

• Bit 5 – INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU
Control and Status Register (MCUCSR) defines whether the External Interrupt is acti-
vated on rising or falling edge of the INT2 pin. Activity on the pin will cause an interrupt
request even if INT2 is configured as an output. The corresponding interrupt of External
Interrupt Request 2 is executed from the INT2 Interrupt Vector.

General Interrupt Flag
Register – GIFR

• Bit 7 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1
becomes set (one). If the I-bit in SREG and the INT1 bit in GICR are set (one), the MCU
will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt
routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INT1 is configured as a level interrupt.

• Bit 6 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0
becomes set (one). If the I-bit in SREG and the INT0 bit in GICR are set (one), the MCU
will jump to the corresponding interrupt vector. The flag is cleared when the interrupt
routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INT0 is configured as a level interrupt.

• Bit 5 – INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one).
If the I-bit in SREG and the INT2 bit in GICR are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. Note that when enter-
ing some sleep modes with the INT2 interrupt disabled, the input buffer on this pin will
be disabled. This may cause a logic change in internal signals which will set the INTF2
Flag. See “Digital Input Enable and Sleep Modes” on page 54 for more information.

Bit 7 6 5 4 3 2 1 0

INTF1 INTF0 INTF2 – – – – – GIFR

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
70 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
8-bit Timer/Counter0
with PWM

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module.
The main features are:
• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0)

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 27. For the
actual placement of I/O pins, refer to “Pinout ATmega16” on page 2. CPU accessible I/O
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the “8-bit Timer/Counter Register Description” on
page 83.

Figure 27. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT0) and Output Compare Register (OCR0) are 8-bit registers.
Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer
Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since
these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the T0 pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkT0).

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

BOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCRn

TCCRn

Clock Select

Tn
Edge

Detector

(From Prescaler)

clkTn

TOP

OCn
(Int.Req.)
71
2466N–AVR–10/06

The double buffered Output Compare Register (OCR0) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the wave-
form generator to generate a PWM or variable frequency output on the Output Compare
Pin (OC0). See “Output Compare Unit” on page 73. for details. The compare match
event will also set the Compare Flag (OCF0) which can be used to generate an output
compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 0. However, when using the
register or bit defines in a program, the precise form must be used i.e., TCNT0 for
accessing Timer/Counter0 counter value and so on.

The definitions in Table 37 are also used extensively throughout the document.

Timer/Counter Clock
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the clock select logic which is controlled by the clock select
(CS02:0) bits located in the Timer/Counter Control Register (TCCR0). For details on
clock sources and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on
page 87.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 28 shows a block diagram of the counter and its surroundings.

Figure 28. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

TOP Signalize that TCNT0 has reached maximum value.

Table 37. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR0 Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int. Req.)

Clock Select

TOP

Tn
Edge

Detector

(From Prescaler)

clkTn

BOTTOM

direction

clear
72 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
BOTTOM Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkT0). clkT0 can be generated from an external or internal
clock source, selected by the Clock Select bits (CS02:0). When no clock source is
selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed
by the CPU, regardless of whether clkT0 is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits
located in the Timer/Counter Control Register (TCCR0). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OC0. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 76.

The Timer/Counter Overflow (TOV0) Flag is set according to the mode of operation
selected by the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

Output Compare Unit The 8-bit comparator continuously compares TCNT0 with the Output Compare Register
(OCR0). Whenever TCNT0 equals OCR0, the comparator signals a match. A match will
set the Output Compare Flag (OCF0) at the next timer clock cycle. If enabled (OCIE0 =
1 and Global Interrupt Flag in SREG is set), the Output Compare Flag generates an out-
put compare interrupt. The OCF0 Flag is automatically cleared when the interrupt is
executed. Alternatively, the OCF0 Flag can be cleared by software by writing a logical
one to its I/O bit location. The waveform generator uses the match signal to generate an
output according to operating mode set by the WGM01:0 bits and Compare Output
mode (COM01:0) bits. The max and bottom signals are used by the waveform generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 76.).

Figure 29 shows a block diagram of the output compare unit.

Figure 29. Output Compare Unit, Block Diagram

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCn

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom
73
2466N–AVR–10/06

The OCR0 Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR0 Compare Register to either top or bottom of the counting sequence. The synchro-
nization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR0 Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR0 Buffer Register, and if double
buffering is disabled the CPU will access the OCR0 directly.

Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC0) bit. Forcing compare
match will not set the OCF0 Flag or reload/clear the timer, but the OC0 pin will be
updated as if a real compare match had occurred (the COM01:0 bits settings define
whether the OC0 pin is set, cleared or toggled).

Compare Match Blocking by
TCNT0 Write

All CPU write operations to the TCNT0 Register will block any compare match that
occur in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR0 to be initialized to the same value as TCNT0 without triggering an interrupt when
the Timer/Counter clock is enabled.

Using the Output Compare
Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT0 when using the output
compare unit, independently of whether the Timer/Counter is running or not. If the value
written to TCNT0 equals the OCR0 value, the compare match will be missed, resulting
in incorrect waveform generation. Similarly, do not write the TCNT0 value equal to BOT-
TOM when the counter is downcounting.

The setup of the OC0 should be performed before setting the Data Direction Register for
the port pin to output. The easiest way of setting the OC0 value is to use the Force Out-
put Compare (FOC0) strobe bits in Normal mode. The OC0 Register keeps its value
even when changing between waveform generation modes.

Be aware that the COM01:0 bits are not double buffered together with the compare
value. Changing the COM01:0 bits will take effect immediately.

Compare Match Output
Unit

The Compare Output mode (COM01:0) bits have two functions. The Waveform Genera-
tor uses the COM01:0 bits for defining the Output Compare (OC0) state at the next
compare match. Also, the COM01:0 bits control the OC0 pin output source. Figure 30
shows a simplified schematic of the logic affected by the COM01:0 bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general I/O port Control Registers (DDR and PORT) that are affected by the COM01:0
bits are shown. When referring to the OC0 state, the reference is for the internal OC0
Register, not the OC0 pin. If a System Reset occur, the OC0 Register is reset to “0”.
74 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 30. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0) from the
Waveform Generator if either of the COM01:0 bits are set. However, the OC0 pin direc-
tion (input or output) is still controlled by the Data Direction Register (DDR) for the port
pin. The Data Direction Register bit for the OC0 pin (DDR_OC0) must be set as output
before the OC0 value is visible on the pin. The port override function is independent of
the Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC0 state before
the output is enabled. Note that some COM01:0 bit settings are reserved for certain
modes of operation. See “8-bit Timer/Counter Register Description” on page 83.

Compare Output Mode and
Waveform Generation

The Waveform Generator uses the COM01:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM01:0 = 0 tells the waveform generator that no
action on the OC0 Register is to be performed on the next compare match. For compare
output actions in the non-PWM modes refer to Table 39 on page 84. For fast PWM
mode, refer to Table 40 on page 84, and for phase correct PWM refer to Table 41 on
page 84.

A change of the COM01:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC0 strobe bits.

PORT

DDR

D Q

D Q

OCn
PinOCn

D Q
Waveform
Generator

COMn1

COMn0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
75
2466N–AVR–10/06

Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM01:0) and
Compare Output mode (COM01:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM01:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM01:0 bits control whether the output
should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 74.).

For detailed timing information refer to Figure 34, Figure 35, Figure 36 and Figure 37 in
“Timer/Counter Timing Diagrams” on page 81.

Normal Mode The simplest mode of operation is the normal mode (WGM01:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The TOV0
Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However,
combined with the timer overflow interrupt that automatically clears the TOV0 Flag, the
timer resolution can be increased by software. There are no special cases to consider in
the normal mode, a new counter value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using
the output compare to generate waveforms in Normal mode is not recommended, since
this will occupy too much of the CPU time.

Clear Timer on Compare
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0 Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNT0) matches the OCR0. The OCR0 defines the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 31. The counter value
(TCNT0) increases until a compare match occurs between TCNT0 and OCR0, and then
counter (TCNT0) is cleared.

Figure 31. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF0 Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM

TCNTn

OCn
(Toggle)

OCn Interrupt Flag Set

1 4Period 2 3

(COMn1:0 = 1)
76 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written
to OCR0 is lower than the current value of TCNT0, the counter will miss the compare
match. The counter will then have to count to its maximum value (0xFF) and wrap
around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC0 output can be set to toggle its
logical level on each compare match by setting the Compare Output mode bits to toggle
mode (COM01:0 = 1). The OC0 value will not be visible on the port pin unless the data
direction for the pin is set to output. The waveform generated will have a maximum fre-
quency of fOC0 = fclk_I/O/2 when OCR0 is set to zero (0x00). The waveform frequency is
defined by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC0) is cleared on the compare match between TCNT0 and OCR0, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that use dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 32. The TCNT0 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0
slopes represent compare matches between OCR0 and TCNT0.

fOCn
fclk_I/O

2 N 1 OCRn+()⋅ ⋅
---=
77
2466N–AVR–10/06

Figure 32. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0
pin. Setting the COM01:0 bits to 2 will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM01:0 to 3 (See Table 40 on page 84).
The actual OC0 value will only be visible on the port pin if the data direction for the port
pin is set as output. The PWM waveform is generated by setting (or clearing) the OC0
Register at the compare match between OCR0 and TCNT0, and clearing (or setting) the
OC0 Register at the timer clock cycle the counter is cleared (changes from MAX to
BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represents special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR0 is set equal to BOTTOM, the
output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0 equal
to MAX will result in a constantly high or low output (depending on the polarity of the out-
put set by the COM01:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC0 to toggle its logical level on each compare match (COM01:0 = 1). The
waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0 is
set to zero. This feature is similar to the OC0 toggle in CTC mode, except the double
buffer feature of the output compare unit is enabled in the fast PWM mode.

TCNTn

OCRn Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Interrupt Flag Set

4 5 6 7

fOCnPWM
fclk_I/O

N 256⋅
------------------=
78 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Phase Correct PWM Mode The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC0)
is cleared on the compare match between TCNT0 and OCR0 while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase
correct PWM mode the counter is incremented until the counter value matches MAX.
When the counter reaches MAX, it changes the count direction. The TCNT0 value will
be equal to MAX for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 33. The TCNT0 value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes repre-
sent compare matches between OCR0 and TCNT0.

Figure 33. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOT-
TOM. The Interrupt Flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC0 pin. Setting the COM01:0 bits to 2 will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM01:0 to 3 (see Table 41 on
page 84). The actual OC0 value will only be visible on the port pin if the data direction
for the port pin is set as output. The PWM waveform is generated by clearing (or setting)
the OC0 Register at the compare match between OCR0 and TCNT0 when the counter
increments, and setting (or clearing) the OC0 Register at compare match between

TOVn Interrupt Flag Set

OCn Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Update
79
2466N–AVR–10/06

OCR0 and TCNT0 when the counter decrements. The PWM frequency for the output
when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0 Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR0 is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of Period 2 in Figure 33 OCn has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match:

• OCR0A changes its value from MAX, like in Figure 33. When the OCR0A value is
MAX the OCn pin value is the same as the result of a down-counting Compare
Match. To ensure symmetry around BOTTOM the OCn value at MAX must be
correspond to the result of an up-counting Compare Match.

• The Timer starts counting from a value higher than the one in OCR0A, and for that
reason misses the Compare Match and hence the OCn change that would have
happened on the way up.

fOCnPCPWM
fclk_I/O

N 510⋅
------------------=
80 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Timer/Counter Timing
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set. Figure 34 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 34. Timer/Counter Timing Diagram, no Prescaling

Figure 35 shows the same timing data, but with the prescaler enabled.

Figure 35. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 36 shows the setting of OCF0 in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
81
2466N–AVR–10/06

Figure 36. Timer/Counter Timing Diagram, Setting of OCF0, with Prescaler (fclk_I/O/8)

Figure 37 shows the setting of OCF0 and the clearing of TCNT0 in CTC mode.

Figure 37. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with
Prescaler (fclk_I/O/8)

OCFn

OCRn

TCNTn

OCRn Value

OCRn - 1 OCRn OCRn + 1 OCRn + 2

clkI/O

clkTn
(clkI/O/8)

OCFn

OCRn

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
82 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
8-bit Timer/Counter
Register Description

Timer/Counter Control
Register – TCCR0

• Bit 7 – FOC0: Force Output Compare

The FOC0 bit is only active when the WGM00 bit specifies a non-PWM mode. However,
for ensuring compatibility with future devices, this bit must be set to zero when TCCR0 is
written when operating in PWM mode. When writing a logical one to the FOC0 bit, an
immediate compare match is forced on the Waveform Generation unit. The OC0 output
is changed according to its COM01:0 bits setting. Note that the FOC0 bit is implemented
as a strobe. Therefore it is the value present in the COM01:0 bits that determines the
effect of the forced compare.

A FOC0 strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR0 as TOP.

The FOC0 bit is always read as zero.

• Bit 3, 6 – WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of Waveform Generation to be used. Modes of
operation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Com-
pare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See
Table 38 and “Modes of Operation” on page 76.

Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 def-
initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode

These bits control the Output Compare pin (OC0) behavior. If one or both of the
COM01:0 bits are set, the OC0 output overrides the normal port functionality of the I/O
pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OC0 pin must be set in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 TCCR0

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 38. Waveform Generation Mode Bit Description(1)

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter Mode
of Operation TOP

Update of
OCR0

TOV0 Flag
Set-on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0 Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX
83
2466N–AVR–10/06

When OC0 is connected to the pin, the function of the COM01:0 bits depends on the
WGM01:0 bit setting. Table 39 shows the COM01:0 bit functionality when the WGM01:0
bits are set to a normal or CTC mode (non-PWM).

Table 40 shows the COM01:0 bit functionality when the WGM01:0 bits are set to fast
PWM mode.

Note: 1. A special case occurs when OCR0 equals TOP and COM01 is set. In this case, the
compare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode”
on page 77 for more details.

Table 41 shows the COM01:0 bit functionality when the WGM01:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR0 equals TOP and COM01 is set. In this case, the
compare match is ignored, but the set or clear is done at TOP. See “Phase Correct
PWM Mode” on page 79 for more details.

Table 39. Compare Output Mode, non-PWM Mode

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Toggle OC0 on compare match

1 0 Clear OC0 on compare match

1 1 Set OC0 on compare match

Table 40. Compare Output Mode, Fast PWM Mode(1)

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Reserved

1 0 Clear OC0 on compare match, set OC0 at BOTTOM,
(non-inverting mode)

1 1 Set OC0 on compare match, clear OC0 at BOTTOM,
(inverting mode)

Table 41. Compare Output Mode, Phase Correct PWM Mode(1)

COM01 COM00 Description

0 0 Normal port operation, OC0 disconnected.

0 1 Reserved

1 0 Clear OC0 on compare match when up-counting. Set OC0 on compare
match when downcounting.

1 1 Set OC0 on compare match when up-counting. Clear OC0 on compare
match when downcounting.
84 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Timer/Counter Register –
TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNT0) while
the counter is running, introduces a risk of missing a compare match between TCNT0
and the OCR0 Register.

Output Compare Register –
OCR0

The Output Compare Register contains an 8-bit value that is continuously compared
with the counter value (TCNT0). A match can be used to generate an output compare
interrupt, or to generate a waveform output on the OC0 pin.

Timer/Counter Interrupt Mask
Register – TIMSK

• Bit 1 – OCIE0: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is

Table 42. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR0[7:0] OCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
85
2466N–AVR–10/06

executed if a compare match in Timer/Counter0 occurs, i.e., when the OCF0 bit is set in
the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR.

Timer/Counter Interrupt Flag
Register – TIFR

• Bit 1 – OCF0: Output Compare Flag 0

The OCF0 bit is set (one) when a compare match occurs between the Timer/Counter0
and the data in OCR0 – Output Compare Register0. OCF0 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, OCF0 is cleared by
writing a logic one to the flag. When the I-bit in SREG, OCIE0 (Timer/Counter0 Com-
pare Match Interrupt Enable), and OCF0 are set (one), the Timer/Counter0 Compare
Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE0
(Timer/Counter0 Overf low Interrupt Enable), and TOV0 are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is
set when Timer/Counter0 changes counting direction at $00.

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
86 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Timer/Counter0 and
Timer/Counter1
Prescalers

Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to
both Timer/Counter1 and Timer/Counter0.

Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 =
1). This provides the fastest operation, with a maximum Timer/Counter clock frequency
equal to system clock frequency (fCLK_I/O). Alternatively, one of four taps from the pres-
caler can be used as a clock source. The prescaled clock has a frequency of either
fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024.

Prescaler Reset The prescaler is free running, i.e., operates independently of the clock select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the pres-
caler is not affected by the Timer/Counter’s clock select, the state of the prescaler will
have implications for situations where a prescaled clock is used. One example of pres-
caling artifacts occurs when the timer is enabled and clocked by the prescaler (6 >
CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the
first count occurs can be from 1 to N+1 system clock cycles, where N equals the pres-
caler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program
execution. However, care must be taken if the other Timer/Counter that shares the
same prescaler also uses prescaling. A prescaler reset will affect the prescaler period
for all Timer/Counters it is connected to.

External Clock Source An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin syn-
chronization logic. The synchronized (sampled) signal is then passed through the edge
detector. Figure 38 shows a functional equivalent block diagram of the T1/T0 synchroni-
zation and edge detector logic. The registers are clocked at the positive edge of the
internal system clock (clkI/O). The latch is transparent in the high period of the internal
system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or neg-
ative (CSn2:0 = 6) edge it detects.

Figure 38. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system
clock cycles from an edge has been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for
at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock
pulse is generated.

Each half period of the external clock applied must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O
87
2466N–AVR–10/06

than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since
the edge detector uses sampling, the maximum frequency of an external clock it can
detect is half the sampling frequency (Nyquist sampling theorem). However, due to vari-
ation of the system clock frequency and duty cycle caused by Oscillator source (crystal,
resonator, and capacitors) tolerances, it is recommended that maximum frequency of an
external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 39. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 38.

Special Function IO Register –
SFIOR

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is written to one, the Timer/Counter1 and Timer/Counter0 prescaler will be
reset. The bit will be cleared by hardware after the operation is performed. Writing a
zero to this bit will have no effect. Note that Timer/Counter1 and Timer/Counter0 share
the same prescaler and a reset of this prescaler will affect both timers. This bit will
always be read as zero.

PSR10

Clear

clkT1 clkT0

T1

T0

clkI/O

Synchronization

Synchronization

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
88 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
16-bit
Timer/Counter1

The 16-bit Timer/Counter unit allows accurate program execution timing (event man-
agement), wave generation, and signal timing measurement. The main features are:
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two Independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

Overview Most register and bit references in this section are written in general form. A lower case
“n” replaces the Timer/Counter number, and a lower case “x” replaces the output com-
pare unit. However, when using the register or bit defines in a program, the precise form
must be used (i.e., TCNT1 for accessing Timer/Counter1 counter value and so on).

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 40. For the
actual placement of I/O pins, refer to Figure 1 on page 2. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device specific I/O Register and
bit locations are listed in the “16-bit Timer/Counter Register Description” on page 111.
89
2466N–AVR–10/06

Figure 40. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 25 on page 58, and Table 31 on page 63 for
Timer/Counter1 pin placement and description.

Registers The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture
Register (ICR1) are all 16-bit registers. Special procedures must be followed when
accessing the 16-bit registers. These procedures are described in the section “Access-
ing 16-bit Registers” on page 92. The Timer/Counter Control Registers (TCCR1A/B) are
8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to
Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK).
TIFR and TIMSK are not shown in the figure since these registers are shared by other
timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the T1 pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the clock select logic is
referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pin

Clock Select

Timer/Counter

D
AT

A
B

U
S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
90 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
(OC1A/B). See “Output Compare Units” on page 98. The compare match event will also
set the Compare Match Flag (OCF1A/B) which can be used to generate an output com-
pare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external
(edge triggered) event on either the Input Capture Pin (ICP1) or on the Analog Compar-
ator pins (See “Analog Comparator” on page 202.) The Input Capture unit includes a
digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be
defined by either the OCR1A Register, the ICR1 Register, or by a set of fixed values.
When using OCR1A as TOP value in a PWM mode, the OCR1A Register can not be
used for generating a PWM output. However, the TOP value will in this case be double
buffered allowing the TOP value to be changed in run time. If a fixed TOP value is
required, the ICR1 Register can be used as an alternative, freeing the OCR1A to be
used as PWM output.

Definitions The following definitions are used extensively throughout the document:

Compatibility The 16-bit Timer/Counter has been updated and improved from previous versions of the
16-bit AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier
version regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer
Interrupt Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt
Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register
location:

• PWM10 is changed to WGM10.

• PWM11 is changed to WGM11.

• CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• FOC1A and FOC1B are added to TCCR1A.

• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some
special cases.

Table 43. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Regis-
ter. The assignment is dependent of the mode of operation.
91
2466N–AVR–10/06

Accessing 16-bit
Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR
CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or
write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the
High byte of the 16-bit access. The same temporary register is shared between all 16-bit
registers within each 16-bit timer. Accessing the Low byte triggers the 16-bit read or
write operation. When the Low byte of a 16-bit register is written by the CPU, the High
byte stored in the temporary register, and the Low byte written are both copied into the
16-bit register in the same clock cycle. When the Low byte of a 16-bit register is read by
the CPU, the High byte of the 16-bit register is copied into the temporary register in the
same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the
OCR1A/B 16-bit registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit
read, the Low byte must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming
that no interrupts updates the temporary register. The same principle can be used
directly for accessing the OCR1A/B and ICR1 Registers. Note that when using “C”, the
compiler handles the 16-bit access.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an inter-
rupt occurs between the two instructions accessing the 16-bit register, and the interrupt
code updates the temporary register by accessing the same or any other of the 16-bit
Timer Registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary regis-
ter, the main code must disable the interrupts during the 16-bit access.

Assembly Code Example(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Example(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;
/* Read TCNT1 into i */

i = TCNT1;

...
92 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The following code examples show how to do an atomic read of the TCNT1 Register
contents. Reading any of the OCR1A/B or ICR1 Registers can be done by using the
same principle.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

93
2466N–AVR–10/06

The following code examples show how to do an atomic write of the TCNT1 Register
contents. Writing any of the OCR1A/B or ICR1 Registers can be done by using the
same principle.

Note: 1. See “About Code Examples” on page 7.

The assembly code example requires that the r17:r16 register pair contains the value to
be written to TCNT1.

Reusing the Temporary High
Byte Register

If writing to more than one 16-bit register where the High byte is the same for all regis-
ters written, then the High byte only needs to be written once. However, note that the
same rule of atomic operation described previously also applies in this case.

Timer/Counter Clock
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CS12:0) bits located in the Timer/Counter Control Register B (TCCR1B). For details on
clock sources and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on
page 87.

Assembly Code Example(1)

TIM16_WriteTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

out TCNT1H,r17

out TCNT1L,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1 (unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */

TCNT1 = i;

/* Restore global interrupt flag */

SREG = sreg;

}

94 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional
counter unit. Figure 41 shows a block diagram of the counter and its surroundings.

Figure 41. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High
(TCNT1H) containing the upper eight bits of the counter, and Counter Low (TCNT1L)
containing the lower 8 bits. The TCNT1H Register can only be indirectly accessed by
the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU
accesses the High byte temporary register (TEMP). The temporary register is updated
with the TCNT1H value when the TCNT1L is read, and TCNT1H is updated with the
temporary register value when TCNT1L is written. This allows the CPU to read or write
the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is impor-
tant to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described
in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkT1). The clkT1 can be generated from an external or
internal clock source, selected by the Clock Select bits (CS12:0). When no clock source
is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be
accessed by the CPU, independent of whether clkT1 is present or not. A CPU write over-
rides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode
bits (WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and
TCCR1B). There are close connections between how the counter behaves (counts) and
how waveforms are generated on the Output Compare outputs OC1x. For more details
about advanced counting sequences and waveform generation, see “Modes of Opera-
tion” on page 101.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation
selected by the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn
95
2466N–AVR–10/06

Input Capture Unit The Timer/Counter incorporates an Input Capture unit that can capture external events
and give them a time-stamp indicating time of occurrence. The external signal indicating
an event, or multiple events, can be applied via the ICP1 pin or alternatively, via the
Analog Comparator unit. The time-stamps can then be used to calculate frequency,
duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be
used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 42. The ele-
ments of the block diagram that are not directly a part of the Input Capture unit are gray
shaded. The small “n” in register and bit names indicates the Timer/Counter number.

Figure 42. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1),
alternatively on the Analog Comparator output (ACO), and this change confirms to the
setting of the edge detector, a capture will be triggered. When a capture is triggered, the
16-bit value of the counter (TCNT1) is written to the Input Capture Register (ICR1). The
Input Capture Flag (ICF1) is set at the same system clock as the TCNT1 value is copied
into ICR1 Register. If enabled (TICIE1 = 1), the Input Capture Flag generates an Input
Capture Interrupt. The ICF1 Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively the ICF1 Flag can be cleared by software by writing a logical one to
its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the
Low byte (ICR1L) and then the High byte (ICR1H). When the Low byte is read the High
byte is copied into the High byte temporary register (TEMP). When the CPU reads the
ICR1H I/O location it will access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that
utilizes the ICR1 Register for defining the counter’s TOP value. In these cases the
Waveform Generation mode (WGM13:0) bits must be set before the TOP value can be
written to the ICR1 Register. When writing the ICR1 Register the High byte must be writ-
ten to the ICR1H I/O location before the Low byte is written to ICR1L.

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
96 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
For more information on how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 92.

Input Capture Pin Source The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source
for the Input Capture unit. The Analog Comparator is selected as trigger source by set-
ting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control
and Status Register (ACSR). Be aware that changing trigger source can trigger a cap-
ture. The Input Capture Flag must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are
sampled using the same technique as for the T1 pin (Figure 38 on page 87). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic
is inserted before the edge detector, which increases the delay by four system clock
cycles. Note that the input of the noise canceler and edge detector is always enabled
unless the Timer/Counter is set in a waveform generation mode that uses ICR1 to
define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

Noise Canceler The noise canceler improves noise immunity by using a simple digital filtering scheme.
The noise canceler input is monitored over four samples, and all four must be equal for
changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit
in Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler intro-
duces additional four system clock cycles of delay from a change applied to the input, to
the update of the ICR1 Register. The noise canceler uses the system clock and is there-
fore not affected by the prescaler.

Using the Input Capture Unit The main challenge when using the Input Capture unit is to assign enough processor
capacity for handling the incoming events. The time between two events is critical. If the
processor has not read the captured value in the ICR1 Register before the next event
occurs, the ICR1 will be overwritten with a new value. In this case the result of the cap-
ture will be incorrect.

When using the Input Capture Interrupt, the ICR1 Register should be read as early in
the interrupt handler routine as possible. Even though the Input Capture Interrupt has
relatively high priority, the maximum interrupt response time is dependent on the maxi-
mum number of clock cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution)
is actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed
after each capture. Changing the edge sensing must be done as early as possible after
the ICR1 Register has been read. After a change of the edge, the Input Capture Flag
(ICF1) must be cleared by software (writing a logical one to the I/O bit location). For
measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt
handler is used).
97
2466N–AVR–10/06

Output Compare Units The 16-bit comparator continuously compares TCNT1 with the Output Compare Regis-
ter (OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set
the Output Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x =
1), the Output Compare Flag generates an output compare interrupt. The OCF1x Flag is
automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag can
be cleared by software by writing a logical one to its I/O bit location. The Waveform Gen-
erator uses the match signal to generate an output according to operating mode set by
the Waveform Generation mode (WGM13:0) bits and Compare Output mode
(COM1x1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 101.)

A special feature of output compare unit A allows it to define the Timer/Counter TOP
value (i.e., counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the Waveform Generator.

Figure 43 shows a block diagram of the output compare unit. The small “n” in the regis-
ter and bit names indicates the device number (n = 1 for Timer/Counter1), and the “x”
indicates output compare unit (A/B). The elements of the block diagram that are not
directly a part of the output compare unit are gray shaded.

Figure 43. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR1x Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR1x Buffer Register, and if double
buffering is disabled the CPU will access the OCR1x directly. The content of the OCR1x

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
98 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNT1 and ICR1 Register). Therefore
OCR1x is not read via the High byte temporary register (TEMP). However, it is a good
practice to read the Low byte first as when accessing other 16-bit registers. Writing the
OCR1x Registers must be done via the TEMP Register since the compare of all 16 bits
is done continuously. The High byte (OCR1xH) has to be written first. When the High
byte I/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the Low byte (OCR1xL) is written to the lower eight bits, the High
byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 92.

Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC1x) bit. Forcing compare
match will not set the OCF1x Flag or reload/clear the timer, but the OC1x pin will be
updated as if a real compare match had occurred (the COM1x1:0 bits settings define
whether the OC1x pin is set, cleared or toggled).

Compare Match Blocking by
TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR1x to be
initialized to the same value as TCNT1 without triggering an interrupt when the
Timer/Counter clock is enabled.

Using the Output Compare
Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT1 when using any of the
output compare units, independent of whether the Timer/Counter is running or not. If the
value written to TCNT1 equals the OCR1x value, the compare match will be missed,
resulting in incorrect waveform generation. Do not write the TCNT1 equal to TOP in
PWM modes with variable TOP values. The compare match for the TOP will be ignored
and the counter will continue to 0xFFFF. Similarly, do not write the TCNT1 value equal
to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC1x value is to use the force
output compare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its
value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare
value. Changing the COM1x1:0 bits will take effect immediately.
99
2466N–AVR–10/06

Compare Match Output
Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Gener-
ator uses the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next
compare match. Secondly the COM1x1:0 bits control the OC1x pin output source. Fig-
ure 44 shows a simplified schematic of the logic affected by the COM1x1:0 bit setting.
The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of
the general I/O Port Control Registers (DDR and PORT) that are affected by the
COM1x1:0 bits are shown. When referring to the OC1x state, the reference is for the
internal OC1x Register, not the OC1x pin. If a System Reset occur, the OC1x Register is
reset to “0”.

Figure 44. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the
Waveform Generator if either of the COM1x1:0 bits are set. However, the OC1x pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as
output before the OC1x value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer
to Table 44, Table 45 and Table 46 for details.

The design of the output compare pin logic allows initialization of the OC1x state before
the output is enabled. Note that some COM1x1:0 bit settings are reserved for certain
modes of operation. See “16-bit Timer/Counter Register Description” on page 111.

The COM1x1:0 bits have no effect on the Input Capture unit.

Compare Output Mode and
Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no
action on the OC1x Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 44 on page 111. For fast
PWM mode refer to Table 45 on page 112, and for phase correct and phase and fre-
quency correct PWM refer to Table 46 on page 112.

A change of the COM1x1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC1x strobe bits.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
B

U
S

FOCnx

clkI/O
100 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the output compare
pins, is defined by the combination of the Waveform Generation mode (WGM13:0) and
Compare Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM1x1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM1x1:0 bits control whether the out-
put should be set, cleared or toggle at a compare match (See “Compare Match Output
Unit” on page 100.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 108.

Normal Mode The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero.
The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV1
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using
the output compare to generate waveforms in Normal mode is not recommended, since
this will occupy too much of the CPU time.

Clear Timer on Compare
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1
Register are used to manipulate the counter resolution. In CTC mode the counter is
cleared to zero when the counter value (TCNT1) matches either the OCR1A (WGM13:0
= 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 45. The counter value
(TCNT1) increases until a compare match occurs with either OCR1A or ICR1, and then
counter (TCNT1) is cleared.
101
2466N–AVR–10/06

Figure 45. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by
either using the OCF1A or ICF1 Flag according to the register used to define the TOP
value. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the
CTC mode does not have the double buffering feature. If the new value written to
OCR1A or ICR1 is lower than the current value of TCNT1, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (0xFFFF) and
wrap around starting at 0x0000 before the compare match can occur. In many cases
this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double
buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle
its logical level on each compare match by setting the compare output mode bits to tog-
gle mode (COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the
data direction for the pin is set to output (DDR_OC1A = 1). The waveform generated will
have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The
waveform frequency is defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5,6,7,14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x, and
set at BOTTOM. In inverting Compare Output mode output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct and phase and frequency
correct PWM modes that use dual-slope operation. This high frequency makes the fast
PWM mode well suited for power regulation, rectification, and DAC applications. High
frequency allows physically small sized external components (coils, capacitors), hence
reduces total system cost.

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=
102 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in
ICR1 (WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15). The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in Figure 46. The figure shows fast PWM mode when OCR1A or ICR1 is used to
define TOP. The TCNT1 value is in the timing diagram shown as a histogram for illus-
trating the single-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNT1 slopes represent compare
matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a com-
pare match occurs.

Figure 46. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In
addition the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set
when either OCR1A or ICR1 is used for defining the TOP value. If one of the interrupts
are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining
the TOP value. The ICR1 Register is not double buffered. This means that if ICR1 is
changed to a low value when the counter is running with none or a low prescaler value,
there is a risk that the new ICR1 value written is lower than the current value of TCNT1.

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
103
2466N–AVR–10/06

The result will then be that the counter will miss the compare match at the TOP value.
The counter will then have to count to the MAX value (0xFFFF) and wrap around start-
ing at 0x0000 before the compare match can occur. The OCR1A Register however, is
double buffered. This feature allows the OCR1A I/O location to be written anytime.
When the OCR1A I/O location is written the value written will be put into the OCR1A
Buffer Register. The OCR1A Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is
done at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By
using ICR1, the OCR1A Register is free to be used for generating a PWM output on
OC1A. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to 3 (See Table 44 on
page 111). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by
setting (or clearing) the OC1x Register at the compare match between OCR1x and
TCNT1, and clearing (or setting) the OC1x Register at the timer clock cycle the counter
is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCR1x equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1).
This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The wave-
form generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to
zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the dou-
ble buffer feature of the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 =
1,2,3,10, or 11) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is, like the phase and frequency correct PWM
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1
and OCR1x while upcounting, and set on the compare match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=
104 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches
either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the
value in ICR1 (WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter
has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 47. The figure shows phase correct PWM mode when OCR1A
or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be
set when a compare match occurs.

Figure 47. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOT-
TOM. When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or
ICF1 Flag is set accordingly at the same timer clock cycle as the OCR1x Registers are
updated with the double buffer value (at TOP). The Interrupt Flags can be used to gen-
erate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCR1x Registers are written. As the third period shown
in Figure 47 illustrates, changing the TOP actively while the Timer/Counter is running in
the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCR1x Register. Since the OCR1x update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
105
2466N–AVR–10/06

ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the
period will differ in length. The difference in length gives the unsymmetrical result on the
output.

It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on
the OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to 3 (See Table 44 on
page 111). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by set-
ting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1
when the counter increments, and clearing (or setting) the OC1x Register at compare
match between OCR1x and TCNT1 when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following
equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR1x is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11)
and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

Phase and Frequency Correct
PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency cor-
rect PWM mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency
correct PWM waveform generation option. The phase and frequency correct PWM
mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOT-
TOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Compare Output mode, the operation
is inverted. The dual-slope operation gives a lower maximum operation frequency com-
pared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct
PWM mode is the time the OCR1x Register is updated by the OCR1x Buffer Register,
(see Figure 47 and Figure 48).

The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM
resolution in bits can be calculated using the following equation:

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=
106 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A
(WGM13:0 = 9). The counter has then reached the TOP and changes the count direc-
tion. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing
diagram for the phase correct and frequency correct PWM mode is shown on Figure 48.
The figure shows phase and frequency correct PWM mode when OCR1A or ICR1 is
used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare
matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a com-
pare match occurs.

Figure 48. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the
OCR1x Registers are updated with the double buffer value (at BOTTOM). When either
OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag set when
TCNT1 has reached TOP. The Interrupt Flags can then be used to generate an interrupt
each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNT1 and the OCR1x.

As Figure 48 shows the output generated is, in contrast to the phase correct mode, sym-
metrical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length
of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and is therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By
using ICR1, the OCR1A Register is free to be used for generating a PWM output on
OC1A. However, if the base PWM frequency is actively changed by changing the TOP
value, using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In phase and frequency correct PWM mode, the compare units allow generation of
PWM waveforms on the OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-

OCRnx / TOP Update
and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
107
2466N–AVR–10/06

inverted PWM and an inverted PWM output can be generated by setting the COM1x1:0
to 3 (See Table on page 112). The actual OC1x value will only be visible on the port pin
if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is
generated by setting (or clearing) the OC1x Register at the compare match between
OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x
Register at compare match between OCR1x and TCNT1 when the counter decrements.
The PWM frequency for the output when using phase and frequency correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCR1x is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

Timer/Counter Timing
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set, and when the OCR1x Register is updated with the
OCR1x buffer value (only for modes utilizing double buffering). Figure 49 shows a timing
diagram for the setting of OCF1x.

Figure 49. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling

Figure 50 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
108 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 50. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 51 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag
at BOTTOM.

Figure 51. Timer/Counter Timing Diagram, no Prescaling

Figure 52 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O
109
2466N–AVR–10/06

Figure 52. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
110 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
16-bit Timer/Counter
Register Description

Timer/Counter1 Control
Register A – TCCR1A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B
respectively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A
output overrides the normal port functionality of the I/O pin it is connected to. If one or
both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal port
functionality of the I/O pin it is connected to. However, note that the Data Direction Reg-
ister (DDR) bit corresponding to the OC1A or OC1B pin must be set in order to enable
the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is
dependent of the WGM13:0 bits setting. Table 44 shows the COM1x1:0 bit functionality
when the WGM13:0 bits are set to a normal or a CTC mode (non-PWM).

Table 45 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the
fast PWM mode.

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 44. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 Toggle OC1A/OC1B on compare match

1 0 Clear OC1A/OC1B on compare match (Set
output to low level)

1 1 Set OC1A/OC1B on compare match (Set
output to high level)
111
2466N–AVR–10/06

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is
set. In this case the compare match is ignored, but the set or clear is done at BOT-
TOM. See “Fast PWM Mode” on page 102. for more details.

Table 46 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the
phase correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is
set. See “Phase Correct PWM Mode” on page 104. for more details.

• Bit 3 – FOC1A: Force Output Compare for Channel A

• Bit 2 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM
mode. However, for ensuring compatibility with future devices, these bits must be set to
zero when TCCR1A is written when operating in a PWM mode. When writing a logical
one to the FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform
Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits
setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is
the value present in the COM1x1:0 bits that determine the effect of the forced compare.

Table 45. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port
operation).

For all other WGM13:0 settings, normal port
operation, OCnA/OCnB disconnected.

1 0 Clear OC1A/OC1B on compare match, set
OC1A/OC1B at BOTTOM,
(non-inverting mode)

1 1 Set OC1A/OC1B on compare match, clear
OC1A/OC1B at BOTTOM,

(inverting mode)

Table 46. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM (1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 9 or 14: Toggle OCnA on
Compare Match, OCnB disconnected (normal
port operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on compare match when
up-counting. Set OC1A/OC1B on compare
match when downcounting.

1 1 Set OC1A/OC1B on compare match when up-
counting. Clear OC1A/OC1B on compare
match when downcounting.
112 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear
Timer on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 47. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare
match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See
“Modes of Operation” on page 101.)

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

Table 47. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10) Timer/Counter Mode of Operation TOP

Update of
OCR1x

TOV1 Flag Set
on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency Correct ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency Correct OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 Reserved – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP
113
2466N–AVR–10/06

Timer/Counter1 Control
Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise
Canceler is activated, the input from the Input Capture Pin (ICP1) is filtered. The filter
function requires four successive equal valued samples of the ICP1 pin for changing its
output. The Input Capture is therefore delayed by four Oscillator cycles when the Noise
Canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a cap-
ture event. When the ICES1 bit is written to zero, a falling (negative) edge is used as
trigger, and when the ICES1 bit is written to one, a rising (positive) edge will trigger the
capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied
into the Input Capture Register (ICR1). The event will also set the Input Capture Flag
(ICF1), and this can be used to cause an Input Capture Interrupt, if this interrupt is
enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in
the TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently
the Input Capture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit
must be written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Figure 49 and Figure 50.

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 48. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)
114 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Timer/Counter1 – TCNT1H
and TCNT1L

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and Low bytes are read and written simulta-
neously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit Registers” on page 92.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing
a compare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following
timer clock for all compare units.

Output Compare Register 1 A
– OCR1AH and OCR1AL

Output Compare Register 1 B
– OCR1BH and OCR1BL

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an output compare
interrupt, or to generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and Low
bytes are written simultaneously when the CPU writes to these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 92.

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Table 48. Clock Select Bit Description (Continued)

CS12 CS11 CS10 Description

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
115
2466N–AVR–10/06

Input Capture Register 1 –
ICR1H and ICR1L

The Input Capture is updated with the counter (TCNT1) value each time an event occurs
on the ICP1 pin (or optionally on the analog comparator output for Timer/Counter1). The
Input Capture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and Low bytes
are read simultaneously when the CPU accesses these registers, the access is per-
formed using an 8-bit temporary High Byte Register (TEMP). This temporary register is
shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 92.

Timer/Counter Interrupt Mask
Register – TIMSK(1)

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only
Timer1 bits are described in this section. The remaining bits are described in their
respective timer sections.

• Bit 5 – TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Counter1 Input Capture Interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 45.) is executed when the
ICF1 Flag, located in TIFR, is set.

• Bit 4 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Counter1 Output Compare A match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 45.) is executed when the
OCF1A Flag, located in TIFR, is set.

• Bit 3 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Counter1 Output Compare B match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 45.) is executed when the
OCF1B Flag, located in TIFR, is set.

• Bit 2 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Counter1 Overflow Interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 45.) is executed when the TOV1 Flag, located
in TIFR, is set.

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
116 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Timer/Counter Interrupt Flag
Register – TIFR

Note: This register contains flag bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer
sections.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture
Register (ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is
set when the counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alter-
natively, ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Out-
put Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is
executed. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 3 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Out-
put Compare Register B (OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is
executed. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 2 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC
modes, the TOV1 Flag is set when the timer overflows. Refer to Table 47 on page 113
for the TOV1 Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow interrupt vector is
executed. Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
117
2466N–AVR–10/06

8-bit Timer/Counter2
with PWM and
Asynchronous
Operation

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module.
The main features are:
• Single Compare unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
• Allows clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 53. For the
actual placement of I/O pins, refer to “Pinout ATmega16” on page 2. CPU accessible I/O
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O
Register and bit locations are listed in the “8-bit Timer/Counter Register Description” on
page 129.

Figure 53. 8-bit Timer/Counter Block Diagram

Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers.
Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers are
shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously
clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous
operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select
logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clkT2).

Timer/Counter

D
AT

A
B

U
S

=

TCNTn

Waveform
Generation

OCn

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCn
(Int.Req.)

Synchronization Unit

OCRn

TCCRn

ASSRn
Status flags

clkI/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clkI/O
118 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The double buffered Output Compare Register (OCR2) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the wave-
form generator to generate a PWM or variable frequency output on the Output Compare
Pin (OC2). See “Output Compare Unit” on page 120. for details. The compare match
event will also set the Compare Flag (OCF2) which can be used to generate an output
compare interrupt request.

Definitions Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 2. However, when using the
register or bit defines in a program, the precise form must be used (i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on). The definitions in Table 49 are also
used extensively throughout the document.

Timer/Counter Clock
Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O.
When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken
from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on
asynchronous operation, see “Asynchronous Status Register – ASSR” on page 132. For
details on clock sources and prescaler, see “Timer/Counter Prescaler” on page 135.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 54 shows a block diagram of the counter and its surrounding environment.

Figure 54. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

Table 49. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal
255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2 Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn
119
2466N–AVR–10/06

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkT2). clkT2 can be generated from an external or internal
clock source, selected by the Clock Select bits (CS22:0). When no clock source is
selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed
by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits
located in the Timer/Counter Control Register (TCCR2). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OC2. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 123.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation
selected by the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

Output Compare Unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2). Whenever TCNT2 equals OCR2, the comparator signals a match. A match will
set the Output Compare Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 =
1), the Output Compare Flag generates an output compare interrupt. The OCF2 Flag is
automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can
be cleared by software by writing a logical one to its I/O bit location. The waveform gen-
erator uses the match signal to generate an output according to operating mode set by
the WGM21:0 bits and Compare Output mode (COM21:0) bits. The max and bottom sig-
nals are used by the waveform generator for handling the special cases of the extreme
values in some modes of operation (“Modes of Operation” on page 123). Figure 55
shows a block diagram of the output compare unit.

Figure 55. Output Compare Unit, Block Diagram

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom
120 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The OCR2 Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR2 Compare Register to either top or bottom of the counting sequence. The synchro-
nization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR2 Buffer Register, and if double
buffering is disabled the CPU will access the OCR2 directly.

Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2) bit. Forcing compare
match will not set the OCF2 Flag or reload/clear the timer, but the OC2 pin will be
updated as if a real compare match had occurred (the COM21:0 bits settings define
whether the OC2 pin is set, cleared or toggled).

Compare Match Blocking by
TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR2 to be initialized to the same value as TCNT2 without triggering an interrupt when
the Timer/Counter clock is enabled.

Using the Output Compare
Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the output
compare unit, independently of whether the Timer/Counter is running or not. If the value
written to TCNT2 equals the OCR2 value, the compare match will be missed, resulting
in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOT-
TOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for
the port pin to output. The easiest way of setting the OC2 value is to use the Force Out-
put Compare (FOC2) strobe bit in Normal mode. The OC2 Register keeps its value even
when changing between Waveform Generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare
value. Changing the COM21:0 bits will take effect immediately.
121
2466N–AVR–10/06

Compare Match Output
Unit

The Compare Output mode (COM21:0) bits have two functions. The Waveform Genera-
tor uses the COM21:0 bits for defining the Output Compare (OC2) state at the next
compare match. Also, the COM21:0 bits control the OC2 pin output source. Figure 56
shows a simplified schematic of the logic affected by the COM21:0 bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general I/O Port Control Registers (DDR and PORT) that are affected by the COM21:0
bits are shown. When referring to the OC2 state, the reference is for the internal OC2
Register, not the OC2 pin.

Figure 56. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2) from the
waveform generator if either of the COM21:0 bits are set. However, the OC2 pin direc-
tion (input or output) is still controlled by the Data Direction Register (DDR) for the port
pin. The Data Direction Register bit for the OC2 pin (DDR_OC2) must be set as output
before the OC2 value is visible on the pin. The port override function is independent of
the Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC2 state before
the output is enabled. Note that some COM21:0 bit settings are reserved for certain
modes of operation. See “8-bit Timer/Counter Register Description” on page 129.

Compare Output Mode and
Waveform Generation

The waveform generator uses the COM21:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM21:0 = 0 tells the Waveform Generator that no
action on the OC2 Register is to be performed on the next compare match. For compare
output actions in the non-PWM modes refer to Table 51 on page 130. For fast PWM
mode, refer to Table 52 on page 130, and for phase correct PWM refer to Table 53 on
page 130.

A change of the COM21:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC2 strobe bits.

PORT

DDR

D Q

D Q

OCn
PinOCn

D Q
Waveform
Generator

COMn1

COMn0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
122 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the output compare
pins, is defined by the combination of the Waveform Generation mode (WGM21:0) and
Compare Output mode (COM21:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM21:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM21:0 bits control whether the output
should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 122.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 127.

Normal Mode The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2
Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However,
combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the
timer resolution can be increased by software. There are no special cases to consider in
the normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the output compare to generate waveforms in normal mode is not recommended, since
this will occupy too much of the CPU time.

Clear Timer on Compare
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the
counter value (TCNT2) matches the OCR2. The OCR2 defines the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 57. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2, and then
counter (TCNT2) is cleared.

Figure 57. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF2 Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing the TOP to a value close to BOT-
TOM when the counter is running with none or a low prescaler value must be done with

TCNTn

OCn
(Toggle)

OCn Interrupt Flag Set

1 4Period 2 3

(COMn1:0 = 1)
123
2466N–AVR–10/06

care since the CTC mode does not have the double buffering feature. If the new value
written to OCR2 is lower than the current value of TCNT2, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (0xFF) and wrap
around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its
logical level on each compare match by setting the Compare Output mode bits to toggle
mode (COM21:0 = 1). The OC2 value will not be visible on the port pin unless the data
direction for the pin is set to output. The waveform generated will have a maximum fre-
quency of fOC2 = fclk_I/O/2 when OCR2 is set to zero (0x00). The waveform frequency is
defined by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC2) is cleared on the compare match between TCNT2 and OCR2, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 58. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2
slopes represent compare matches between OCR2 and TCNT2.

Figure 58. Fast PWM Mode, Timing Diagram

fOCn
fclk_I/O

2 N 1 OCRn+()⋅ ⋅
---=

TCNTn

OCRn Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Interrupt Flag Set

4 5 6 7
124 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2
pin. Setting the COM21:0 bits to 2 will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM21:0 to 3 (see Table 52 on page 130).
The actual OC2 value will only be visible on the port pin if the data direction for the port
pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2
Register at the compare match between OCR2 and TCNT2, and clearing (or setting) the
OC2 Register at the timer clock cycle the counter is cleared (changes from MAX to
BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the
output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal
to MAX will result in a constantly high or low output (depending on the polarity of the out-
put set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2 to toggle its logical level on each compare match (COM21:0 = 1). The
waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set
to zero. This feature is similar to the OC2 toggle in CTC mode, except the double buffer
feature of the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC2)
is cleared on the compare match between TCNT2 and OCR2 while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the
counter reaches MAX, it changes the count direction. The TCNT2 value will be equal to
MAX for one timer clock cycle. The timing diagram for the phase correct PWM mode is
shown on Figure 59. The TCNT2 value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2 and TCNT2.

fOCnPWM
fclk_I/O

N 256⋅
------------------=
125
2466N–AVR–10/06

Figure 59. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOT-
TOM. The Interrupt Flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC2 pin. Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM21:0 to 3 (see Table 53 on
page 130). The actual OC2 value will only be visible on the port pin if the data direction
for the port pin is set as output. The PWM waveform is generated by clearing (or setting)
the OC2 Register at the compare match between OCR2 and TCNT2 when the counter
increments, and setting (or clearing) the OC2 Register at compare match between
OCR2 and TCNT2 when the counter decrements. The PWM frequency for the output
when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR2 is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of Period 2 in Figure 59 OCn has a transition from high to l ow even
though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that will give transition without Compare Match:

• OCR2A changes its value from Max, like in Figure 59. When the OCR2A value is
MAX the OCn pin value is the same as the result of a down-counting Compare
Match. To ensure symmetry around BOTTOM the OCn value at MAX must be
correspond the the result of an up-counting Compare Match.

TOVn Interrupt Flag Set

OCn Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Update

fOCnPCPWM
fclk_I/O

N 510⋅
------------------=
126 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• The Timer starts counting from a value higher than the one in OCR2A, and for that
reason misses the Compare Match and hence the OCn that would have happened
on the way up.

Timer/Counter Timing
Diagrams

The following figures show the Timer/Counter in Synchronous mode, and the timer clock
(clkT2) is therefore shown as a clock enable signal. In Asynchronous mode, clkI/O should
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when Interrupt Flags are set. Figure 60 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 60. Timer/Counter Timing Diagram, no Prescaling

Figure 61 shows the same timing data, but with the prescaler enabled.

Figure 61. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 62 shows the setting of OCF2 in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
127
2466N–AVR–10/06

Figure 62. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (fclk_I/O/8)

Figure 63 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

Figure 63. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with
Prescaler (fclk_I/O/8)

OCFn

OCRn

TCNTn

OCRn Value

OCRn - 1 OCRn OCRn + 1 OCRn + 2

clkI/O

clkTn
(clkI/O/8)

OCFn

OCRn

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
128 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
8-bit Timer/Counter
Register Description

Timer/Counter Control
Register – TCCR2

• Bit 7 – FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCR2 is
written when operating in PWM mode. When writing a logical one to the FOC2 bit, an
immediate compare match is forced on the waveform generation unit. The OC2 output is
changed according to its COM21:0 bits setting. Note that the FOC2 bit is implemented
as a strobe. Therefore it is the value present in the COM21:0 bits that determines the
effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR2 as TOP.

The FOC2 bit is always read as zero.

• Bit 3, 6 – WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of waveform generation to be used. Modes of oper-
ation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare
match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table
50 and “Modes of Operation” on page 123.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 def-
initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

• Bit 5:4 – COM21:0: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the
COM21:0 bits are set, the OC2 output overrides the normal port functionality of the I/O
pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to OC2 pin must be set in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 TCCR2

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 50. Waveform Generation Mode Bit Description(1)

Mode
WGM21
(CTC2)

WGM20
(PWM2)

Timer/Counter Mode of
Operation TOP

Update of
OCR2

TOV2 Flag
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2 Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX
129
2466N–AVR–10/06

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the
WGM21:0 bit setting. Table 51 shows the COM21:0 bit functionality when the WGM21:0
bits are set to a normal or CTC mode (non-PWM).

Table 52 shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast
PWM mode.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the
compare match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM
Mode” on page 124 for more details.

Table 53 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase
correct PWM mode
.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the
compare match is ignored, but the set or clear is done at TOP. See “Phase Correct
PWM Mode” on page 125 for more details.

Table 51. Compare Output Mode, non-PWM Mode

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Toggle OC2 on compare match

1 0 Clear OC2 on compare match

1 1 Set OC2 on compare match

Table 52. Compare Output Mode, Fast PWM Mode(1)

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on compare match, set OC2 at BOTTOM,
(non-inverting mode)

1 1 Set OC2 on compare match, clear OC2 at BOTTOM,

(inverting mode)

Table 53. Compare Output Mode, Phase Correct PWM Mode(1)

COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on compare match when up-counting. Set OC2 on compare
match when downcounting.

1 1 Set OC2 on compare match when up-counting. Clear OC2 on compare
match when downcounting.
130 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 54.

Timer/Counter Register –
TCNT2

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNT2) while
the counter is running, introduces a risk of missing a compare match between TCNT2
and the OCR2 Register.

Output Compare Register –
OCR2

The Output Compare Register contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an output compare
interrupt, or to generate a waveform output on the OC2 pin.

Table 54. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR2[7:0] OCR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
131
2466N–AVR–10/06

Asynchronous Operation
of the Timer/Counter

Asynchronous Status
Register – ASSR

• Bit 3 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the I/O clock, clkI/O. When
AS2 is written to one, Timer/Counter2 is clocked from a Crystal Oscillator connected to
the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of
TCNT2, OCR2, and TCCR2 might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2 is written, this bit becomes
set. When OCR2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2 is ready to be
updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes
set. When TCCR2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCCR2 is ready to be
updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update
busy flag is set, the updated value might get corrupted and cause an unintentional inter-
rupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading
TCNT2, the actual timer value is read. When reading OCR2 or TCCR2, the value in the
temporary storage register is read.

Asynchronous Operation of
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2, and TCCR2 might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2, and TCCR2.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and
TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

Bit 7 6 5 4 3 2 1 0

– – – – AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0
132 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
6. Enable interrupts, if needed.

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an
external clock to the TOSC1 pin may result in incorrect Timer/Counter2 operation.
The CPU main clock frequency must be more than four times the Oscillator
frequency.

• When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is
transferred to a temporary register, and latched after two positive edges on TOSC1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the three mentioned registers have
their individual temporary register, which means for example that writing to TCNT2
does not disturb an OCR2 write in progress. To detect that a transfer to the
destination register has taken place, the Asynchronous Status Register – ASSR has
been implemented.

• When entering Power-save or Extended Standby mode after having written to
TCNT2, OCR2, or TCCR2, the user must wait until the written register has been
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will
enter sleep mode before the changes are effective. This is particularly important if
the Output Compare2 interrupt is used to wake up the device, since the output
compare function is disabled during writing to OCR2 or TCNT2. If the write cycle is
not finished, and the MCU enters sleep mode before the OCR2UB bit returns to
zero, the device will never receive a compare match interrupt, and the MCU will not
wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or Extended
Standby mode, precautions must be taken if the user wants to re-enter one of these
modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between
wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt will
not occur, and the device will fail to wake up. If the user is in doubt whether the time
before re-entering Power-save or Extended Standby mode is sufficient, the following
algorithm can be used to ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or Extended Standby mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for
Timer/Counter2 is always running, except in Power-down and Standby modes. After
a Power-up Reset or wake-up from Power-down or Standby mode, the user should
be aware of the fact that this Oscillator might take as long as one second to stabilize.
The user is advised to wait for at least one second before using Timer/Counter2
after power-up or wake-up from Power-down or Standby mode. The contents of all
Timer/Counter2 Registers must be considered lost after a wake-up from Power-
down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or Extended Standby mode when the timer
is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is
always advanced by at least one before the processor can read the counter value.
After wake-up, the MCU is halted for four cycles, it executes the interrupt routine,
and resumes execution from the instruction following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
133
2466N–AVR–10/06

from Power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2 or TCCR2.

2. Wait for the corresponding Update Busy Flag to be cleared.

3. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes three processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The output compare pin is changed on the
timer clock and is not synchronized to the processor clock.

Timer/Counter Interrupt Mask
Register – TIMSK

• Bit 7 – OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is
executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2 bit is set in
the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 6 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR.

Timer/Counter Interrupt Flag
Register – TIFR

• Bit 7 – OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2 – Output Compare Register2. OCF2 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, OCF2 is cleared by
writing a logic one to the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Com-
pare match Interrupt Enable), and OCF2 are set (one), the Timer/Counter2 Compare
match Interrupt is executed.

• Bit 6 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2

Bit 7 6 5 4 3 2 1 0

OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 TIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
134 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
(Timer/Counter2 Overf low Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at $00.

Timer/Counter Prescaler Figure 64. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to
the main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asyn-
chronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real
Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from
Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve
as an independent clock source for Timer/Counter2. The Oscillator is optimized for use
with a 32.768 kHz crystal. Applying an external clock source to TOSC1 is not
recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be
selected. Setting the PSR2 bit in SFIOR resets the prescaler. This allows the user to
operate with a predictable prescaler.

Special Function IO Register –
SFIOR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have
no effect. This bit will always be read as zero if Timer/Counter2 is clocked by the internal
CPU clock. If this bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSR2

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
135
2466N–AVR–10/06

Serial Peripheral
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega16 and peripheral devices or between several AVR devices. The
ATmega16 SPI includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 65. SPI Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, and Table 25 on page 58 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 66.
The system consists of two Shift Registers, and a Master clock generator. The SPI Mas-
ter initiates the communication cycle when pulling low the Slave Select SS pin of the
desired Slave. Master and Slave prepare the data to be sent in their respective Shift
Registers, and the Master generates the required clock pulses on the SCK line to inter-
change data. Data is always shifted from Master to Slave on the Master Out – Slave In,
MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After
each data packet, the Master will synchronize the Slave by pulling high the Slave Select,
SS, line.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
136 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gener-
ator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit
(SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue
to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for
later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.

Figure 66. SPI Master-Slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the minimum low and high periods should
be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 55 on page 138. For more details on automatic port over-
rides, refer to “Alternate Port Functions” on page 55.

MSB MASTER LSB

8 BIT SHIFT REGISTER

MSB SLAVE LSB

8 BIT SHIFT REGISTER
MISO

MOSI

SPI
CLOCK GENERATOR

SCK

SS

MISO

MOSI

SCK

SS

SHIFT
ENABLE
137
2466N–AVR–10/06

Note: See “Alternate Functions of Port B” on page 58 for a detailed description of how to define
the direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to per-
form a simple transmission. DDR_SPI in the examples must be replaced by the actual
Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK
must be replaced by the actual data direction bits for these pins. For example if MOSI is
placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Table 55. SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
138 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

139
2466N–AVR–10/06

The following code examples show how to initialize the SPI as a Slave and how to per-
form a simple reception.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return data register */

return SPDR;

}

140 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
SS Pin Functionality

Slave Mode When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When
SS is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS is driven high, all pins are inputs, and the
SPI is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the Slave Bit Counter syn-
chronous with the Master Clock generator. When the SS pin is driven high, the SPI
Slave will immediately reset the send and receive logic, and drop any partially received
data in the Shift Register.

Master Mode When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine
the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the
SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If
the SS pin is driven low by peripheral circuitry when the SPI is configured as a Master
with the SS pin defined as an input, the SPI system interprets this as another Master
selecting the SPI as a Slave and starting to send data to it. To avoid bus contention, the
SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a
result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a Slave Select, it must be set by the user to
re-enable SPI Master mode.

SPI Control Register – SPCR

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the global interrupt enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
141
2466N–AVR–10/06

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written
logic zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will
be cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to
re-enable SPI Master mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero,
SCK is low when idle. Refer to Figure 67 and Figure 68 for an example. The CPOL func-
tionality is summarized below:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK. Refer to Figure 67 and Figure 68 for an example.
The CPHA functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and
SPR0 have no effect on the Slave. The relationship between SCK and the Oscillator
Clock frequency fosc is shown in the following table:

Table 56. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 57. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 58. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64
142 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if
SPIE in SPCR is set and global interrupts are enabled. If SS is an input and is driven low
when the SPI is in Master mode, this will also set the SPIF Flag. SPIF is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing
the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set, and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the ATmega16 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode (see Table 58). This means that the minimum SCK period will
be two CPU clock periods. When the SPI is configured as Slave, the SPI is only guaran-
teed to work at fosc/4 or lower.

The SPI interface on the ATmega16 is also used for program memory and EEPROM
downloading or uploading. See page 276 for SPI Serial Programming and Verification.

SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the Regis-
ter File and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
143
2466N–AVR–10/06

Data Modes There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 67 and Figure 68. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 56 and Table 57, as done below:

Figure 67. SPI Transfer Format with CPHA = 0

Figure 68. SPI Transfer Format with CPHA = 1

Table 59. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode

CPOL = 0, CPHA = 0 Sample (Rising) Setup (Falling) 0

CPOL = 0, CPHA = 1 Setup (Rising) Sample (Falling) 1

CPOL = 1, CPHA = 0 Sample (Falling) Setup (Rising) 2

CPOL = 1, CPHA = 1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
144 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
USART The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

Overview A simplified block diagram of the USART transmitter is shown in Figure 69. CPU acces-
sible I/O Registers and I/O pins are shown in bold.

Figure 69. USART Block Diagram(1)

Note: 1. Refer to Figure 1 on page 2, Table 33 on page 65, and Table 27 on page 60 for
USART pin placement.

PARITY
GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxD
PIN

CONTROL

UDR (Receive)

PIN
CONTROL

XCK

DATA
RECOVERY

CLOCK
RECOVERY

PIN
CONTROL

TX
CONTROL

RX
CONTROL

PARITY
CHECKER

D
A

T
A

B
U

S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver
145
2466N–AVR–10/06

The dashed boxes in the block diagram separate the three main parts of the USART
(listed from the top): Clock Generator, Transmitter and Receiver. Control Registers are
shared by all units. The clock generation logic consists of synchronization logic for exter-
nal clock input used by synchronous Slave operation, and the baud rate generator. The
XCK (Transfer Clock) pin is only used by Synchronous Transfer mode. The Transmitter
consists of a single write buffer, a serial Shift Register, parity generator and control logic
for handling different serial frame formats. The write buffer allows a continuous transfer
of data without any delay between frames. The Receiver is the most complex part of the
USART module due to its clock and data recovery units. The recovery units are used for
asynchronous data reception. In addition to the recovery units, the receiver includes a
parity checker, control logic, a Shift Register and a two level receive buffer (UDR). The
receiver supports the same frame formats as the transmitter, and can detect frame
error, data overrun and parity errors.

AVR USART vs. AVR UART –
Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers

• Baud Rate Generation

• Transmitter Operation

• Transmit Buffer Functionality

• Receiver Operation

However, the receive buffering has two improvements that will affect the compatibility in
some special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a
circular FIFO buffer. Therefore the UDR must only be read once for each incoming
data! More important is the fact that the Error Flags (FE and DOR) and the 9th data
bit (RXB8) are buffered with the data in the receive buffer. Therefore the status bits
must always be read before the UDR Register is read. Otherwise the error status
will be lost since the buffer state is lost.

• The receiver Shift Register can now act as a third buffer level. This is done by
allowing the received data to remain in the serial Shift Register (see Figure 69) if the
Buffer Registers are full, until a new start bit is detected. The USART is therefore
more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register
location:

• CHR9 is changed to UCSZ2

• OR is changed to DOR

Clock Generation The clock generation logic generates the base clock for the Transmitter and Receiver.
The USART supports four modes of clock operation: Normal Asynchronous, Double
Speed Asynchronous, Master Synchronous and Slave Synchronous mode. The UMSEL
bit in USART Control and Status Register C (UCSRC) selects between asynchronous
and synchronous operation. Double Speed (Asynchronous mode only) is controlled by
the U2X found in the UCSRA Register. When using Synchronous mode (UMSEL = 1),
the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock
source is internal (Master mode) or external (Slave mode). The XCK pin is only active
when using Synchronous mode.

Figure 70 shows a block diagram of the clock generation logic.
146 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 70. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (Internal Signal). Used for synchronous Slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous Master
operation.

fosc XTAL pin frequency (System Clock).

Internal Clock Generation –
The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous Master
modes of operation. The description in this section refers to Figure 70.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function
as a programmable prescaler or baud rate generator. The down-counter, running at sys-
tem clock (fosc), is loaded with the UBRR value each time the counter has counted
down to zero or when the UBRRL Register is written. A clock is generated each time the
counter reaches zero. This clock is the baud rate generator clock output (=
fosc/(UBRR+1)). The Transmitter divides the baud rate generator clock output by 2, 8 or
16 depending on mode. The baud rate generator output is used directly by the receiver’s
clock and data recovery units. However, the recovery units use a state machine that
uses 2, 8 or 16 states depending on mode set by the state of the UMSEL, U2X and
DDR_XCK bits.

Table 60 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRR value for each mode of operation using an internally generated
clock source.

Prescaling
Down-Counter

/ 2

UBRR

/ 4 / 2

fosc

UBRR+1

Sync
Register

OSC

XCK
Pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0

Edge
Detector

UCPOL
147
2466N–AVR–10/06

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

Some examples of UBRR values for some system clock frequencies are found in Table
68 (see page 169).

Double Speed Operation
(U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only
has effect for the asynchronous operation. Set this bit to zero when using synchronous
operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External Clock External clocking is used by the synchronous Slave modes of operation. The description
in this section refers to Figure 70 for details.

External clock input from the XCK pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
receiver. This process introduces a two CPU clock period delay and therefore the maxi-
mum external XCK clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Table 60. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating

Baud Rate(1)

Equation for
Calculating UBRR

Value

Asynchronous Normal Mode
(U2X = 0)

Asynchronous Double Speed Mode
(U2X = 1)

Synchronous Master Mode

BAUD
fOSC

16 UBRR 1+()
---------------------------------------= UBRR

fOSC
16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRR 1+()
-----------------------------------= UBRR

fOSC
8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRR 1+()
-----------------------------------= UBRR

fOSC
2BAUD
-------------------- 1–=

fXCK
fOSC

4
-----------<
148 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Synchronous Clock Operation When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock
input (Slave) or clock output (Master). The dependency between the clock edges and
data sampling or data change is the same. The basic principle is that data input (on
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Figure 71. Synchronous Mode XCK Timing.

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and
which is used for data change. As Figure 71 shows, when UCPOL is zero the data will
be changed at rising XCK edge and sampled at falling XCK edge. If UCPOL is set, the
data will be changed at falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 72 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 72. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
149
2466N–AVR–10/06

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0, and USBS bits in
UCSRB and UCSRC. The Receiver and Transmitter use the same setting. Note that
changing the setting of any of these bits will corrupt all ongoing communication for both
the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame.
The USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selec-
tion between one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The
receiver ignores the second stop bit. An FE (Frame Error) will therefore only be detected
in the cases where the first stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows::

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USART has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXC Flag can be used to check that the Transmitter has completed all transfers, and the
RXC Flag can be used to check that there are no unread data in the receive buffer. Note
that the TXC Flag must be cleared before each transmission (before UDR is written) if it
is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers. When the function writes to the UCSRC
Register, the URSEL bit (MSB) must be set due to the sharing of I/O location by UBRRH
and UCSRC.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

150 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. See “About Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
Baud and Control Registers, and for these types of applications the initialization code
can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Data Transmission – The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the
UCSRB Register. When the Transmitter is enabled, the normal port operation of the
TxD pin is overridden by the USART and given the function as the transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCK pin will
be overridden and used as transmission clock.

Sending Frames with 5 to 8
Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDR I/O location. The

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRH, r17

out UBRRL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN)|(1<<TXEN)

out UCSRB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<URSEL)|(1<<USBS)|(3<<UCSZ0)

out UCSRC,r16

ret

C Code Example(1)

#define FOSC 1843200// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(void)

{

...

USART_Init (MYUBRR);

...

}

void USART_Init(unsigned int ubrr)

{

/* Set baud rate */

UBRRH = (unsigned char)(ubrr>>8);

UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRC = (1<<USBS)|(1<<USBS)|(3<<UCSZ0);

}

151
2466N–AVR–10/06

buffered data in the transmit buffer will be moved to the Shift Register when the Shift
Register is ready to send a new frame. The Shift Register is loaded with new data if it is
in idle state (no ongoing transmission) or immediately after the last stop bit of the previ-
ous frame is transmitted. When the Shift Register is loaded with new data, it will transfer
one complete frame at the rate given by the Baud Register, U2X bit or by XCK depend-
ing on mode of operation.

The following code examples show a simple USART transmit function based on polling
of the Data Register Empty (UDRE) Flag. When using frames with less than eight bits,
the most significant bits written to the UDR are ignored. The USART has to be initialized
before the function can be used. For the assembly code, the data to be sent is assumed
to be stored in Register R16

Note: 1. See “About Code Examples” on page 7.

The function simply waits for the transmit buffer to be empty by checking the UDRE
Flag, before loading it with new data to be transmitted. If the Data Register Empty Inter-
rupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRA & (1<<UDRE)))

;

/* Put data into buffer, sends the data */

UDR = data;

}

152 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Sending Frames with 9 Data
Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in
UCSRB before the Low byte of the character is written to UDR. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in Registers R17:R16.

Note: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSRB is static. (i.e., only the TXB8 bit of the UCSRB Register is
used after initialization).

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

Transmitter Flags and
Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register
Empty (UDRE) and Transmit Complete (TXC). Both flags can be used for generating
interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one,
the USART Data Register Empty Interrupt will be executed as long as UDRE is set (pro-
vided that global interrupts are enabled). UDRE is cleared by writing UDR. When
interrupt-driven data transmission is used, the Data Register Empty Interrupt routine

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRA,UDRE

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRB,TXB8

sbrc r17,0

sbi UCSRB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDR,r16

ret

C Code Example(1)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRA & (1<<UDRE))))

;

/* Copy 9th bit to TXB8 */

UCSRB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDR = data;

}

153
2466N–AVR–10/06

must either write new data to UDR in order to clear UDRE or disable the Data Register
empty Interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit
Shift Register has been shifted out and there are no new data currently present in the
transmit buffer. The TXC Flag bit is automatically cleared when a transmit complete
interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC
Flag is useful in half-duplex communication interfaces (like the RS485 standard), where
a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART
Transmit Complete Interrupt will be executed when the TXC Flag becomes set (pro-
vided that global interrupts are enabled). When the transmit complete interrupt is used,
the interrupt handling routine does not have to clear the TXC Flag, this is done automat-
ically when the interrupt is executed.

Parity Generator The parity generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPM1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

Disabling the Transmitter The disabling of the transmitter (setting the TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, i.e., when the transmit Shift Register
and transmit Buffer Register do not contain data to be transmitted. When disabled, the
transmitter will no longer override the TxD pin.
154 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Data Reception – The
USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the
UCSRB Register to one. When the receiver is enabled, the normal pin operation of the
RxD pin is overridden by the USART and given the function as the receiver’s serial
input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the
XCK pin will be used as transfer clock.

Receiving Frames with 5 to 8
Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCK clock, and shifted into the receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDR I/O
location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete (RXC) Flag. When using frames with less than eight bits the
most significant bits of the data read from the UDR will be masked to zero. The USART
has to be initialized before the function can be used.

Note: 1. See “About Code Examples” on page 7.

The function simply waits for data to be present in the receive buffer by checking the
RXC Flag, before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC)))

;

/* Get and return received data from buffer */

return UDR;

}

155
2466N–AVR–10/06

Receiving Frames with 9
Databits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in
UCSRB before reading the low bits from the UDR. This rule applies to the FE, DOR and
PE status Flags as well. Read status from UCSRA, then data from UDR. Reading the
UDR I/O location will change the state of the receive buffer FIFO and consequently the
TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both
9-bit characters and the status bits.

Note: 1. See “About Code Examples” on page 7.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRA

in r17, UCSRB

in r16, UDR

; If error, return -1

andi r18,(1<<FE)|(1<<DOR)|(1<<PE)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRA & (1<<RXC)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh = UCSRB;

resl = UDR;

/* If error, return -1 */

if (status & (1<<FE)|(1<<DOR)|(1<<PE))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

156 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Receive Compete Flag and
Interrupt

The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the receiver
is disabled (RXEN = 0), the receive buffer will be flushed and consequently the RXC bit
will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART
Receive Complete Interrupt will be executed as long as the RXC Flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR)
and Parity Error (PE). All can be accessed by reading UCSRA. Common for the Error
Flags is that they are located in the receive buffer together with the frame for which they
indicate the error status. Due to the buffering of the Error Flags, the UCSRA must be
read before the receive buffer (UDR), since reading the UDR I/O location changes the
buffer read location. Another equality for the Error Flags is that they can not be altered
by software doing a write to the flag location. However, all flags must be set to zero
when the UCSRA is written for upward compatibility of future USART implementations.
None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FE Flag is zero when the stop bit was correctly
read (as one), and the FE Flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC
since the receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition.
A Data OverRun occurs when the receive buffer is full (two characters), it is a new char-
acter waiting in the receive Shift Register, and a new start bit is detected. If the DOR
Flag is set there was one or more serial frame lost between the frame last read from
UDR, and the next frame read from UDR. For compatibility with future devices, always
write this bit to zero when writing to UCSRA. The DOR Flag is cleared when the frame
received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity
error when received. If parity check is not enabled the PE bit will always be read zero.
For compatibility with future devices, always set this bit to zero when writing to UCSRA.
For more details see “Parity Bit Calculation” on page 150 and “Parity Checker” on page
157.

Parity Checker The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type
of parity check to be performed (odd or even) is selected by the UPM0 bit. When
enabled, the parity checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (PE) Flag can then be read by software to check if the frame had a parity error.
157
2466N–AVR–10/06

The PE bit is set if the next character that can be read from the receive buffer had a par-
ity error when received and the parity checking was enabled at that point (UPM1 = 1).
This bit is valid until the receive buffer (UDR) is read.

Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXEN is set to zero)
the Receiver will no longer override the normal function of the RxD port pin. The receiver
buffer FIFO will be flushed when the receiver is disabled. Remaining data in the buffer
will be lost

Flushing the Receive Buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDR I/O loca-
tion until the RXC Flag is cleared. The following code example shows how to flush the
receive buffer.

Note: 1. See “About Code Examples” on page 7.

Asynchronous Data
Reception

The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxD pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

Asynchronous Clock
Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 73 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and 8 times the baud rate for Double
Speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the double speed mode
(U2X = 1) of operation. Samples denoted zero are samples done when the RxD line is
idle (i.e., no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSRA, RXC

ret

in r16, UDR

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRA & (1<<RXC)) dummy = UDR;

}

158 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 73. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

Asynchronous Data Recovery When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in normal
mode and 8 states for each bit in Double Speed mode. Figure 74 shows the sampling of
the data bits and the parity bit. Each of the samples is given a number that is equal to
the state of the recovery unit.

Figure 74. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxD pin. The recovery process is then repeated until
a complete frame is received. Including the first stop bit. Note that the receiver only uses
the first stop bit of a frame.

Figure 75 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
159
2466N–AVR–10/06

Figure 75. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For Normal Speed mode, the first low level
sample can be at point marked (A) in Figure 75. For Double Speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the receiver.

Asynchronous Operational
Range

The operational range of the receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
receiver does not have a similar (see Table 61) base frequency, the receiver will not be
able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for
Double Speed mode.

SF First sample number used for majority voting. SF = 8 for Normal Speed and
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for Normal Speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---=

Rfast
D 2+()S

D 1+()S SM+
-----------------------------------=
160 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Table 61 and Table 62 list the maximum receiver baud rate error that can be tolerated.
Note that Normal Speed mode has higher toleration of baud rate variations.

The recommendations of the maximum receiver baud rate error was made under the
assumption that the receiver and transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRR value that gives an acceptable low error can be
used if possible.

Table 61. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2X = 0)

D
(Data+Parity Bit) Rslow (%) Rfast(%)

Max Total
Error (%)

Recommended Max
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 62. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2X = 1)

D
(Data+Parity Bit) Rslow (%) Rfast (%)

Max Total
Error (%)

Recommended Max
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104.35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
161
2466N–AVR–10/06

Multi-processor
Communication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a fil-
tering function of incoming frames received by the USART Receiver. Frames that do not
contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCM setting, but has to be used differently when it is a part
of a system utilizing the Multi-processor Communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the receiver is set up for
frames with nine data bits, then the ninth bit (RXB8) is used for identifying address and
data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data
from a Master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular Slave MCU has been addressed, it will receive
the following data frames as normal, while the other Slave MCUs will ignore the
received frames until another address frame is received.

Using MPCM For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ =
7). The ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or cleared when
a data frame (TXB = 0) is being transmitted. The Slave MCUs must in this case be set to
use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA
is set).

2. The Master MCU sends an address frame, and all Slaves receive and read this
frame. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next
address byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCM bit set, will ignore
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCM bit and waits for a new address frame from Master. The
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the transmitter and receiver uses the same character
size setting. If 5- to 8-bit character frames are used, the transmitter must be set to use
two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit.
The MPCM bit shares the same I/O location as the TXC Flag and this might accidentally
be cleared when using SBI or CBI instructions.
162 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Accessing UBRRH/
UCSRC Registers

The UBRRH Register shares the same I/O location as the UCSRC Register. Therefore
some special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the
USART Register Select (URSEL) bit, controls which one of the two registers that will be
written. If URSEL is zero during a write operation, the UBRRH value will be updated. If
URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Note: 1. See “About Code Examples” on page 7.

As the code examples illustrate, write accesses of the two registers are relatively unaf-
fected of the sharing of I/O location.

Read Access Doing a read access to the UBRRH or the UCSRC Register is a more complex opera-
tion. However, in most applications, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once
returns the UBRRH Register contents. If the register location was read in previous sys-
tem clock cycle, reading the register in the current clock cycle will return the UCSRC
contents. Note that the timed sequence for reading the UCSRC is an atomic operation.
Interrupts must therefore be controlled (for example by disabling interrupts globally) dur-
ing the read operation.

Assembly Code Example(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Example(1)

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1);

...
163
2466N–AVR–10/06

The following code example shows how to read the UCSRC Register contents.

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as
an ordinary register, as long as the previous instruction did not access the register
location.

USART Register
Description

USART I/O Data Register –
UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDR. The Transmit
Data Buffer Register (TXB) will be the destination for data written to the UDR Register
location. Reading the UDR Register location will return the contents of the Receive Data
Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is
set. Data written to UDR when the UDRE Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer, and the Transmitter is enabled,
the Transmitter will load the data into the transmit Shift Register when the Shift Register
is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed. Due to this behavior of the receive buffer, do not use
read modify write instructions (SBI and CBI) on this location. Be careful when using bit
test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

Assembly Code Example(1)

USART_ReadUCSRC:

; Read UCSRC

in r16,UBRRH

in r16,UCSRC

ret

C Code Example(1)

unsigned char USART_ReadUCSRC(void)

{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

return ucsrc;

}

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDR (Read)

TXB[7:0] UDR (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
164 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
USART Control and Status
Register A – UCSRA

• Bit 7 – RXC: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the receiver is dis-
abled, the receive buffer will be flushed and consequently the RXC bit will become zero.
The RXC Flag can be used to generate a Receive Complete interrupt (see description of
the RXCIE bit).

• Bit 6 – TXC: USART Transmit Complete

This flag bit is set when the entire frame in the transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR). The TXC
Flag bit is automatically cleared when a transmit complete interrupt is executed, or it can
be cleared by writing a one to its bit location. The TXC Flag can generate a Transmit
Complete interrupt (see description of the TXCIE bit).

• Bit 5 – UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If
UDRE is one, the buffer is empty, and therefore ready to be written. The UDRE Flag can
generate a Data Register empty Interrupt (see description of the UDRIE bit).

UDRE is set after a reset to indicate that the transmitter is ready.

• Bit 4 – FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. i.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRA.

• Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the receive Shift
Register, and a new start bit is detected. This bit is valid until the receive buffer (UDR) is
read. Always set this bit to zero when writing to UCSRA.

• Bit 2 – PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the
receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit 1 – U2X: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

Bit 7 6 5 4 3 2 1 0

RXC TXC UDRE FE DOR PE U2X MPCM UCSRA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
165
2466N–AVR–10/06

• Bit 0 – MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is writ-
ten to one, all the incoming frames received by the USART receiver that do not contain
address information will be ignored. The transmitter is unaffected by the MPCM setting.
For more detailed information see “Multi-processor Communication Mode” on page 162.

USART Control and Status
Register B – UCSRB

• Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete
Interrupt will be generated only if the RXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC bit in UCSRA is set.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete
Interrupt will be generated only if the TXCIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC bit in UCSRA is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty Inter-
rupt will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in
SREG is written to one and the UDRE bit in UCSRA is set.

• Bit 4 – RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxD pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE, DOR, and PE Flags.

• Bit 3 – TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override nor-
mal port operation for the TxD pin when enabled. The disabling of the Transmitter
(writing TXEN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the transmit Shift Register and transmit Buffer Register
do not contain data to be transmitted. When disabled, the transmitter will no longer over-
ride the TxD port.

• Bit 2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits
(Character Size) in a frame the receiver and transmitter use.

• Bit 1 – RXB8: Receive Data Bit 8

RXB8 is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDR.

Bit 7 6 5 4 3 2 1 0

RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UCSRB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
166 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 0 – TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial
frames with nine data bits. Must be written before writing the low bits to UDR.

USART Control and Status
Register C – UCSRC

The UCSRC Register shares the same I/O location as the UBRRH Register. See the
“Accessing UBRRH/ UCSRC Registers” on page 163 section which describes how to
access this register.

• Bit 7 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read as
one when reading UCSRC. The URSEL must be one when writing the UCSRC.

• Bit 6 – UMSEL: USART Mode Select

This bit selects between Asynchronous and Synchronous mode of operation.

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmit-
ter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be set.

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Bit 7 6 5 4 3 2 1 0

URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL UCSRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 0 0 0 0 1 1 0

Table 63. UMSEL Bit Settings

UMSEL Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 64. UPM Bits Settings

UPM1 UPM0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 65. USBS Bit Settings

USBS Stop Bit(s)

0 1-bit

1 2-bit
167
2466N–AVR–10/06

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOL: Clock Polarity

This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers –
UBRRL and UBRRH

The UBRRH Register shares the same I/O location as the UCSRC Register. See the
“Accessing UBRRH/ UCSRC Registers” on page 163 section which describes how to
access this register.

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as
zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRH is written.

Table 66. UCSZ Bits Settings

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 67. UCPOL Bit Settings

UCPOL
Transmitted Data Changed (Output of
TxD Pin)

Received Data Sampled (Input on
RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

URSEL – – – UBRR[11:8] UBRRH

UBRR[7:0] UBRRL

7 6 5 4 3 2 1 0

Read/Write R/W R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
168 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the
four most significant bits, and the UBRRL contains the 8 least significant bits of the
USART baud rate. Ongoing transmissions by the transmitter and receiver will be cor-
rupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

Examples of Baud Rate
Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for
asynchronous operation can be generated by using the UBRR settings in Table 68.
UBRR values which yield an actual baud rate differing less than 0.5% from the target
baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver will
have less noise resistance when the error ratings are high, especially for large serial
frames (see “Asynchronous Operational Range” on page 160). The error values are cal-
culated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 68. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
169
2466N–AVR–10/06

Table 69. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%
170 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Table 70. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%
171
2466N–AVR–10/06

Table 71. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2X = 0 U2X = 1 U2X = 0 U2X = 1 U2X = 0 U2X = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%
172 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Two-wire Serial
Interface

Features • Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device Can Operate as Transmitter or Receiver
• 7-bit Address Space allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition causes Wake-up when AVR is in Sleep Mode

Two-wire Serial Interface
Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applica-
tions. The TWI protocol allows the systems designer to interconnect up to 128 different
devices using only two bi-directional bus lines, one for clock (SCL) and one for data
(SDA). The only external hardware needed to implement the bus is a single pull-up
resistor for each of the TWI bus lines. All devices connected to the bus have individual
addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.

Figure 76. TWI Bus Interconnection

TWI Terminology The following definitions are frequently encountered in this section.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Table 72. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also
generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
173
2466N–AVR–10/06

Electrical Interconnection As depicted in Figure 76, both bus lines are connected to the positive supply voltage
through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or
open-collector. This implements a wired-AND function which is essential to the opera-
tion of the interface. A low level on a TWI bus line is generated when one or more TWI
devices output a zero. A high level is output when all TWI devices tri-state their outputs,
allowing the pull-up resistors to pull the line high. Note that all AVR devices connected to
the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus
capacitance limit of 400 pF and the 7-bit Slave address space. A detailed specification
of the electrical characteristics of the TWI is given in “Two-wire Serial Interface Charac-
teristics” on page 297. Two different sets of specifications are presented there, one
relevant for bus speeds below 100 kHz, and one valid for bus speeds up to 400 kHz.

Data Transfer and Frame
Format

Transferring Bits Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line.
The level of the data line must be stable when the clock line is high. The only exception
to this rule is for generating start and stop conditions.

Figure 77. Data Validity

START and STOP Conditions The Master initiates and terminates a data transmission. The transmission is initiated
when the Master issues a START condition on the bus, and it is terminated when the
Master issues a STOP condition. Between a START and a STOP condition, the bus is
considered busy, and no other Master should try to seize control of the bus. A special
case occurs when a new START condition is issued between a START and STOP con-
dition. This is referred to as a REPEATED START condition, and is used when the
Master wishes to initiate a new transfer without releasing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to
the START behavior, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the
SDA line when the SCL line is high.

SDA

SCL

Data Stable Data Stable

Data Change
174 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 78. START, REPEATED START, and STOP Conditions

Address Packet Format All address packets transmitted on the TWI bus are nine bits long, consisting of seven
address bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE
bit is set, a read operation is to be performed, otherwise a write operation should be per-
formed. When a Slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is busy, or for
some other reason can not service the Master’s request, the SDA line should be left
high in the ACK clock cycle. The Master can then transmit a STOP condition, or a
REPEATED START condition to initiate a new transmission. An address packet consist-
ing of a Slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allo-
cated by the designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all Slaves should respond by pulling the SDA line low in
the ACK cycle. A general call is used when a Master wishes to transmit the same mes-
sage to several Slaves in the system. When the general call address followed by a Write
bit is transmitted on the bus, all Slaves set up to acknowledge the general call will pull
the SDA line low in the ack cycle. The following data packets will then be received by all
the Slaves that acknowledged the general call. Note that transmitting the general call
address followed by a Read bit is meaningless, as this would cause contention if several
Slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 79. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
175
2466N–AVR–10/06

Data Packet Format All data packets transmitted on the TWI bus are nine bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the Master generates the clock and
the START and STOP conditions, while the receiver is responsible for acknowledging
the reception. An Acknowledge (ACK) is signalled by the receiver pulling the SDA line
low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is sig-
nalled. When the receiver has received the last byte, or for some reason cannot receive
any more bytes, it should inform the transmitter by sending a NACK after the final byte.
The MSB of the data byte is transmitted first.

Figure 80. Data Packet Format

Combining Address and Data
Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the wired-ANDing of the SCL line can be used to
implement handshaking between the Master and the Slave. The Slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between
the data transmissions. The Slave extending the SCL low period will not affect the SCL
high period, which is determined by the Master. As a consequence, the Slave can
reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 81 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.

Figure 81. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
receiverR

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
176 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Multi-master Bus
Systems, Arbitration and
Synchronization

The TWI protocol allows bus systems with several Masters. Special concerns have
been taken in order to ensure that transmissions will proceed as normal, even if two or
more Masters initiate a transmission at the same time. Two problems arise in multi-mas-
ter systems:

• An algorithm must be implemented allowing only one of the Masters to complete the
transmission. All other Masters should cease transmission when they discover that
they have lost the selection process. This selection process is called arbitration.
When a contending Master discovers that it has lost the arbitration process, it
should immediately switch to Slave mode to check whether it is being addressed by
the winning Master. The fact that multiple Masters have started transmission at the
same time should not be detectable to the Slaves, i.e., the data being transferred on
the bus must not be corrupted.

• Different Masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all Masters, in order to let the transmission
proceed in a lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all Masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the Master with the shortest high period. The low period of
the combined clock is equal to the low period of the Master with the longest low period.
Note that all Masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 82. SCL Synchronization between Multiple Masters

Arbitration is carried out by all Masters continuously monitoring the SDA line after out-
putting data. If the value read from the SDA line does not match the value the Master
had output, it has lost the arbitration. Note that a Master can only lose arbitration when it
outputs a high SDA value while another Master outputs a low value. The losing Master
should immediately go to Slave mode, checking if it is being addressed by the winning
Master. The SDA line should be left high, but losing Masters are allowed to generate a
clock signal until the end of the current data or address packet. Arbitration will continue
until only one Master remains, and this may take many bits. If several Masters are trying
to address the same Slave, arbitration will continue into the data packet.

TA low TA high

SCL from
Master A

SCL from
Master B

SCL bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period
177
2466N–AVR–10/06

Figure 83. Arbitration between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit

• A STOP condition and a data bit

• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions
never occur. This implies that in multi-master systems, all data transfers must use the
same composition of SLA+R/W and data packets. In other words: All transmissions
must contain the same number of data packets, otherwise the result of the arbitration is
undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA SDA
178 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Overview of the TWI
Module

The TWI module is comprised of several submodules, as shown in Figure 84. All regis-
ters drawn in a thick line are accessible through the AVR data bus.

Figure 84. Overview of the TWI Module

SCL and SDA Pins These pins interface the AVR TWI with the rest of the MCU system. The output drivers
contain a slew-rate limiter in order to conform to the TWI specification. The input stages
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the inter-
nal pull-ups in the AVR pads can be enabled by setting the PORT bits corresponding to
the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

Bit Rate Generator Unit This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or Pres-
caler settings, but the CPU clock frequency in the Slave must be at least 16 times higher
than the SCL frequency. Note that Slaves may prolong the SCL low period, thereby
reducing the average TWI bus clock period. The SCL frequency is generated according
to the following equation:

• TWBR = Value of the TWI Bit Rate Register

• TWPS = Value of the prescaler bits in the TWI Status Register
Note: Note: Pull-up resistor values should be selected according to the SCL frequency and the

capacitive bus line load. See Table 120 on page 297 for value of pull-up resistor.

TWI Unit

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

SCL frequency CPU Clock frequency

16 2(TWBR) 4
TWPS⋅+

---=
179
2466N–AVR–10/06

Bus Interface Unit This unit contains the Data and Address Shift Register (TWDR), a START/STOP Con-
troller and Arbitration detection hardware. The TWDR contains the address or data
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be
transmitted or received. This (N)ACK Register is not directly accessible by the applica-
tion software. However, when receiving, it can be set or cleared by manipulating the
TWI Control Register (TWCR). When in Transmitter mode, the value of the received
(N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be
taken and appropriate status codes generated.

Address Match Unit The Address Match unit checks if received address bytes match the 7-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE)
bit in the TWAR is written to one, all incoming address bits will also be compared
against the General Call address. Upon an address match, the Control Unit is informed,
allowing correct action to be taken. The TWI may or may not acknowledge its address,
depending on settings in the TWCR. The Address Match unit is able to compare
addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake up if
addressed by a Master.

Control Unit The Control unit monitors the TWI bus and generates responses corresponding to set-
tings in the TWI Control Register (TWCR). When an event requiring the attention of the
application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the
next clock cycle, the TWI Status Register (TWSR) is updated with a status code identify-
ing the event. The TWSR only contains relevant status information when the TWI
Interrupt Flag is asserted. At all other times, the TWSR contains a special status code
indicating that no relevant status information is available. As long as the TWINT Flag is
set, the SCL line is held low. This allows the application software to complete its tasks
before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition

• After the TWI has transmitted SLA+R/W

• After the TWI has transmitted an address byte

• After the TWI has lost arbitration

• After the TWI has been addressed by own Slave address or general call

• After the TWI has received a data byte

• After a STOP or REPEATED START has been received while still addressed as a
Slave.

• When a bus error has occurred due to an illegal START or STOP condition
180 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
TWI Register Description

TWI Bit Rate Register – TWBR

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes. See
“Bit Rate Generator Unit” on page 179 for calculating bit rates.

TWI Control Register – TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to
initiate a Master access by applying a START condition to the bus, to generate a
receiver acknowledge, to generate a stop condition, and to control halting of the bus
while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects appli-
cation software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will
jump to the TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is
stretched. The TWINT Flag must be cleared by software by writing a logic one to it. Note
that this flag is not automatically cleared by hardware when executing the interrupt rou-
tine. Also note that clearing this flag starts the operation of the TWI, so all accesses to
the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Regis-
ter (TWDR) must be complete before clearing this flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is writ-
ten to one, the ACK pulse is generated on the TWI bus if the following conditions are
met:

1. The device’s own Slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-
wire Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the
Two-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
181
2466N–AVR–10/06

until a STOP condition is detected, and then generates a new START condition to claim
the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the
Two-wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit
is cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT Flag is high.

TWI Status Register – TWSR

• Bits 7..3 – TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The dif-
ferent status codes are described later in this section. Note that the value read from
TWSR contains both the 5-bit status value and the 2-bit prescaler value. The application
designer should mask the prescaler bits to zero when checking the Status bits. This
makes status checking independent of prescaler setting. This approach is used in this
datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

Bit 7 6 5 4 3 2 1 0

TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0
182 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see “Bit Rate Generator Unit” on page 179. The value of
TWPS1..0 is used in the equation.

TWI Data Register – TWDR

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writable while the TWI is not in the process of
shifting a byte. This occurs when the TWI Interrupt Flag (TWINT) is set by hardware.
Note that the Data Register cannot be initialized by the user before the first interrupt
occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted
out, data on the bus is simultaneously shifted in. TWDR always contains the last byte
present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In
this case, the contents of TWDR is undefined. In the case of a lost bus arbitration, no
data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits contain the next data byte to be transmitted, or the latest data byte
received on the Two-wire Serial Bus.

TWI (Slave) Address Register
– TWAR

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant
bits of TWAR) to which the TWI will respond when programmed as a Slave Transmitter
or receiver. In multi-master systems, TWAR must be set in Masters which can be
addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address ($00). There
is an associated address comparator that looks for the Slave address (or general call
address if enabled) in the received serial address. If a match is found, an interrupt
request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the Slave address of the TWI unit.

Table 73. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
183
2466N–AVR–10/06

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the Two-wire Serial
Bus.

Using the TWI The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT Flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT Flag in order to detect actions on the TWI
bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits appli-
cation response. In this case, the TWI Status Register (TWSR) contains a value
indicating the current state of the TWI bus. The application software can then decide
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.

Figure 85 is a simple example of how the application can interface to the TWI hardware.
In this example, a Master wishes to transmit a single data byte to a Slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behavior is also presented.

Figure 85. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is
done by writing a specific value into TWCR, instructing the TWI hardware to
transmit a START condition. Which value to write is described later on. However,
it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the
TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is
set, and TWSR is updated with a status code indicating that the START condition
has successfully been sent.

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent.

Application loads SLA+W into TWDR, and
loads appropriate control signalsinto

TWCR, making sure that TWINT is written
to one, and TWSTA is written to zero

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

Application
Action

TWI
Hardware

Action
184 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
3. The application software should now examine the value of TWSR, to make sure
that the START condition was successfully transmitted. If TWSR indicates other-
wise, the application software might take some special action, like calling an
error routine. Assuming that the status code is as expected, the application must
load SLA+W into TWDR. Remember that TWDR is used both for address and
data. After TWDR has been loaded with the desired SLA+W, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the SLA+W
present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will
initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the address packet has
successfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure
that the address packet was successfully transmitted, and that the value of the
ACK bit was as expected. If TWSR indicates otherwise, the application software
might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must load a data packet into TWDR.
Subsequently, a specific value must be written to TWCR, instructing the TWI
hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any opera-
tion as long as the TWINT bit in TWCR is set. Immediately after the application
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the data packet has suc-
cessfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure
that the data packet was successfully transmitted, and that the value of the ACK
bit was as expected. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status
code is as expected, the application must write a specific value to TWCR,
instructing the TWI hardware to transmit a STOP condition. Which value to write
is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Immediately after the appli-
cation has cleared TWINT, the TWI will initiate transmission of the STOP
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmis-
sions. These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be
185
2466N–AVR–10/06

set. Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made, for example by using
include-files.

Assembly code example C example Comments

1 ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2 wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the START condition has been
transmitted

3 in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
START go to ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN);
Load SLA_W into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of address

4 wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the SLA+W has been transmitted,
and ACK/NACK has been received.

5 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN);
Load DATA into TWDR Register. Clear
TWINT bit in TWCR to start transmission
of data

6 wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This indicates
that the DATA has been transmitted, and
ACK/NACK has been received.

7 in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_DATA_ACK)

ERROR();
Check value of TWI Status Register. Mask
prescaler bits. If status different from
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition
186 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Transmission Modes The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other Masters are present in the system, some of these might transmit data
to the TWI, and then SR mode would be used. It is the application software that decides
which modes are legal.

The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These fig-
ures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 87 to Figure 93, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits
masked to zero. At these points, actions must be taken by the application to continue or
complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appro-
priate software action. For each status code, the required software action and details of
the following serial transfer are given in Table 74 to Table 77. Note that the prescaler
bits are masked to zero in these tables.

Master Transmitter Mode In the Master Transmitter mode, a number of data bytes are transmitted to a Slave
Receiver (see Figure 86). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.
187
2466N–AVR–10/06

Figure 86. Data Transfer in Master Transmitter Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be written to one to clear the
TWINT Flag. The TWI will then test the Two-wire Serial Bus and generate a START
condition as soon as the bus becomes free. After a START condition has been transmit-
ted, the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See
Table 74). In order to enter MT mode, SLA+W must be transmitted. This is done by writ-
ing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one)
to continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are $18, $20, or $38. The appropriate action to be taken for
each of these status codes is detailed in Table 74.

When SLA+W has been successfully transmitted, a data packet should be transmitted.
This is done by writing the data byte to TWDR. TWDR must only be written when
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC)
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is gen-
erated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
188 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
After a repeated START condition (state $10) the Two-wire Serial Interface can access
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated
START enables the Master to switch between Slaves, Master Transmitter mode and
Master Receiver mode without losing control of the bus.

Table 74. Status Codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

$18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset

$20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$38 Arbitration lost in SLA+W or data
bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus be-
comes free
189
2466N–AVR–10/06

Figure 87. Formats and States in the Master Transmitter Mode

Master Receiver Mode In the Master Receiver mode, a number of data bytes are received from a Slave Trans-
mitter (see Figure 88). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

S

190 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 88. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the TWINT
Flag. The TWI will then test the Two-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table
74). In order to enter MR mode, SLA+R must be transmitted. This is done by writing
SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are $38, $40, or $48. The appropriate action to be taken for
each of these status codes is detailed in Table 75. Received data can be read from the
TWDR Register when the TWINT Flag is set high by hardware. This scheme is repeated
until the last byte has been received. After the last byte has been received, the MR
should inform the ST by sending a NACK after the last received data byte. The transfer
is ended by generating a STOP condition or a repeated START condition. A STOP con-
dition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state $10) the Two-wire Serial Interface can access
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated
START enables the Master to switch between Slaves, Master Transmitter mode and
Master Receiver mode without losing control over the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
191
2466N–AVR–10/06

Table 75. Status Codes for Master Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

$10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to masTer Transmitter mode

$38 Arbitration lost in SLA+R or NOT
ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

$40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

$50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
192 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 89. Formats and States in the Master Receiver Mode

Slave Receiver Mode In the Slave Receiver mode, a number of data bytes are received from a Master Trans-
mitter (see Figure 90). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 90. Data Transfer in Slave Receiver Mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER
193
2466N–AVR–10/06

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address ($00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own Slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own Slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode
is entered. After its own Slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 76. The Slave Receiver mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see states $68 and $78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”)
to SDA after the next received data byte. This can be used to indicate that the Slave is
not able to receive any more bytes. While TWEA is zero, the TWI does not acknowledge
its own Slave address. However, the Two-wire Serial Bus is still monitored and address
recognition may resume at any time by setting TWEA. This implies that the TWEA bit
may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle Mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own Slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock low during the wake up and
until the TWINT Flag is cleared (by writing it to one). Further data reception will be car-
ried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X
194 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Table 76. Status Codes for Slave Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

$98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$A0 A STOP condition or repeated
START condition has been
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
195
2466N–AVR–10/06

Figure 91. Formats and States in the Slave Receiver Mode

Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 92). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 92. Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
196 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address ($00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own Slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own Slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own Slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 77. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state $B0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State $C0 or state $C8 will be entered, depending on whether the Master
Receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed Slave mode, and will ignore the Master if it continues the transfer. Thus the
Master Receiver receives all “1” as serial data. State $C8 is entered if the Master
demands additional data bytes (by transmitting ACK), even though the Slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own Slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own Slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock will low during the wake up and
until the TWINT Flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X
197
2466N–AVR–10/06

Table 77. Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$A8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$B8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

$C0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

$C8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
198 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 93. Formats and States in the Slave Transmitter Mode

Miscellaneous States There are two status codes that do not correspond to a defined TWI state, see Table 78.

Status $F8 indicates that no relevant information is available because the TWINT Flag is
not set. This occurs between other states, and when the TWI is not involved in a serial
transfer.

Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus trans-
fer. A bus error occurs when a START or STOP condition occurs at an illegal position in
the format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared
by writing a logic one to it. This causes the TWI to enter the not addressed Slave mode
and to clear the TWSTO Flag (no other bits in TWCR are affected). The SDA and SCL
lines are released, and no STOP condition is transmitted.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 78. Miscellaneous States
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

$F8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

$00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
199
2466N–AVR–10/06

Combining Several TWI
Modes

In some cases, several TWI modes must be combined in order to complete the desired
action. Consider for example reading data from a serial EEPROM. Typically, such a
transfer involves the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from Master to Slave and vice versa. The Master must
instruct the Slave what location it wants to read, requiring the use of the MT mode. Sub-
sequently, data must be read from the Slave, implying the use of the MR mode. Thus,
the transfer direction must be changed. The Master must keep control of the bus during
all these steps, and the steps should be carried out as an atomical operation. If this prin-
ciple is violated in a multi-master system, another Master can alter the data pointer in
the EEPROM between steps 2 and 3, and the Master will read the wrong data location.
Such a change in transfer direction is accomplished by transmitting a REPEATED
START between the transmission of the address byte and reception of the data. After a
REPEATED START, the Master keeps ownership of the bus. The following figure shows
the flow in this transfer.

Figure 94. Combining Several TWI Modes to Access a Serial EEPROM

Multi-master Systems
and Arbitration

If multiple Masters are connected to the same bus, transmissions may be initiated simul-
taneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the Masters will be allowed to proceed with the trans-
fer, and that no data will be lost in the process. An example of an arbitration situation is
depicted below, where two Masters are trying to transmit data to a Slave Receiver.

Figure 95. An Arbitration Example

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from Master to Slave Transmitted from Slave to Master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VCC
200 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Several different scenarios may arise during arbitration, as described below:

• Two or more Masters are performing identical communication with the same Slave.
In this case, neither the Slave nor any of the Masters will know about the bus
contention.

• Two or more Masters are accessing the same Slave with different data or direction
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data
bits. The Masters trying to output a one on SDA while another Master outputs a zero
will lose the arbitration. Losing Masters will switch to not addressed Slave mode or
wait until the bus is free and transmit a new START condition, depending on
application software action.

• Two or more Masters are accessing different Slaves. In this case, arbitration will
occur in the SLA bits. Masters trying to output a one on SDA while another Master
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to
Slave mode to check if they are being addressed by the winning Master. If
addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed
Slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

This is summarized in Figure 96. Possible status values are given in circles.

Figure 96. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP
201
2466N–AVR–10/06

Analog Comparator The Analog Comparator compares the input values on the positive pin AIN0 and nega-
tive pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on
the negative pin AIN1, the Analog Comparator Output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block dia-
gram of the comparator and its surrounding logic is shown in Figure 97.

Figure 97. Analog Comparator Block Diagram(2)

Notes: 1. See Table 80 on page 204.
2. Refer to Figure 1 on page 2 and Table 25 on page 58 for Analog Comparator pin

placement.

Special Function IO Register –
SFIOR

• Bit 3 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 204.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
202 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Analog Comparator Control
and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power
consumption in active and Idle mode. When changing the ACD bit, the Analog Compar-
ator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt
can occur when the bit is changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the
Analog Comparator. See “Internal Voltage Reference” on page 42.

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a
logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Ana-
log Comparator Interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the Input Capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the Input Capture
function exists. To make the comparator trigger the Timer/Counter1 Input Capture inter-
rupt, the TICIE1 bit in the Timer Interrupt Mask Register (TIMSK) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 79.

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
203
2466N–AVR–10/06

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt
can occur when the bits are changed.

Analog Comparator
Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Ana-
log Comparator. The ADC multiplexer is used to select this input, and consequently, the
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in SFIOR) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Ana-
log Comparator, as shown in Table 80. If ACME is cleared or ADEN is set, AIN1 is
applied to the negative input to the Analog Comparator.

Table 79. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge

Table 80. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
204 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Analog to Digital
Converter

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 13 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• 8 Multiplexed Single Ended Input Channels
• 7 Differential Input Channels
• 2 Differential Input Channels with Optional Gain of 10x and 200x(1)

• Optional Left adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

Note: 1. The differential input channels are not tested for devices in PDIP Package. This fea-
ture is only guaranteed to work for devices in TQFP and QFN/MLF Packages

The ATmega16 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows 8 single-ended voltage inputs
constructed from the pins of Port A. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differen-
tial inputs (ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain
stage, providing amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the dif-
ferential input voltage before the A/D conversion. Seven differential analog input
channels share a common negative terminal (ADC1), while any other ADC input can be
selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be
expected. If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 98.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more
than ±0.3 V from VCC. See the paragraph “ADC Noise Canceler” on page 213 on how to
connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The volt-
age reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance.
205
2466N–AVR–10/06

Figure 98. Analog to Digital Converter Block Schematic

Operation The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents
the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V refer-
ence voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage refer-
ence, can be selected as single ended inputs to the ADC. A selection of ADC input pins
can be selected as positive and negative inputs to the differential gain amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage dif-
ference between the selected input channel pair by the selected gain factor. This

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL 2.56V
REFERENCE

MUX DECODER

M
U

X
4

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

LA
R

+

-

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

G
A

IN
 S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

GAIN
AMPLIFIER

AREF

BANDGAP
REFERENCE

PRESCALER

SINGLE ENDED / DIFFERENTIAL SELECTION

GND

POS.
INPUT
MUX

NEG.
INPUT
MUX

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START
206 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
amplified value then becomes the analog input to the ADC. If single ended channels are
used, the gain amplifier is bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage refer-
ence and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the
ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

Starting a Conversion A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in SFIOR (see
description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal still is set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or
the global interrupt enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the Interrupt Flag must be cleared in order to trig-
ger a new conversion at the next interrupt event.
207
2466N–AVR–10/06

Figure 99. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
The ADSC bit will be read as one during a conversion, independently of how the conver-
sion was started.

Prescaling and
Conversion Timing

Figure 100. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 200 kHz to get maximum resolution. If a lower resolution than 10
bits is needed, the input clock frequency to the ADC can be higher than 200 kHz to get a
higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock fre-
quency from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits
in ADCSRA. The prescaler starts counting from the moment the ADC is switched on by

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
208 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN
bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the con-
version starts at the following rising edge of the ADC clock cycle. See “Differential Gain
Channels” on page 211 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize
the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of a first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
single conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the
sample-and-hold takes place 2 ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.
When using Differential mode, along with Auto triggering from a source other than the
ADC Conversion Complete, each conversion will require 25 ADC clocks. This is
because the ADC must be disabled and re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 81.

Figure 101. ADC Timing Diagram, First Conversion (Single Conversion Mode)

MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update MUX and REFS

Update

Conversion
Complete
209
2466N–AVR–10/06

Figure 102. ADC Timing Diagram, Single Conversion

Figure 103. ADC Timing Diagram, Auto Triggered Conversion

Figure 104. ADC Timing Diagram, Free Running Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold
MUX and REFS
Update

Conversion
Complete MUX and REFS

Update

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
Complete

Prescaler
Reset

ADATE

Prescaler
Reset

Sample & Hold

MUX and REFS
Update

11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
210 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Differential Gain Channels When using differential gain channels, certain aspects of the conversion need to be
taken into consideration.

Differential conversions are synchronized to the internal clock CKADC2 equal to half the
ADC clock. This synchronization is done automatically by the ADC interface in such a
way that the sample-and-hold occurs at a specific phase of CKADC2. A conversion initi-
ated by the user (i.e., all single conversions, and the first free running conversion) when
CKADC2 is low will take the same amount of time as a single ended conversion (13 ADC
clock cycles from the next prescaled clock cycle). A conversion initiated by the user
when CKADC2 is high will take 14 ADC clock cycles due to the synchronization mecha-
nism. In Free Running mode, a new conversion is initiated immediately after the
previous conversion completes, and since CKADC2 is high at this time, all automatically
started (i.e., all but the first) free running conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequen-
cies may be subjected to non-linear amplification. An external low-pass filter should be
used if the input signal contains higher frequency components than the gain stage band-
width. Note that the ADC clock frequency is independent of the gain stage bandwidth
limitation. For example, the ADC clock period may be 6 µs, allowing a channel to be
sampled at 12 kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the
ADC must be switched off between conversions. When Auto Triggering is used, the
ADC prescaler is reset before the conversion is started. Since the gain stage is depen-
dent of a stable ADC clock prior to the conversion, this conversion will not be valid. By
disabling and then re-enabling the ADC between each conversion (writing ADEN in
ADCSRA to “0” then to “1”), only extended conversions are performed. The result from
the extended conversions will be valid. See “Prescaling and Conversion Timing” on
page 208 for timing details.

Changing Channel or
Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

Table 81. ADC Conversion Time

Condition

Sample & Hold (Cycles
from Start of
Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

Normal conversions, differential 1.5/2.5 13/14
211
2466N–AVR–10/06

If Auto Triggering is used, the exact time of the triggering event can be indeterministic.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If
the ADMUX Register is changed in this period, the user cannot tell if the next conversion
is based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

Special care should be taken when changing differential channels. Once a differential
channel has been selected, the gain stage may take as much as 125 µs to stabilize to
the new value. Thus conversions should not be started within the first 125 µs after
selecting a new differential channel. Alternatively, conversion results obtained within this
period should be discarded.

The same settling time should be observed for the first differential conversion after
changing ADC reference (by changing the REFS1:0 bits in ADMUX).

ADC Input Channels When changing channel selections, the user should observe the following guidelines to
ensure that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the conversion to complete before changing
the channel selection.

In Free Running mode, always select the channel before starting the first conversion.
The channel selection may be changed one ADC clock cycle after writing one to ADSC.
However, the simplest method is to wait for the first conversion to complete, and then
change the channel selection. Since the next conversion has already started automati-
cally, the next result will reflect the previous channel selection. Subsequent conversions
will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a
poor accuracy due to the required settling time for the automatic offset cancellation cir-
cuitry. The user should preferably disregard the first conversion result.

ADC Voltage Reference The reference voltage for the ADC (VREF) indicates the conversion range for the ADC.
Single ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be
selected as either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference
is generated from the internal bandgap reference (VBG) through an internal amplifier. In
either case, the external AREF pin is directly connected to the ADC, and the reference
voltage can be made more immune to noise by connecting a capacitor between the
AREF pin and ground. VREF can also be measured at the AREF pin with a high impedant
voltmeter. Note that VREF is a high impedant source, and only a capacitive load should
be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
212 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
external voltage. If no external voltage is applied to the AREF pin, the user may switch
between AVCC and 2.56V as reference selection. The first ADC conversion result after
switching reference voltage source may be inaccurate, and the user is advised to dis-
card this result.

If differential channels are used, the selected reference should not be closer to AVCC
than indicated in Table 122 on page 300.

ADC Noise Canceler The ADC features a noise canceler that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceler
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Con-
version Mode must be selected and the ADC conversion complete interrupt
must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a con-
version once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC
interrupt will wake up the CPU and execute the ADC Conversion Complete
interrupt routine. If another interrupt wakes up the CPU before the ADC con-
version is complete, that interrupt will be executed, and an ADC Conversion
Complete interrupt request will be generated when the ADC conversion
completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption. If the
ADC is enabled in such sleep modes and the user wants to perform differential conver-
sions, the user is advised to switch the ADC off and on after waking up from sleep to
prompt an extended conversion to get a valid result.

Analog Input Circuitry The Analog Input Circuitry for single ended channels is illustrated in Figure 105. An ana-
log source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 kΩ or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different,
although source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.
213
2466N–AVR–10/06

Figure 105. Analog Input Circuitry

Analog Noise Canceling
Techniques

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Keep them well away from
high-speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply
voltage via an LC network as shown in Figure 106.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do
not switch while a conversion is in progress.

Figure 106. ADC Power Connections

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL

G
N

D

V
C

C

P
A

0
(A

D
C

0)

P
A

1
(A

D
C

1)

P
A

2
(A

D
C

2)

P
A

3
(A

D
C

3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AVCC

GND

PC7

10
μH

10
0n

F

214 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Offset Compensation
Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differen-
tial measurements as much as possible. The remaining offset in the analog path can be
measured directly by selecting the same channel for both differential inputs. This offset
residue can be then subtracted in software from the measurement results. Using this
kind of software based offset correction, offset on any channel can be reduced below
one LSB.

ADC Accuracy Definitions An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n

steps (LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal
transition (at 0.5 LSB). Ideal value: 0 LSB.

Figure 107. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the
last transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below
maximum). Ideal value: 0 LSB

Figure 108. Gain Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error
215
2466N–AVR–10/06

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the
maximum deviation of an actual transition compared to an ideal transition for any
code. Ideal value: 0 LSB.

Figure 109. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width
(the interval between two adjacent transitions) from the ideal code width (1 LSB).
Ideal value: 0 LSB.

Figure 110. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number
of codes, a range of input voltages (1 LSB wide) will code to the same value. Always
±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition
compared to an ideal transition for any code. This is the compound effect of Offset,
Gain Error, Differential Error, Non-linearity, and Quantization Error. Ideal value: ±0.5
LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB
216 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
ADC Conversion Result After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage refer-
ence (see Table 83 on page 218 and Table 84 on page 219). 0x000 represents ground,
and 0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative
input pin, GAIN the selected gain factor, and VREF the selected voltage reference. The
result is presented in two’s complement form, from 0x200 (-512d) through 0x1FF
(+511d). Note that if the user wants to perform a quick polarity check of the results, it is
sufficient to read the MSB of the result (ADC9 in ADCH). If this bit is one, the result is
negative, and if this bit is zero, the result is positive. Figure 111 shows the decoding of
the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn -
ADCm) is selected with a gain of GAIN and a reference voltage of VREF.

Figure 111. Differential Measurement Range

ADC
VIN 1024⋅

VREF
--------------------------=

ADC
VPOS VNEG–() GAIN 512⋅ ⋅

VREF
--=

0

Output Code

0x1FF

0x000

VREF/GAIN Differential Input
Voltage (Volts)

0x3FF

0x200

- VREF/GAIN
217
2466N–AVR–10/06

Example:
ADMUX = 0xED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270
ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right
adjusts the result: ADCL = 0x70, ADCH = 0x02.

ADC Multiplexer Selection
Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 83. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,

Table 82. Correlation between Input Voltage and Output Codes

VADCn Read code Corresponding Decimal Value

 VADCm + VREF/GAIN 0x1FF 511

VADCm + 511/512 VREF/GAIN 0x1FF 511

VADCm + 510/512 VREF/GAIN 0x1FE 510

...

VADCm + 1/512 VREF/GAIN 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF/GAIN 0x3FF -1

...

VADCm - 511/512 VREF/GAIN 0x201 -511

VADCm - VREF/GAIN 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 83. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin
218 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
regardless of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register – ADCL and ADCH” on page 221.

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the
ADC. These bits also select the gain for the differential channels. See Table 84 for
details. If these bits are changed during a conversion, the change will not go in effect
until this conversion is complete (ADIF in ADCSRA is set).

Table 84. Input Channel and Gain Selections

MUX4..0
Single Ended
Input

Positive Differential
Input

Negative Differential
Input Gain

00000 ADC0

00001 ADC1

00010 ADC2

00011 ADC3 N/A

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000 ADC0 ADC0 10x

01001 ADC1 ADC0 10x

01010(1) ADC0 ADC0 200x

01011(1) ADC1 ADC0 200x

01100 ADC2 ADC2 10x

01101 ADC3 ADC2 10x

01110(1) ADC2 ADC2 200x

01111(1) ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 ADC1 ADC1 1x

10010 N/A ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 ADC2 ADC2 1x

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x
219
2466N–AVR–10/06

Note: 1. The differential input channels are not tested for devices in PDIP Package. This fea-
ture is only guaranteed to work for devices in TQFP and QFN/MLF Packages

ADC Control and Status
Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning Mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start
a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in SFIOR.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

11101 ADC5 ADC2 1x

11110 1.22 V (VBG) N/A

11111 0 V (GND)

Table 84. Input Channel and Gain Selections (Continued)

MUX4..0
Single Ended
Input

Positive Differential
Input

Negative Differential
Input Gain

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
220 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

The ADC Data Register –
ADCL and ADCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differ-
ential channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8-bit precision is required, it is
sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted.

Table 85. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
221
2466N–AVR–10/06

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 217.

Special FunctionIO Register –
SFIOR

• Bit 7:5 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set.

• Bit 4 – Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit
must be written to zero when SFIOR is written.

Bit 7 6 5 4 3 2 1 0

ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 SFIOR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 86. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event
222 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
JTAG Interface and
On-chip Debug
System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories
– Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Breakpoints on Single Address or Address Range
– Data Memory Breakpoints on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip Debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-scan Chain can be found in the
sections “Programming via the JTAG Interface” on page 281 and “IEEE 1149.1 (JTAG)
Boundary-scan” on page 229, respectively. The On-chip Debug support is considered
being private JTAG instructions, and distributed within ATMEL and to selected third
party vendors only.

Figure 112 shows a block diagram of the JTAG interface and the On-chip Debug sys-
tem. The TAP Controller is a state machine controlled by the TCK and TMS signals. The
TAP Controller selects either the JTAG Instruction Register or one of several Data Reg-
isters as the scan chain (Shift Register) between the TDI input and TDO output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers
used for board-level testing. The JTAG Programming Interface (actually consisting of
several physical and virtual Data Registers) is used for JTAG Serial Programming via
the JTAG interface. The Internal Scan Chain and Break Point Scan Chain are used for
On-chip Debugging only.

Test Access Port – TAP The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port – TAP. These pins are:

• TMS: Test Mode Select. This pin is used for navigating through the TAP-controller
state machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction register or Data Register.
223
2466N–AVR–10/06

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT –
which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins
and the TAP controller is in reset. When programmed and the JTD bit in MCUCSR is
cleared, the TAP input signals are internally pulled high and the JTAG is enabled for
Boundary-scan and programming. In this case, the TAP output pin (TDO) is left floating
in states where the JTAG TAP controller is not shifting data, and must therefore be con-
nected to a pull-up resistor or other hardware having pull-ups (for instance the TDI-input
of the next device in the scan chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open collec-
tors on the reset line are used in the application.

Figure 112. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

A
N

A
L

O
G

P
E

R
IP

H
E

R
IA

L
U

N
IT

S

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

A
n

a
lo

g
 in

p
u

ts
C

o
n

tr
o

l &
 C

lo
ck

 li
n

e
s

DEVICE BOUNDARY
224 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 113. TAP Controller State Diagram

TAP Controller The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 113 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-On Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-
face is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of
the JTAG instructions into the JTAG Instruction Register from the TDI input at the
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
225
2466N–AVR–10/06

this state is left by setting TMS high. While the instruction is shifted in from the TDI
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction
selects a particular Data Register as path between TDI and TDO and controls the
circuitry surrounding the selected Data Register.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction
is latched onto the parallel output from the Shift Register path in the Update-IR
state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the
state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the
Shift Data Register – Shift-DR state. While in this state, upload the selected Data
Register (selected by the present JTAG instruction in the JTAG Instruction Register)
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of
the data is shifted in when this state is left by setting TMS high. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register
captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can

always be entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 228.

Using the Boundary-
scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 229.

Using the On-chip Debug
System

As shown in Figure 112, the hardware support for On-chip Debugging consists mainly
of:

• A scan chain on the interface between the internal AVR CPU and the internal
peripheral units

• Break Point unit

• Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, 2 Program Memory Break Points, and 2 combined Break Points. Together, the 4
Break Points can be configured as either:

• 4 single Program Memory Break Points

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point

• 2 single Program Memory Break Points + 2 single Data Memory Break Points
226 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask
(“range Break Point”)

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask
(“range Break Point”)

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 227.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip Debug system to work. As a security feature, the On-chip Debug system is disabled
when any Lock bits are set. Otherwise, the On-chip Debug system would have provided
a back-door into a secured device.

The AVR JTAG ICE from Atmel is a powerful development tool for On-chip Debugging
of all AVR 8-bit RISC Microcontrollers with IEEE 1149.1 compliant JTAG interface. The
JTAG ICE and the AVR Studio user interface give the user complete control of the inter-
nal resources of the microcontroller, helping to reduce development time by making
debugging easier. The JTAG ICE performs real-time emulation of the microcontroller
while it is running in a target system.

Please refer to the Support Tools section on the AVR pages on www.atmel.com for a full
description of the AVR JTEG ICE. AVR Studio can be downloaded free from Software
section on the same web site.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code breakpoints (using the BREAK instruction) and up to two data memory break-
points, alternatively combined as a mask (range) Break Point.

On-chip Debug Specific
JTAG Instructions

The On-chip Debug support is considered being private JTAG instructions, and distrib-
uted within ATMEL and to selected third party vendors only. Instruction opcodes are
listed for reference.

PRIVATE0; $8 Private JTAG instruction for accessing On-chip Debug system.

PRIVATE1; $9 Private JTAG instruction for accessing On-chip Debug system.

PRIVATE2; $A Private JTAG instruction for accessing On-chip Debug system.

PRIVATE3; $B Private JTAG instruction for accessing On-chip Debug system.
227
2466N–AVR–10/06

On-chip Debug Related
Register in I/O Memory

On-chip Debug Register –
OCDR

The OCDR Register provides a communication channel from the running program in the
microcontroller to the debugger. The CPU can transfer a byte to the debugger by writing
to this location. At the same time, an Internal Flag; I/O Debug Register Dirty – IDRD – is
set to indicate to the debugger that the register has been written. When the CPU reads
the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the
IDRD bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case,
the OCDR Register can only be accessed if the OCDEN Fuse is programmed, and the
debugger enables access to the OCDR Register. In all other cases, the standard I/O
location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Using the JTAG
Programming
Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS,
TDI and TDO. These are the only pins that need to be controlled/observed to perform
JTAG programming (in addition to power pins). It is not required to apply 12V externally.
The JTAGEN Fuse must be programmed and the JTD bit in the MCUSR Register must
be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying

• EEPROM programming and verifying

• Fuse programming and verifying

• Lock bit programming and verifying

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a
chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section “Programming via the JTAG Interface” on
page 281.

Bibliography For more information about general Boundary-scan, the following literature can be
consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992

Bit 7 6 5 4 3 2 1 0

MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
228 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
IEEE 1149.1 (JTAG)
Boundary-scan

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

System Overview The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having Off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing intercon-
nections and integrity of components on Printed Circuits Boards by using the four TAP
signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
Data Register path will show the ID-code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in Reset during Test
mode. If not reset, inputs to the device may be determined by the scan operations, and
the internal software may be in an undetermined state when exiting the Test mode.
Entering reset, the outputs of any Port Pin will instantly enter the high impedance state,
making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be
issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the
AVR_RESET instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCSR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

Data Registers The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain
229
2466N–AVR–10/06

Bypass Register The Bypass Register consists of a single Shift Register stage. When the Bypass Regis-
ter is selected as path between TDI and TDO, the register is reset to 0 when leaving the
Capture-DR controller state. The Bypass Register can be used to shorten the scan
chain on a system when the other devices are to be tested.

Device Identification Register Figure 114 shows the structure of the Device Identification Register.

Figure 114. The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The JTAG version
number follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.
However, some revisions deviate from this rule, and the relevant version number is
shown in Table 87.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega16 is listed in Table 88.

Manufacturer ID The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufac-
turer ID for ATMEL is listed in Table 89.

Reset Register The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the
unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-
Out Period (refer to “Clock Sources” on page 25) after releasing the Reset Register. The

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Table 87. JTAG Version Numbers

Version JTAG Version Number (Hex)

ATmega16 revision G 0x6

ATmega16 revision H 0xE

ATmega16 revision I 0x8

ATmega16 revision J 0x9

ATmega16 revision K 0xA

ATmega16 revision L 0xB

Table 88. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega16 0x9403

Table 89. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL 0x01F
230 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
output from this Data Register is not latched, so the reset will take place immediately, as
shown in Figure 115.

Figure 115. Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having Off-chip connections.

See “Boundary-scan Chain” on page 234 for a complete description.

Boundary-scan Specific
JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

EXTEST; $0 Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having Off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE; $1 Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-reg-
ister consists of a version number, a device number and the manufacturer code chosen
by JEDEC. This is the default instruction after power-up.

The active states are:

D Q
From
TDI

ClockDR · AVR_RESET

To
TDO

From other Internal and
External Reset Sources

Internal Reset
231
2466N–AVR–10/06

• Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

SAMPLE_PRELOAD; $2 Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan Chain is applied to the output latches.
However, the output latches are not connected to the pins.

AVR_RESET; $C The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG Reset source. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as Data Register. Note that the reset
will be active as long as there is a logic 'one' in the Reset Chain. The output from this
chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; $F Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan Related
Register in I/O Memory

MCU Control and Status
Register – MCUCSR

The MCU Control and Status Register contains control bits for general MCU functions,
and provides information on which reset source caused an MCU Reset.

• Bit 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed.
If this bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling
or enabling of the JTAG interface, a timed sequence must be followed when changing
this bit: The application software must write this bit to the desired value twice within four
cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be
set to one. The reason for this is to avoid static current at the TDO pin in the JTAG
interface.

Bit 7 6 5 4 3 2 1 0

JTD ISC2 – JTRF WDRF BORF EXTRF PORF MCUCSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
232 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.
233
2466N–AVR–10/06

Boundary-scan Chain The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having Off-chip connection.

Scanning the Digital Port Pins Figure 116 shows the Boundary-scan Cell for a bi-directional port pin with pull-up func-
tion. The cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn
– function, and a bi-directional pin cell that combines the three signals Output Control –
OCxn, Output Data – ODxn, and Input Data – IDxn, into only a two-stage Shift Register.
The port and pin indexes are not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 117
shows a simple digital Port Pin as described in the section “I/O Ports” on page 50. The
Boundary-scan details from Figure 116 replaces the dashed box in Figure 117.

When no alternate port function is present, the Input Data – ID – corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction – DD Register, and
the Pull-up Enable – PUExn – corresponds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 117 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuitry.

Figure 116. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

0

1
D Q D Q

G

0

1

Port Pin (PXn)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Pullup Enable (PUE)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF2 LD2

FF1 LD1

LD0FF0
234 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 117. General Port Pin Schematic Diagram(1)

Note: 1. See Boundary-scan description for details.

Boundary-scan and the Two-
wire Interface

The 2 Two-wire Interface pins SCL and SDA have one additional control signal in the
scan-chain; Two-wire Interface Enable – TWIEN. As shown in Figure 118, the TWIEN
signal enables a tri-state buffer with slew-rate control in parallel with the ordinary digital
port pins. A general scan cell as shown in Figure 122 is attached to the TWIEN signal.
Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordi-

nary scan support for digital port pins suffice for connectivity tests. The only reason
for having TWIEN in the scan path, is to be able to disconnect the slew-rate control
buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will
lead to drive contention.

CLK

RPx

RRx

WPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

PUExn

OCxn

ODxn

IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn
235
2466N–AVR–10/06

Figure 118. Additional Scan Signal for the Two-wire Interface

Scanning the RESET Pin The RESET pin accepts 5V active low logic for standard reset operation, and 12V active
high logic for High Voltage Parallel Programming. An observe-only cell as shown in Fig-
ure 119 is inserted both for the 5V reset signal; RSTT, and the 12V reset signal;
RSTHV.

Figure 119. Observe-only Cell

Scanning the Clock Pins The AVR devices have many clock options selectable by fuses. These are: Internal RC
Oscillator, External RC, External Clock, (High Frequency) Crystal Oscillator, Low Fre-
quency Crystal Oscillator, and Ceramic Resonator.

Figure 120 shows how each Oscillator with external connection is supported in the scan
chain. The Enable signal is supported with a general boundary-scan cell, while the
Oscillator/Clock output is attached to an observe-only cell. In addition to the main clock,
the Timer Oscillator is scanned in the same way. The output from the internal RC Oscil-
lator is not scanned, as this Oscillator does not have external connections.

Pxn

PUExn

ODxn

IDxn

TWIEN

OCxn

Slew-rate Limited

SRC

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From System Pin To System Logic

FF1
236 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 120. Boundary-scan Cells for Oscillators and Clock Options

Table 90 summaries the scan registers for the external clock pin XTAL1, Oscillators with
XTAL1/XTAL2 connections as well as 32 kHz Timer Oscillator.

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift

between the Internal Oscillator and the JTAG TCK clock. If possible, scanning an
external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time,
the clock configuration is considered fixed for a given application. The user is advised
to scan the same clock option as to be used in the final system. The enable signals
are supported in the scan chain because the system logic can disable clock options
in sleep modes, thereby disconnecting the Oscillator pins from the scan path if not
provided. The INTCAP Fuses are not supported in the scan-chain, so the boundary
scan chain can not make a XTAL Oscillator requiring internal capacitors to run unless
the fuse is correctly programmed.

Scanning the Analog
Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 121.
The Boundary-scan cell from Figure 122 is attached to each of these signals. The sig-
nals are described in Table 91.

The Comparator need not be used for pure connectivity testing, since all analog inputs
are shared with a digital port pin as well.

Table 90. Scan Signals for the Oscillators(1)(2)(3)

Enable Signal Scanned Clock Line Clock Option
Scanned Clock Line
when not Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal

External Ceramic
Resonator

0

RCOSCEN RCCK External RC 1

OSC32EN OSC32CK Low Freq. External Crystal 0

TOSKON TOSCK 32 kHz Timer Oscillator 0

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

T
o

S
ys

te
m

 L
og

ic

FF10

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

F
ro

m
 D

ig
ita

l L
og

ic

XTAL1/TOSC1 XTAL2/TOSC2

Oscillator

ENABLE OUTPUT
237
2466N–AVR–10/06

Figure 121. Analog Comparator

Figure 122. General Boundary-scan Cell used for Signals for Comparator and ADC

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

AC_IDLE

ACO

ADCEN

0

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

To Analog Circuitry/
To Digital Logic

From Digital Logic/
From Analog Ciruitry
238 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Scanning the ADC

Figure 123 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell from
Figure 122 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all analog
inputs are shared with a digital port pin as well.

Figure 123. Analog to Digital Converter

The signals are described briefly in Table 92.

Table 91. Boundary-scan Signals for the Analog Comparator

Signal
Name

Direction as Seen from
the Comparator Description

Recommended Input
when Not in Use

Output Values when
Recommended Inputs are Used

AC_IDLE Input Turns off Analog
comparator when true

1 Depends upon µC code being
executed

ACO Output Analog Comparator
Output

Will become input to µC
code being executed

0

ACME Input Uses output signal from
ADC mux when true

0 Depends upon µC code being
executed

ACBG Input Bandgap Reference
enable

0 Depends upon µC code being
executed

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-

+

-
10x 20x

G10 G20

ST
ACLK

AMPEN

2.56V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

GNDEN

PASSEN

ACTEN

C
O

M
P

SCTEST
ADCBGEN

To Comparator

1.22V
ref AREF
239
2466N–AVR–10/06

Table 92. Boundary-scan Signals for the ADC

Signal
Name

Direction as Seen
from the ADC Description

Recommended
Input when Not
in Use

Output Values when Recommended
Inputs are used, and CPU is not
Using the ADC

COMP Output Comparator Output 0 0

ACLK Input Clock signal to gain stages
implemented as Switch-cap filters

0 0

ACTEN Input Enable path from gain stages to
the comparator

0 0

ADCBGEN Input Enable Band-gap reference as
negative input to comparator

0 0

ADCEN Input Power-on signal to the ADC 0 0

AMPEN Input Power-on signal to the gain stages 0 0

DAC_9 Input Bit 9 of digital value to DAC 1 1

DAC_8 Input Bit 8 of digital value to DAC 0 0

DAC_7 Input Bit 7 of digital value to DAC 0 0

DAC_6 Input Bit 6 of digital value to DAC 0 0

DAC_5 Input Bit 5 of digital value to DAC 0 0

DAC_4 Input Bit 4 of digital value to DAC 0 0

DAC_3 Input Bit 3 of digital value to DAC 0 0

DAC_2 Input Bit 2 of digital value to DAC 0 0

DAC_1 Input Bit 1 of digital value to DAC 0 0

DAC_0 Input Bit 0 of digital value to DAC 0 0

EXTCH Input Connect ADC channels 0 - 3 to by-
pass path around gain stages

1 1

G10 Input Enable 10x gain 0 0

G20 Input Enable 20x gain 0 0

GNDEN Input Ground the negative input to
comparator when true

0 0

HOLD Input Sample&Hold signal. Sample
analog signal when low. Hold
signal when high. If gain stages
are used, this signal must go
active when ACLK is high.

1 1

IREFEN Input Enables Band-gap reference as
AREF signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0
240 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: Incorrect setting of the switches in Figure 123 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 123. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 92
should be used. The user is recommended not to use the Differential Gain stages dur-
ing scan. Switch-cap based gain stages require fast operation and accurate timing
which is difficult to obtain when used in a scan chain. Details concerning operations of
the differential gain stage is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 123 with a successive
approximation algorithm implemented in the digital logic. When used in Boundary-scan,
the problem is usually to ensure that an applied analog voltage is measured within some
limits. This can easily be done without running a successive approximation algorithm:
apply the lower limit on the digital DAC[9:0] lines, make sure the output from the com-
parator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the
output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

When using the ADC, remember the following:

• The Port Pin for the ADC channel in use must be configured to be an input with pull-
up disabled to avoid signal contention.

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input Input Mux for negative input for
differential signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative input for
differential signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative input for
differential signal, bit 0

0 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of
comparator. (Active low)

1 1

SCTEST Input Switch-cap TEST enable. Output
from x10 gain stage send out to
Port Pin having ADC_4

0 0

ST Input Output of gain stages will settle
faster if this signal is high first two
ACLK periods after AMPEN goes
high.

0 0

VCCREN Input Selects Vcc as the ACC reference
voltage.

0 0

Table 92. Boundary-scan Signals for the ADC (Continued)

Signal
Name

Direction as Seen
from the ADC Description

Recommended
Input when Not
in Use

Output Values when Recommended
Inputs are used, and CPU is not
Using the ADC
241
2466N–AVR–10/06

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed
when enabling the ADC. The user is advised to wait at least 200 ns after enabling
the ADC before controlling/observing any ADC signal, or perform a dummy
conversion before using the first result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD
signal low (Sample mode).

As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3
when the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 92 are used unless other values are given in the
algorithm in Table 93. Only the DAC and Port Pin values of the Scan-chain are shown.
The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done
on the data scanned out when scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock
frequency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency
has to be at least five times the number of scan bits divided by the maximum hold time,
thold,max.

Table 93. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pullup_
Enable

1 SAMPLE
_PRELO
AD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6 Verify the
COMP bit
scanned
out to be
0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11 Verify the
COMP bit
scanned
out to be
1

1 0x200 0x08 1 1 0 0 0

The lower limit is: 1024 1,5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1,5V 1,05 5V⁄⋅ ⋅ 323 0x143= =
242 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
ATmega16 Boundary-
scan Order

Table 94 shows the scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned
out. The scan order follows the pin-out order as far as possible. Therefore, the bits of
Port A is scanned in the opposite bit order of the other ports. Exceptions from the rules
are the Scan chains for the analog circuits, which constitute the most significant bits of
the scan chain regardless of which physical pin they are connected to. In Figure 116,
PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, and PXn.
Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan chain,
since these pins constitute the TAP pins when the JTAG is enabled.

Table 94. ATmega16 Boundary-scan Order

Bit Number Signal Name Module

140 AC_IDLE Comparator

139 ACO

138 ACME

137 ACBG

136 COMP ADC

135 PRIVATE_SIGNAL1(1)

134 ACLK

133 ACTEN

132 PRIVATE_SIGNAL2(2)

131 ADCBGEN

130 ADCEN

129 AMPEN

128 DAC_9

127 DAC_8

126 DAC_7

125 DAC_6

124 DAC_5

123 DAC_4

122 DAC_3

121 DAC_2

120 DAC_1

119 DAC_0

118 EXTCH

117 G10

116 G20

115 GNDEN

114 HOLD

113 IREFEN

112 MUXEN_7
243
2466N–AVR–10/06

111 MUXEN_6

110 MUXEN_5

109 MUXEN_4

108 MUXEN_3

107 MUXEN_2

106 MUXEN_1

105 MUXEN_0

104 NEGSEL_2

103 NEGSEL_1

102 NEGSEL_0

101 PASSEN

100 PRECH

99 SCTEST

98 ST

97 VCCREN

96 PB0.Data Port B

95 PB0.Control

94 PB0.Pullup_Enable

93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable

90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable

87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable

84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

81 PB5.Data

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module
244 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
75 PB7.Data

74 PB7.Control

73 PB7.Pullup_Enable

72 RSTT Reset Logic
(Observe-Only)

71 RSTHV

70 EXTCLKEN Enable signals for main clock/Oscillators

69 OSCON

68 RCOSCEN

67 OSC32EN

66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
(Observe-Only)

65 OSCCK

64 RCCK

63 OSC32CK

62 TWIEN TWI

61 PD0.Data Port D

60 PD0.Control

59 PD0.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

61 PD0.Data

60 PD0.Control

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module
245
2466N–AVR–10/06

59 PD0.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

46 PD5.Data

45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PD6.Pullup_Enable

40 PD7.Data

39 PD7.Control

38 PD7.Pullup_Enable

37 PC0.Data Port C

36 PC0.Control

35 PC0.Pullup_Enable

34 PC1.Data

33 PC1.Control

32 PC1.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module
246 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE:SIGNAL2 should always be scanned in as zero.

31 PC6.Data

30 PC6.Control

29 PC6.Pullup_Enable

28 PC7.Data

27 PC7.Control

26 PC7.Pullup_Enable

25 TOSC 32 kHz Timer Oscillator

24 TOSCON

23 PA7.Data Port A

22 PA7.Control

21 PA7.Pullup_Enable

20 PA6.Data

19 PA6.Control

18 PA6.Pullup_Enable

17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable

14 PA4.Data

13 PA4.Control

12 PA4.Pullup_Enable

11 PA3.Data

10 PA3.Control

9 PA3.Pullup_Enable

8 PA2.Data

7 PA2.Control

6 PA2.Pullup_Enable

5 PA1.Data

4 PA1.Control

3 PA1.Pullup_Enable

2 PA0.Data

1 PA0.Control

0 PA0.Pullup_Enable

Table 94. ATmega16 Boundary-scan Order (Continued)

Bit Number Signal Name Module
247
2466N–AVR–10/06

Boundary-scan
Description Language
Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-scan Data Register are included in this description.
A BSDL file for ATmega16 is available.
248 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Boot Loader Support
– Read-While-Write
Self-Programming

The Boot Loader Support provides a real Read-While-Write Self-Programming mecha-
nism for downloading and uploading program code by the MCU itself. This feature
allows flexible application software updates controlled by the MCU using a Flash-resi-
dent Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the
Flash memory, or read the code from the Program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the
Boot Loader memory. The Boot Loader can thus even modify itself, and it can also
erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with Fuses and the Boot Loader has two separate sets
of Boot Lock bits which can be set independently. This gives the user a unique flexibility
to select different levels of protection.

Features • Read-While-Write Self-Programming
• Flexible Boot Memory size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 107 on page
265) used during programming. The page organization does not affect normal
operation.

Application and Boot
Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the
Boot Loader section (see Figure 125). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 100 on page 260 and Figure 125. These two
sections can have different level of protection since they have different sets of Lock bits.

Application Section The Application section is the section of the Flash that is used for storing the application
code. The protection level for the application section can be selected by the Application
Boot Lock bits (Boot Lock bits 0), see Table 96 on page 252. The Application section
can never store any Boot Loader code since the SPM instruction is disabled when exe-
cuted from the Application section.

BLS – Boot Loader Section While the Application section is used for storing the application code, the The Boot
Loader software must be located in the BLS since the SPM instruction can initiate a pro-
gramming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section
can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 97 on page
252.

Read-While-Write and no
Read-While-Write Flash
Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on which address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 101 on page 260 and Figure 125 on page 251.
The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section
can be read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted
during the entire operation.
249
2466N–AVR–10/06

Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write sec-
tion” refers to which section that is being programmed (erased or written), not which
section that actually is being read during a Boot Loader software update.

RWW – Read-While-Write
Section

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW sec-
tion. During an on-going programming, the software must ensure that the RWW section
never is being read. If the user software is trying to read code that is located inside the
RWW section (i.e., by a call/jmp/lpm or an interrupt) during programming, the software
might end up in an unknown state. To avoid this, the interrupts should either be disabled
or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory
Control Register (SPMCR) will be read as logical one as long as the RWW section is
blocked for reading. After a programming is completed, the RWWSB must be cleared by
software before reading code located in the RWW section. See “Store Program Memory
Control Register – SPMCR” on page 253. for details on how to clear RWWSB.

NRWW – No Read-While-Write
Section

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire page erase or page write operation.

Figure 124. Read-While-Write vs. No Read-While-Write

Table 95. Read-While-Write Features

Which Section does the Z-
pointer Address during the

Programming?

Which Section can be
Read during

Programming?
Is the CPU

Halted?

Read-While-
Write

Supported?

RWW section NRWW section No Yes

NRWW section None Yes No

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
during the Operation

Code Located in
NRWW Section
Can be Read during
the Operation
250 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 125. Memory Sections(1)

Note: 1. The parameters in the figure above are given in Table 100 on page 260.

Boot Loader Lock Bits If no Boot Loader capability is needed, the entire Flash is available for application code.
The Boot Loader has two separate sets of Boot Lock bits which can be set indepen-
dently. This gives the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU

• To protect only the Boot Loader Flash section from a software update by the MCU

• To protect only the Application Flash section from a software update by the MCU

• Allow software update in the entire Flash

See Table 96 and Table 97 for further details. The Boot Lock bits can be set in software
and in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase
command only. The general Write Lock (Lock Bit mode 2) does not control the program-
ming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 3) does not control reading nor writing by LPM/SPM, if it is attempted.

$0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

$0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

$0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

$0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader
251
2466N–AVR–10/06

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Entering the Boot Loader
Program

Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI inter-
face. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is
started after a reset. After the application code is loaded, the program can start execut-
ing the application code. Note that the fuses cannot be changed by the MCU itself. This
means that once the Boot Reset Fuse is programmed, the Reset Vector will always
point to the Boot Loader Reset and the fuse can only be changed through the serial or
parallel programming interface.

Table 96. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Table 97. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If interrupt
vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed
to read from the Boot Loader section. If interrupt vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.
252 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. “1” means unprogrammed, “0” means programmed

Store Program Memory
Control Register – SPMCR

The Store Program Memory Control Register contains the control bits needed to control
the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a self-programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega16 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a page erase or a page write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in R0. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the Lock bit set, or if no SPM instruction is executed within four clock
cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-
pointer) into the destination register. See “Reading the Fuse and Lock Bits from Soft-
ware” on page 257 for details.

Table 98. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application reset (address $0000)

0 Reset Vector = Boot Loader reset (see Table 100 on page 260)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
253
2466N–AVR–10/06

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer. The data in R1 and R0 are
ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM
instruction is executed within four clock cycles. The CPU is halted during the entire page
write operation if the NRWW section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
the Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon
completion of a page erase, or if no SPM instruction is executed within four clock cycles.
The CPU is halted during the entire page write operation if the NRWW section is
addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will
auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed
within four clock cycles. During page erase and page write, the SPMEN bit remains high
until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the
lower five bits will have no effect.

Addressing the Flash
during Self-
Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 107 on page 265), the Program
Counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 126. Note that the Page Erase
and Page Write operations are addressed independently. Therefore it is of major impor-
tance that the Boot Loader software addresses the same page in both the Page Erase
and Page Write operation. Once a programming operation is initiated, the address is
latched and the Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock
bits. The content of the Z-pointer is ignored and will have no effect on the operation. The
LPM instruction does also use the Z pointer to store the address. Since this instruction
addresses the Flash byte by byte, also the LSB (bit Z0) of the Z-pointer is used.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
254 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 126. Addressing the Flash during SPM(1)

Notes: 1. The different variables used in Figure 126 are listed in Table 102 on page 261.
2. PCPAGE and PCWORD are listed in Table 107 on page 265.

Self-Programming the
Flash

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the page erase command or between a page erase and a page write
operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both
the page erase and page write operation is addressing the same page. See “Simple
Assembly Code Example for a Boot Loader” on page 259 for an assembly code
example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
255
2466N–AVR–10/06

Performing Page Erase by
SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in R1
and R0 is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer must be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page
erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary Buffer
(Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR.
The content of PCWORD in the Z-register is used to address the data in the temporary
buffer. The temporary buffer will auto-erase after a page write operation or by writing the
RWWSRE bit in SPMCR. It is also erased after a system reset. Note that it is not possi-
ble to write more than one time to each address without erasing the temporary buffer.
Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded

will be lost.

Performing a Page Write To execute Page Write, set up the address in the Z-pointer, write “X0000101” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The data in R1
and R0 is ignored. The page address must be written to PCPAGE. Other bits in the Z-
pointer must be written zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page
Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM Interrupt If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCR is cleared. This means that the interrupt can be used
instead of polling the SPMCR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 45.

Consideration while Updating
BLS

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

Prevent Reading the RWW
Section during Self-
Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the Self-Programming operation. The RWWSB in the SPMCR will be
set as long as the RWW section is busy. During self-programming the Interrupt Vector
table should be moved to the BLS as described in “Interrupts” on page 45, or the inter-
rupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See
“Simple Assembly Code Example for a Boot Loader” on page 259 for an example.
256 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Setting the Boot Loader Lock
Bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The only
accessible Lock bits are the Boot Lock bits that may prevent the Application and Boot
Loader section from any software update by the MCU.

See Table 96 and Table 97 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCR. The Z-pointer is don’t care during this operation, but for future compatibility it is
recommended to load the Z-pointer with $0001 (same as used for reading the Lock
bits). For future compatibility It is also recommended to set bits 7, 6, 1, and 0 in R0 to “1”
when writing the Lock bits. When programming the Lock bits the entire Flash can be
read during the operation.

EEPROM Write Prevents
Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register.

Reading the Fuse and Lock
Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with $0001 and set the BLBSET and SPMEN bits in SPMCR. When
an LPM instruction is executed within three CPU cycles after the BLBSET and SPMEN
bits are set in SPMCR, the value of the Lock bits will be loaded in the destination regis-
ter. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock
bits or if no LPM instruction is executed within three CPU cycles or no SPM instruction is
executed within four CPU cycles. When BLBSET and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low bits is similar to the one described above for
reading the Lock bits. To read the Fuse Low bits, load the Z-pointer with $0000 and set
the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within
three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse Low bits (FLB) will be loaded in the destination register as shown below. Refer to
Table 106 on page 264 for a detailed description and mapping of the Fuse Low bits.

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCR, the value of the Fuse High bits (FHB) will be loaded in the destination reg-
ister as shown below. Refer to Table 105 on page 263 for detailed description and
mapping of the Fuse High bits.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
257
2466N–AVR–10/06

Preventing Flash Corruption During periods of low VCC, the Flash program can be corrupted because the supply volt-
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied.

A Flash program corruption can be caused by two situations when the voltage is too low.
First, a regular write sequence to the Flash requires a minimum voltage to operate
correctly. Secondly, the CPU itself can execute instructions incorrectly, if the supply
voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one
is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot
Loader Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if
the operating voltage matches the detection level. If not, an external low VCC
Reset Protection circuit can be used. If a reset occurs while a write operation is
in progress, the write operation will be completed provided that the power supply
voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCR Register and thus the Flash from unintentional
writes.

Programming Time for Flash
when using SPM

The Calibrated RC Oscillator is used to time Flash accesses. Table 99 shows the typical
programming time for Flash accesses from the CPU.

Table 99. SPM Programming Time.

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page
Write, and write Lock bits by SPM)

3.7 ms 4.5 ms
258 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Simple Assembly Code
Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z pointer
;-error handling is not included
;-the routine must be placed inside the boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB is page size in BYTES, not
; words

.org SMALLBOOTSTART
Write_page:
; page erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute page write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCR
259
2466N–AVR–10/06

sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not
; ready yet

ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

ATmega16 Boot Loader
Parameters

In Table 100 through Table 102, the parameters used in the description of the self pro-
gramming are given.

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 125

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on
page 250 and “RWW – Read-While-Write Section” on page 250

Table 100. Boot Size Configuration(1)

BOOTSZ1 BOOTSZ0
Boot
Size Pages

Application
Flash
Section

Boot
Loader
Flash
Section

End
Application
section

Boot Reset
Address
(start Boot
Loader
Section)

1 1
128
words

2
$0000 -
$1F7F

$1F80 -
$1FFF

$1F7F $1F80

1 0
256
words

4
$0000 -
$1EFF

$1F00 -
$1FFF

$1EFF $1F00

0 1
512
words

8
$0000 -
$1DFF

$1E00 -
$1FFF

$1DFF $1E00

0 0
1024
words

16
$0000 -
$1BFF

$1C00 -
$1FFF

$1BFF $1C00

Table 101. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 112 $0000 - $1BFF

No Read-While-Write section (NRWW) 16 $1C00 - $1FFF
260 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash during Self-Programming” on page 254 for details about
the use of Z-pointer during Self-Programming.

Table 102. Explanation of Different Variables used in Figure 126 and the Mapping to
the Z-pointer

Variable
Corresponding

Z-value(1) Description

PCMSB
12 Most significant bit in the Program Counter.

(The Program Counter is 13 bits PC[12:0])

PAGEMSB
5 Most significant bit which is used to address the

words within one page (64 words in a page
requires 6 bits PC [5:0]).

ZPCMSB
Z13 Bit in Z-register that is mapped to PCMSB.

Because Z0 is not used, the ZPCMSB equals
PCMSB + 1.

ZPAGEMSB
Z6 Bit in Z-register that is mapped to PAGEMSB.

Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE
PC[12:6] Z13:Z7 Program Counter page address: Page select,

for Page Erase and Page Write

PCWORD
PC[5:0] Z6:Z1 Program Counter word address: Word select,

for filling temporary buffer (must be zero during
page write operation)
261
2466N–AVR–10/06

Memory
Programming

Program And Data
Memory Lock Bits

The ATmega16 provides six Lock bits which can be left unprogrammed (“1”) or can be
programmed (“0”) to obtain the additional features listed in Table 104. The Lock bits can
only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 103. Lock Bit Byte(1)

Lock Bit Byte Bit No. Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 104. Lock Bit Protection Modes

Memory Lock Bits(2) Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is
disabled in Parallel and SPI/JTAG Serial Programming
mode. The Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

3 0 0

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and SPI/JTAG Serial
Programming mode. The Fuse bits are locked in both
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not
allowed to read from the Application section. If interrupt
vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.
262 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Notes: 1. Program the Fuse bits before programming the Lock bits.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The ATmega16 has two fuse bytes. Table 105 and Table 106 describe briefly the func-
tionality of all the fuses and how they are mapped into the fuse bytes. Note that the
fuses are read as logical zero, “0”, if they are programmed.

Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See See

“Clock Sources” on page 25. for details.
3. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 100 on

page 260.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of

Lock bits and the JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of
the clock system to be running in all sleep modes. This may increase the power
consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be dis-
abled. This to avoid static current at the TDO pin in the JTAG interface.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section,
and LPM executing from the Application section is not
allowed to read from the Boot Loader section. If interrupt
vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed
to read from the Boot Loader section. If interrupt vectors
are placed in the Application section, interrupts are
disabled while executing from the Boot Loader section.

Table 104. Lock Bit Protection Modes (Continued)

Memory Lock Bits(2) Protection Type

Table 105. Fuse High Byte

Fuse High
Byte

Bit
No. Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5
Enable SPI Serial Program and
Data Downloading

0 (programmed, SPI prog. enabled)

CKOPT(2) 4 Oscillator options 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM not
preserved)

BOOTSZ1 2
Select Boot Size (see Table 100
for details) 0 (programmed)(3)

BOOTSZ0 1
Select Boot Size (see Table 100
for details) 0 (programmed)(3)

BOOTRST 0 Select reset vector 1 (unprogrammed)
263
2466N–AVR–10/06

Notes: 1. The default value of SUT1..0 results in maximum start-up time. SeeTable 10 on page
30 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 1MHz. See
Table 2 on page 25 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the
Lock bits.

Latching of Fuses The Fuse values are latched when the device enters programming mode and changes
of the Fuse values will have no effect until the part leaves Programming mode. This
does not apply to the EESAVE Fuse which will take effect once it is programmed. The
fuses are also latched on Power-up in Normal mode.

Signature Bytes All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.
The three bytes reside in a separate address space.

For the ATmega16 the signature bytes are:

1. $000: $1E (indicates manufactured by Atmel)

2. $001: $94 (indicates 16KB Flash memory)

3. $002: $03 (indicates ATmega16 device when $001 is $94)

Calibration Byte The ATmega16 stores four different calibration values for the internal RC Oscillator.
These bytes resides in the signature row High Byte of the addresses 0x0000, 0x0001,
0x0002, and 0x0003 for 1, 2, 4, and 8 Mhz respectively. During Reset, the 1 MHz value
is automatically loaded into the OSCCAL Register. If other frequencies are used, the
calibration value has to be loaded manually, see “Oscillator Calibration Register – OSC-
CAL” on page 30 for details.

Table 106. Fuse Low Byte

Fuse Low
Byte

Bit
No. Description Default Value

BODLEVEL 7 Brown-out Detector trigger level 1 (unprogrammed)

BODEN 6 Brown-out Detector enable 1 (unprogrammed, BOD disabled)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 0 (programmed)(2)

CKSEL0 0 Select Clock source 1 (unprogrammed)(2)
264 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Page Size

Parallel Programming
Parameters, Pin
Mapping, and
Commands

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the ATmega16. Pulses are
assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the ATmega16 are referenced by signal names describing
their functionality during parallel programming, see Figure 127 and Table 109. Pins not
described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 111.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 112.

Figure 127. Parallel Programming

Table 107. No. of Words in a Page and no. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

8K words (16K bytes) 64 words PC[5:0] 128 PC[12:6] 12

Table 108. No. of Words in a Page and no. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V
265
2466N–AVR–10/06

Table 109. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load

BS2 PA0 I
Byte Select 2 (“0” selects Low byte, “1” selects
2’nd High byte)

DATA PB7-0 I/O Bidirectional Data bus (Output when OE is low)

Table 110. Pin Values used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 111. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1)

0 1 Load Data (High or Low data byte for Flash determined by BS1)

1 0 Load Command

1 1 No Action, Idle

Table 112. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM
266 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 112. Command Byte Bit Coding

Command Byte Command Executed
267
2466N–AVR–10/06

Parallel Programming

Enter Programming Mode The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5 - 5.5V between VCC and GND, and wait at least 100 µs.

2. Set RESET to “0” and toggle XTAL1 at least 6 times

3. Set the Prog_enable pins listed in Table 110 on page 266 to “0000” and wait at
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns
after +12V has been applied to RESET, will cause the device to fail entering Pro-
gramming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible
to apply qualified XTAL1 pulses. In such cases, the following algorithm should be
followed:

1. Set Prog_enable pins listed in Table 110 on page 266 to “0000”.

2. Apply 4.5 - 5.5V between VCC and GND simultaneously as 11.5 - 12.5V is
applied to RESET.

3. Wait 100 µs.

4. Re-program the fuses to ensure that External Clock is selected as clock source
(CKSEL3:0 = 0b0000) If Lock bits are programmed, a Chip Erase command
must be executed before changing the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to
0b0.

6. Entering Programming mode with the original algorithm, as described above.

Considerations for Efficient
Programming

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value $FF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address High byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.

Chip Erase The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or the
EEPROM are reprogrammed.
Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE Fuse is

programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.
268 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Programming the Flash The Flash is organized in pages, see Table 107 on page 265. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address Low byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address Low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data Low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 129 for
signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 128 on page 270. Note
that if less than 8 bits are required to address words in the page (pagesize < 256), the
most significant bit(s) in the address Low byte are used to address the page when per-
forming a page write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address High byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address High byte.

H. Program Page

1. Set BS1 = “0”

2. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.
269
2466N–AVR–10/06

3. Wait until RDY/BSY goes high. (See Figure 129 for signal waveforms)

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.

Figure 128. Addressing the Flash which is Organized in Pages

Note: 1. PCPAGE and PCWORD are listed in Table 107 on page 265.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
270 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 129. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

Programming the EEPROM The EEPROM is organized in pages, see Table 108 on page 265. When programming
the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to “Programming the Flash” on page 269 for details on
Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. C: Load Data ($00 - $FF)

5. E: Latch data (give PAGEL a positive pulse)

K: Repeat 3 through 5 until the entire buffer is filled

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page.
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page. (See Figure
130 for signal waveforms)

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

$10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

271
2466N–AVR–10/06

Figure 130. Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” on page 269 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word Low byte can now be read at
DATA.

5. Set BS1 to “1”. The Flash word High byte can now be read at DATA.

6. Set OE to “1”.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 269 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at
DATA.

5. Set OE to “1”.

Programming the Fuse Low
Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 269 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “0” and BS2 to “0”.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

272 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Programming the Fuse High
Bits

The algorithm for programming the Fuse high bits is as follows (refer to “Programming
the Flash” on page 269 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Figure 131. Programming the Fuses

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 269 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 269 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be
read at DATA (“0” means programmed).

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

$40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

$40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

BS2
273
2466N–AVR–10/06

Figure 132. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 269 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at
DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 269 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, $00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Parallel Programming
Characteristics

Figure 133. Parallel Programming Timing, Including some General Timing
Requirements

Fuse Low Byte

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWL WH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
t BVWL

WLRL
274 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 134. Parallel Programming Timing, Loading Sequence with Timing
Requirements(1)

Note: 1. The timing requirements shown in Figure 133 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to loading operation.

Figure 135. Parallel Programming Timing, Reading Sequence (within the Same Page)
with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 133 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to reading operation.

Table 113. Parallel Programming Characteristics, VCC = 5 V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
275
2466N–AVR–10/06

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.

2. tWLRH_CE is valid for the Chip Erase command.

Serial Downloading Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input), and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in
Table 114 on page 276, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface.

SPI Serial Programming Pin
Mapping

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 113. Parallel Programming Characteristics, VCC = 5 V ± 10% (Continued)

Symbol Parameter Min Typ Max Units

Table 114. Pin Mapping SPI Serial Programming

Symbol Pins I/O Description

MOSI PB5 I Serial Data in

MISO PB6 O Serial Data out

SCK PB7 I Serial Clock
276 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 136. SPI Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.

2. VCC -0.3V < AVCC < VCC +0.3V, however, AVCC should always be within 2.7 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into $FF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high
periods for the serial clock (SCK) input are defined as follows:

Low:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

High:> 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

SPI Serial Programming
Algorithm

When writing serial data to the ATmega16, data is clocked on the rising edge of SCK.

When reading data from the ATmega16, data is clocked on the falling edge of SCK. See
Figure 138 for timing details.

To program and verify the ATmega16 in the SPI Serial Programming mode, the follow-
ing sequence is recommended (See four byte instruction formats in Figure 116 on page
279):
1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. In
some systems, the programmer can not guarantee that SCK is held low during
power-up. In this case, RESET must be given a positive pulse of at least two
CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable SPI Serial Programming by sending the Pro-
gramming Enable serial instruction to pin MOSI.

3. The SPI Serial Programming instructions will not work if the communication is
out of synchronization. When in sync. the second byte ($53), will echo back
when issuing the third byte of the Programming Enable instruction. Whether the
echo is correct or not, all four bytes of the instruction must be transmitted. If the

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

PB5

PB6

PB7

+2.7 - 5.5V

AVCC

+2.7 - 5.5V(2)
277
2466N–AVR–10/06

$53 did not echo back, give RESET a positive pulse and issue a new Program-
ming Enable command.

4. The Flash is programmed one page at a time. The page size is found in Table 107
on page 265. The memory page is loaded one byte at a time by supplying the 6
LSB of the address and data together with the Load Program Memory Page
instruction. To ensure correct loading of the page, the data Low byte must be
loaded before data High byte is applied for a given address. The Program Mem-
ory Page is stored by loading the Write Program Memory Page instruction with
the 7 MSB of the address. If polling is not used, the user must wait at least
tWD_FLASH before issuing the next page. (See Table 115). Accessing the SPI
Serial Programming interface before the Flash write operation completes can
result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address
and data together with the appropriate Write instruction. An EEPROM memory
location is first automatically erased before new data is written. If polling is not
used, the user must wait at least tWD_EEPROM before issuing the next byte. (See
Table 115). In a chip erased device, no $FFs in the data file(s) need to be
programmed.

6. Any memory location can be verified by using the Read instruction which returns
the content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence
normal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Data Polling Flash When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value $FF. At the time the device is ready for a
new page, the programmed value will read correctly. This is used to determine when the
next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value $FF, so when programming this value, the user will have to wait for at least
tWD_FLASH before programming the next page. As a chip erased device contains $FF in
all locations, programming of addresses that are meant to contain $FF, can be skipped.
See Table 115 for tWD_FLASH value

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value $FF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value $FF, but the user
should have the following in mind: As a chip erased device contains $FF in all locations,
programming of addresses that are meant to contain $FF, can be skipped. This does
not apply if the EEPROM is re-programmed without chip erasing the device. In this
case, data polling cannot be used for the value $FF, and the user will have to wait at
least tWD_EEPROM before programming the next byte. See Table 115 for tWD_EEPROM
value.
278 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Serial Programming
Instruction set

Table 116 on page 279 and Figure 137 on page 280 describes the Instruction set.

Table 115. Minimum Wait Delay before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

Table 116. Serial Programming Instruction Set (Hexadecimal values)

Instruction(1)/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 adr MSB adr LSB high data byte in

Load Program Memory Page, Low byte $40 adr MSB adr LSB low data byte in

Load EEPROM Memory Page (page access)(1) $C1 $00 adr LSB data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 adr MSB adr LSB data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $0b00 000bb data byte out

Write Instructions

Write Program Memory Page $4C 000a aaaa aa00 0000 $00

Write EEPROM Memory $C0 adr MSB adr LSB data byte in

Write EEPROM Memory Page (page access)(1) $C2 adr MSB adr LSB $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in
279
2466N–AVR–10/06

Notes: 1. Not all instructions are applicable for all parts.
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed

(‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature

bytes and Page size.
6. See htt://www.atmel.com/avr for Application Notes regarding programming and

programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending.
Wait until this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 137 on
page 280.

Figure 137. Serial Programming Instruction example

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB
280 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
SPI Serial Programming
Characteristics

For characteristics of the SPI module, see “SPI Timing Characteristics” on page 298.

Figure 138. SPI Serial Programming Waveforms

Programming via the
JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR
must be cleared. Alternatively, if the JTD bit is set, the External Reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-scan or On-
chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

Programming Specific JTAG
Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instruc-
tions useful for Programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. The state machine sequence
for changing the instruction word is shown in Figure 139.

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
281
2466N–AVR–10/06

Figure 139. State Machine Sequence for Changing the Instruction Word

AVR_RESET ($C) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode
or taking the device out from the Reset Mode. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as Data Register. Note that the Reset
will be active as long as there is a logic “one” in the Reset Chain. The output from this
chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABLE ($4) The AVR specific public JTAG instruction for enabling programming via the JTAG port.
The 16-bit Programming Enable Register is selected as Data Register. The active states
are the following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value,
and Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
282 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
PROG_COMMANDS ($5) The AVR specific public JTAG instruction for entering programming commands via the
JTAG port. The 15-bit Programming Command Register is selected as Data Register.
The active states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not
always required, see Table 117 below).

PROG_PAGELOAD ($6) The AVR specific public JTAG instruction to directly load the Flash data page via the
JTAG port. The 1024 bit Virtual Flash Page Load Register is selected as Data Register.
This is a virtual scan chain with length equal to the number of bits in one Flash page.
Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Update-DR state
is not used to transfer data from the Shift Register. The data are automatically trans-
ferred to the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

• Shift-DR: Flash page data are shifted in from TDI by the TCK input, and
automatically loaded into the Flash page one byte at a time.

Note: The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first
device in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the
byte-wise programming algorithm must be used.

PROG_PAGEREAD ($7) The AVR specific public JTAG instruction to read one full Flash data page via the JTAG
port. The 1032 bit Virtual Flash Page Read Register is selected as Data Register. This is
a virtual scan chain with length equal to the number of bits in one Flash page plus 8.
Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Capture-DR
state is not used to transfer data to the Shift Register. The data are automatically trans-
ferred from the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

• Shift-DR: Flash data are automatically read one byte at a time and shifted out on
TDO by the TCK input. The TDI input is ignored.

Note: The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first
device in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the
byte-wise programming algorithm must be used.

Data Registers The Data Registers are selected by the JTAG Instruction Registers described in section
“Programming Specific JTAG Instructions” on page 281. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Virtual Flash Page Load Register

• Virtual Flash Page Read Register
283
2466N–AVR–10/06

Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It
is required to reset the part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out
Period (refer to “Clock Sources” on page 25) after releasing the Reset Register. The
output from this Data Register is not latched, so the reset will take place immediately, as
shown in Figure 115 on page 231.

Programming Enable Register The Programming Enable Register is a 16-bit register. The contents of this register is
compared to the programming enable signature, binary code 1010_0011_0111_0000.
When the contents of the register is equal to the programming enable signature, pro-
gramming via the JTAG port is enabled. The register is reset to 0 on Power-on Reset,
and should always be reset when leaving Programming mode.

Figure 140. Programming Enable Register
TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
$A370
284 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Programming Command
Register

The Programming Command Register is a 15-bit register. This register is used to seri-
ally shift in programming commands, and to serially shift out the result of the previous
command, if any. The JTAG Programming Instruction Set is shown in Table 117. The
state sequence when shifting in the programming commands is illustrated in Figure 142.

Figure 141. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits
285
2466N–AVR–10/06

Table 117. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

1a. Chip erase 0100011_10000000
0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for chip erase complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page 0110111_00000000

0110101_00000000
0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx
286 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse High byte 0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse Low byte 0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(8) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits 0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Fuse High Byte(6) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse Low Byte(7) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Lock Bits(8) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

8e. Read Fuses and Lock Bits 0111110_00000000

0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse High Byte
Fuse Low Byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

Table 117. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes
287
2466N–AVR–10/06

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding fuse, “1” to unprogram the fuse.
4. Set bits to “0” to program the corresponding lock bit, “1” to leave the lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses High byte is listed in Table 105 on page 263
7. The bit mapping for Fuses Low byte is listed in Table 106 on page 264
8. The bit mapping for Lock bits byte is listed in Table 103 on page 262
9. Address bits exceeding PCMSB and EEAMSB (Table 107 and Table 108) are don’t care

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 117. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes
288 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 142. State Machine Sequence for Changing/Reading the Data Word

Virtual Flash Page Load
Register

The Virtual Flash Page Load Register is a virtual scan chain with length equal to the
number of bits in one Flash page. Internally the Shift Register is 8-bit, and the data are
automatically transferred to the Flash page buffer byte by byte. Shift in all instruction
words in the page, starting with the LSB of the first instruction in the page and ending
with the MSB of the last instruction in the page. This provides an efficient way to load the
entire Flash page buffer before executing Page Write.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
289
2466N–AVR–10/06

Figure 143. Virtual Flash Page Load Register

Virtual Flash Page Read
Register

The Virtual Flash Page Read Register is a virtual scan chain with length equal to the
number of bits in one Flash page plus 8. Internally the Shift Register is 8-bit, and the
data are automatically transferred from the Flash data page byte by byte. The first 8
cycles are used to transfer the first byte to the internal Shift Register, and the bits that
are shifted out during these 8 cycles should be ignored. Following this initialization, data
are shifted out starting with the LSB of the first instruction in the page and ending with
the MSB of the last instruction in the page. This provides an efficient way to read one full
Flash page to verify programming.

Figure 144. Virtual Flash Page Read Register

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine
290 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Programming Algorithm All references below of type “1a”, “1b”, and so on, refer to Table 117.

Entering Programming Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Pro-
gramming Enable Register.

Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the pro-
gramming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start chip erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for
tWLRH_CE (refer to Table 113 on page 275).

Programming the Flash Before programming the Flash a Chip Erase must be performed. See “Performing Chip
Erase” on page 291.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH
(refer to Table 113 on page 275).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD
(refer to Table 107 on page 265) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with
the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH
(refer to Table 113 on page 275).

9. Repeat steps 3 to 8 until all data have been programmed.
291
2466N–AVR–10/06

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD
(refer to Table 107 on page 265) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page by shifting out all instruction words in the page, starting
with the LSB of the first instruction in the page and ending with the MSB of the
last instruction in the page. Remember that the first 8 bits shifted out should be
ignored.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Programming the EEPROM Before programming the EEPROM a Chip Erase must be performed. See “Performing
Chip Erase” on page 291.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for
tWLRH (refer to Table 113 on page 275).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM
292 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data High byte using programming instructions 6b. A bit value of “0” will
program the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH
(refer to Table 113 on page 275).

6. Load data Low byte using programming instructions 6e. A “0” will program the
fuse, a “1” will unprogram the fuse.

7. Write Fuse Low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH
(refer to Table 113 on page 275).

Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the
corresponding Lock bit, a “1” will leave the Lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for
tWLRH (refer to Table 113 on page 275).

Reading the Fuses and Lock
Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address $00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address $01 and address $02 to read the second and
third signature bytes, respectively.

Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address $00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
293
2466N–AVR–10/06

Electrical Characteristics

Absolute Maximum Ratings*

DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................. 200.0mA PDIP and

400.0mA TQFP/MLF

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted)

Symbol Parameter Condition Min Typ Max Units

VIL
Input Low Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5 -0.5 0.2 VCC
(1) V

VIH
Input High Voltage except
XTAL1 and RESET pins

VCC=2.7 - 5.5 0.6 VCC
(2) VCC +0.5 V

VIH1
Input High Voltage

XTAL1 pin
VCC=2.7 - 5.5 0.7 VCC

(2) VCC +0.5 V

VIL1
Input Low Voltage

XTAL1 pin
VCC=2.7 - 5.5 -0.5 0.1 VCC

(1) V

VIH2
Input High Voltage

RESET pin
VCC=2.7 - 5.5 0.9 VCC

(2) VCC +0.5 V

VIL2
Input Low Voltage

RESET pin
VCC=2.7 - 5.5 -0.5 0.2 VCC V

VOL
Output Low Voltage(3)

(Ports A,B,C,D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.7
0.5

V
V

VOH
Output High Voltage(4)

(Ports A,B,C,D)
IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.2

V
V

IIL
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 30 60 kΩ

Rpu I/O Pin Pull-up Resistor 20 50 kΩ
294 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B4, should not exceed 100 mA.
4] The sum of all IOL, for ports B3 - B7, XTAL2, D0 - D2, should not exceed 100 mA.
5] The sum of all IOL, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOL, for ports C0 - C7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:
PDIP Package:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for port A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7,C0 - C7, D0 - D7 and XTAL2, should not exceed 100 mA.
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B4, should not exceed 100 mA.
4] The sum of all IOH, for ports B3 - B7, XTAL2, D0 - D2, should not exceed 100 mA.

ICC

Power Supply Current

Active 1 MHz, VCC = 3V

(ATmega16L)
1.1 mA

Active 4 MHz, VCC = 3V

(ATmega16L)
3.8 5 mA

Active 8 MHz, VCC = 5V

(ATmega16)
12 15 mA

Idle 1 MHz, VCC = 3V

(ATmega16L)
0.35 mA

Idle 4 MHz, VCC = 3V

(ATmega16L)
1.2 2 mA

Idle 8 MHz, VCC = 5V

(ATmega16)
5.5 7 mA

Power-down Mode(5)
WDT enabled, VCC = 3V <8 15 µA

WDT disabled, VCC = 3V < 1 4 µA

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACPD
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 2.7V to 5.5V (Unless Otherwise Noted) (Continued)

Symbol Parameter Condition Min Typ Max Units
295
2466N–AVR–10/06

5] The sum of all IOH, for ports D3 - D7, should not exceed 100 mA.
6] The sum of all IOH, for ports C0 - C7, should not exceed 100 mA.If IOH exceeds the test condition, VOH may exceed the
related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum VCC for Power-down is 2.5V.

External Clock Drive
Waveforms

Figure 145. External Clock Drive Waveforms

External Clock Drive

Note: 1. Refer to “External Clock” on page 31 for details.

Notes: 1. R should be in the range 3 kΩ - 100 kΩ, and C should be at least 20 pF.
2. The frequency will vary with package type and board layout.

VIL1

VIH1

Table 118. External Clock Drive(1)

Symbol Parameter

VCC = 2.7V to 5.5V VCC = 4.5V to 5.5V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 μs

tCHCL Fall Time 1.6 0.5 μs

ΔtCLCL

Change in period from
one clock cycle to the
next

2 2 %

Table 119. External RC Oscillator, Typical Frequencies (VCC = 5)

R [kΩ](1) C [pF] f(2)

33 22 650 kHz

10 22 2.0 MHz
296 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Two-wire Serial Interface Characteristics
Table 120 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega16 Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 146.

Notes: 1. In ATmega16, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency

Table 120. Two-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock fSCL ≤ 100 kHz(6) 4.7 – µs

fSCL > 100 kHz(7) 1.3 – µs

tHIGH High period of the SCL clock fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA

Set-up time for a repeated START condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF Bus free time between a STOP and START
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

VCC 0,4V–

3mA
---------------------------- 1000ns

Cb
------------------- Ω

VCC 0,4V–

3mA
---------------------------- 300ns

Cb
---------------- Ω
297
2466N–AVR–10/06

5. This requirement applies to all ATmega16 Two-wire Serial Interface operation. Other
devices connected to the Two-wire Serial Bus need only obey the general fSCL
requirement.

6. The actual low period generated by the ATmega16 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus fCK must be greater than 6 MHz for the low time requirement to be strictly
met at fSCL = 100 kHz.

7. The actual low period generated by the ATmega16 Two-wire Serial Interface is (1/fSCL
- 2/fCK), thus the low time requirement will not be strictly met for fSCL > 308 kHz when
fCK = 8 MHz. Still, ATmega16 devices connected to the bus may communicate at full
speed (400 kHz) with other ATmega16 devices, as well as any other device with a
proper tLOW acceptance margin.

Figure 146. Two-wire Serial Bus Timing

SPI Timing
Characteristics

See Figure 147 and Figure 148 for details.

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 121. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 58

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tSCK

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tSCK

11 SCK high/low Slave 2 • tSCK

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave 10

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 2 • tSCK
298 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 147. SPI Interface Timing Requirements (Master Mode)

Figure 148. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

18
299
2466N–AVR–10/06

ADC Characteristics – Preliminary Data

Table 122. ADC Characteristics

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Single Ended Conversion 10 Bits

Differential Conversion
Gain = 1x or 10x

8 Bits

Differential Conversion
Gain = 200x

7 Bits

Absolute Accuracy (Including INL, DNL,
Quantization Error, Gain, and Offset Error).

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1.5 2.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1 MHz

3 4 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz
Noise Reduction mode

1.5 LSB

Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 1 MHz
Noise Reduction mode

3 LSB

Integral Non-linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1 LSB

Differential Non-linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

0.5 LSB

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

1 LSB

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V
ADC clock = 200 kHz

LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3(2) VCC + 0.3(3) V

VREF Reference Voltage
Single Ended Conversion 2.0 AVCC V

Differential Conversion 2.0 AVCC - 0.2 V

VIN

Input voltage
Single ended channels GND VREF V

Differential channels 0 VREF V

Input bandwidth
Single ended channels 38.5 kHz

Differential channels 4 kHz
300 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Notes: 1. Values are guidelines only.
2. Minimum for AVCC is 2.7V.
3. Maximum for AVCC is 5.5V.

VINT Internal Voltage Reference 2.3 2.6 2.9 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 122. ADC Characteristics (Continued)

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units
301
2466N–AVR–10/06

ATmega16 Typical
Characteristics

The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-
to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switch-
ing frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog Timer.

Active Supply Current Figure 149. Active Supply Current vs. Frequency (0.1 - 1.0 MHz

ACTIVE SUPPLY CURRENT vs. FREQUENCY
0.1 - 1.0 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V
3.6V
3.3V
3.0V

5.0V

2.7V
302 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 150. Active Supply Current vs. Frequency (1 - 20 MHz)

Figure 151. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V

3.3V

3.0V

5.0V

2.7V

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

0

2

4

6

8

10

12

14

16

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C-40°C
303
2466N–AVR–10/06

Figure 152. Active Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

Figure 153. Active Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 4 MHz

0

1

2

3

4

5

6

7

8

9

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C
-40°C

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 2 MHz

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

-40°C
304 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 154. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 155. Active Supply Current vs. VCC (32 kHz External Oscillator)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C 25°C

-40°C

ACTIVE SUPPLY CURRENT vs. VCC

32kHz EXTERNAL OSCILLATOR

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (u

A
)

25°C

85°C
305
2466N–AVR–10/06

Idle Supply Current Figure 156. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 157. Idle Supply Current vs. Frequency (1 - 20 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY
0.1 - 1.0 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V
3.3V

3.0V

5.0V

2.7V

IDLE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

5.5V

4.5V

4.0V

3.6V

3.3V

3.0V

5.0V

2.7V
306 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 158. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 159. Idle Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

0

1

2

3

4

5

6

7

8

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C-40°C

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 4 MHz

0

0.5

1

1.5

2

2.5

3

3.5

4

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C -40°C
307
2466N–AVR–10/06

Figure 160. Idle Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)

Figure 161. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 2 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C
25°C

-40°C

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C
308 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 162. Idle Supply Current vs. VCC (32 kHz External Oscillator)

Power-Down Supply Current Figure 163. Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

IDLE SUPPLY CURRENT vs. VCC

32kHz EXTERNAL OSCILLATOR

0

5

10

15

20

25

30

35

40

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C

-40°C
309
2466N–AVR–10/06

Figure 164. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

Power-Save Supply Current Figure 165. Power-Save Supply Current vs. VCC (Watchdog Timer Disabled)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

0

2

4

6

8

10

12

14

16

18

20

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C

-40°C

POWER-SAVE SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C
310 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Standby Supply Current Figure 166. Standby Supply Current vs. VCC (455 kHz Resonator, Watchdog Timer
Disabled)

Figure 167. Standby Supply Current vs. VCC (1 MHz Resonator, Watchdog Timer
Disabled)

STANDBY SUPPLY CURRENT vs. VCC

455 kHz RESONATOR, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

1 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

5

10

15

20

25

30

35

40

45

50

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

311
2466N–AVR–10/06

Figure 168. Standby Supply Current vs. VCC (2 MHz Resonator, Watchdog Timer
Disabled)

Figure 169. Standby Supply Current vs. VCC (2 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

2 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

70

80

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

2 MHz XTAL, WATCHDOG TIMER DISABLED

0

10

20

30

40

50

60

70

80

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

312 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 170. Standby Supply Current vs. VCC (4 MHz Resonator, Watchdog Timer
Disabled)

Figure 171. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

4 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

313
2466N–AVR–10/06

Figure 172. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer
Disabled)

Figure 173. Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz RESONATOR, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

STANDBY SUPPLY CURRENT vs. VCC

6 MHz XTAL, WATCHDOG TIMER DISABLED

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

314 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Pin Pullup Figure 174. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 175. I/O Pin Pull-Up Resistor Current vs. Input Voltage (VCC = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 5V

0

20

40

60

80

100

120

140

160

0 1 2 3

VIO (V)

I IO
 (

uA
)

85°C 25°C

-40°C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 2.7V

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

VIO (V)

I IO
 (

uA
)

85°C 25°C

-40°C
315
2466N–AVR–10/06

Figure 176. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 177. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 5V

0

20

40

60

80

100

120

0 1 2 3

VRESET (V)

I R
E

S
E

T
 (

uA
)

85°C

25°C-40°C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vcc = 2.7V

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

uA
)

85°C

25°C
-40°C
316 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Pin Driver Strength Figure 178. I/O Pin Source Current vs. Output Voltage (VCC = 5V)

Figure 179. I/O Pin Source Current vs. Output Voltage (VCC = 2.7V)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE
Vcc = 5V

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4

VOH (V)

I O
H
 (

m
A

)

85°C

25°C

-40°C

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE
Vcc = 2.7V

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (

m
A

)

85°C

25°C

-40°C
317
2466N–AVR–10/06

Figure 180. I/O Pin Sink Current vs. Output Voltage (VCC = 5V)

Figure 181. I/O Pin Sink Current vs. Output Voltage (VCC = 2.7V)

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vcc = 5V

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L

(m
A

)

85°C

25°C

-40°C

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vcc = 2.7V

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5

VOL (V)

I O
L

(m
A

)

85°C

25°C

-40°C
318 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Pin Thresholds And
Hysteresis

Figure 182. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read As '1')

Figure 183. I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read As '0')

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C

25°C
-40°C

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C

25°C

-40°C
319
2466N–AVR–10/06

Figure 184. I/O Pin Input Hysteresis vs. VCC

Figure 185. Reset Input Threshold Voltage vs. VCC (VIH, Reset Pin Read As '1')

I/O PIN INPUT HYSTERESIS vs. VCC

0

0.2

0.4

0.6

0.8

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

H
ys

te
re

si
s

(V
)

85°C
25°C

-40°C

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIH, RESET PIN READ AS '1'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C

25°C

-40°C
320 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 186. Reset Input Threshold Voltage vs. VCC (VIL, Reset Pin Read As '0')

Figure 187. Reset Input Pin Hysteresis vs. VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIL, RESET PIN READ AS '0'

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
hr

es
ho

ld
 (

V
)

85°C

25°C -40°C

RESET INPUT PIN HYSTERESIS vs. VCC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

H
ys

te
re

si
s

(V
)

85°C

25°C

-40°C
321
2466N–AVR–10/06

Bod Thresholds And Analog
Comparator Offset

Figure 188. Bod Thresholds vs. Temperature (Bodlevel is 4.0V)

Figure 189. Bod Thresholds vs. Temperature (Bodlevel is 2.7V)

BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL IS 4.0 V

3.7

3.8

3.9

4

4.1

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (˚C)

T
hr

es
ho

ld
 (

V
)

Rising VCC

Falling VCC

BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL IS 2.7 V

2.4

2.5

2.6

2.7

2.8

2.9

3

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (˚C)

T
hr

es
ho

ld
 (

V
)

Rising VCC

Falling VCC
322 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 190. Bandgap Voltage vs. VCC

Figure 191. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

BANDGAP VOLTAGE vs. VCC

1.225

1.23

1.235

1.24

1.245

1.25

2.5 3 3.5 4 4.5 5 5.5

Vcc (V)

B
an

dg
ap

 V
ol

ta
ge

 (
V

)

85°

25°

-40°

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE
VCC = 5V

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

C
om

pa
ra

to
r

O
ffs

et
 V

ol
ta

ge
 (

V
)

85°C

25°C
323
2466N–AVR–10/06

Figure 192. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 3V)

Internal Oscillator Speed Figure 193. Watchdog Oscillator Frequency vs. VCC

ANALOG COMPARATOR OFFSET VOLTAGE vs. COMMON MODE VOLTAGE
VCC = 3V

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.5 1 1.5 2 2.5 3

Common Mode Voltage (V)

C
om

pa
ra

to
r

O
ffs

et
 V

ol
ta

ge
 (

V
)

85°C

25°C

WATCHDOG OSCILLATOR FREQUENCY vs. VCC

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

kH
z)

25°C

-40°C

85 C°
324 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 194. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 195. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

6.6

7

7.4

7.8

8.2

8.6

9

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z)

5.5V

2.7V

4.0V

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. VCC

6.5

6.7

6.9

7.1

7.3

7.5

7.7

7.9

8.1

8.3

8.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)

85°C

25°C

-40°C
325
2466N–AVR–10/06

Figure 196. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value

Figure 197. Calibrated 4 MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

3

4

5

6

7

8

9

10

11

12

13

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z)

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

3.6

3.7

3.8

3.9

4

4.1

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z)

5.5V

2.7V

4.0V
326 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 198. Calibrated 4 MHz RC Oscillator Frequency vs. VCC

Figure 199. Calibrated 4 MHz RC Oscillator Frequency vs. Osccal Value

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. VCC

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)

85°C

25°C

-40°C

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z)
327
2466N–AVR–10/06

Figure 200. Calibrated 2 MHz RC Oscillator Frequency vs. Temperature

Figure 201. Calibrated 2 MHz RC Oscillator Frequency vs. VCC

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

1.8

1.85

1.9

1.95

2

2.05

2.1

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z)

5.5V

2.7V

4.0V

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. VCC

1.7

1.8

1.9

2

2.1

2.2

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z) 85°C

25°C
-40°C
328 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 202. Calibrated 2 MHz RC Oscillator Frequency vs. Osccal Value

Figure 203. Calibrated 1 MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z)

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

-60 -40 -20 0 20 40 60 80 100

Temperature (˚C)

F
R

C
 (

M
H

z)

5.5V

2.7V

4.0V
329
2466N–AVR–10/06

Figure 204. Calibrated 1 MHz RC Oscillator Frequency vs. VCC

Figure 205. Calibrated 1 MHz RC Oscillator Frequency vs. Osccal Value

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. VCC

0.9

0.95

1

1.05

1.1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)

85°C

25°C
-40°C

CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

0.4

0.6

0.8

1

1.2

1.4

1.6

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL VALUE

F
R

C
 (

M
H

z)
330 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Current Consumption Of
Peripheral Units

Figure 206. Brownout Detector Current vs. VCC

Figure 207. ADC Current vs. VCC(Aref = AVCC)

BROWNOUT DETECTOR CURRENT vs. VCC

8

10

12

14

16

18

20

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
) 85°C

25°C

-40°C

ADC CURRENT vs. VCC

AREF = AVCC

0

50

100

150

200

250

300

350

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C
25°C

-40°C
331
2466N–AVR–10/06

Figure 208. Aref External Reference Current vs. VCC

Figure 209. 32khz Tosc Current vs. VCC (Watchdog Timer Disabled)

AREF EXTERNAL REFERENCE CURRENT vs. VCC

0

20

40

60

80

100

120

140

160

180

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I A
R

E
F
 (

uA
)

85°C 25°C

-40°C

32kHz TOSC CURRENT vs. VCC

WATCHDOG TIMER DISABLED

0

2

4

6

8

10

12

14

16

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C
332 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Figure 210. Watchdog Timer Current vs. VCC

Figure 211. Programming Current vs. VCC

WATCHDOG TIMER CURRENT vs. VCC

0

2

4

6

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

uA
)

85°C

25°C
-40°C

PROGRAMMING CURRENT vs. VCC

0

1

2

3

4

5

6

7

8

9

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C

25°C

-40°C
333
2466N–AVR–10/06

Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
$3F ($5F) SREG I T H S V N Z C 9
$3E ($5E) SPH – – – – – SP10 SP9 SP8 12
$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12
$3C ($5C) OCR0 Timer/Counter0 Output Compare Register 85
$3B ($5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE 48, 69
$3A ($5A) GIFR INTF1 INTF0 INTF2 – – – – – 70
$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 85, 116, 134
$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 86, 117, 134
$37 ($57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 253
$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 181
$35 ($55) MCUCR SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 32, 68
$34 ($54) MCUCSR JTD ISC2 – JTRF WDRF BORF EXTRF PORF 41, 69, 232
$33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 83
$32 ($52) TCNT0 Timer/Counter0 (8 Bits) 85

$31(1) ($51)(1) OSCCAL Oscillator Calibration Register 30
OCDR On-Chip Debug Register 228

$30 ($50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10 57,88,135,202,222
$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 111
$2E ($4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 114
$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte 115
$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 115
$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 115
$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 115
$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 115
$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 115
$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte 116
$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 116
$25 ($45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 129
$24 ($44) TCNT2 Timer/Counter2 (8 Bits) 131
$23 ($43) OCR2 Timer/Counter2 Output Compare Register 131
$22 ($42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB 132
$21 ($41) WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0 43

$20(2) ($40)(2) UBRRH URSEL – – – UBRR[11:8] 168
UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 167

$1F ($3F) EEARH – – – – – – – EEAR8 19
$1E ($3E) EEARL EEPROM Address Register Low Byte 19
$1D ($3D) EEDR EEPROM Data Register 19
$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE 19
$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 66
$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 66
$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 66
$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 66
$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 66
$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 66
$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 67
$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 67
$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 67
$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 67
$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 67
$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 67
$0F ($2F) SPDR SPI Data Register 143
$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X 143
$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 141
$0C ($2C) UDR USART I/O Data Register 164
$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 165
$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 166
$09 ($29) UBRRL USART Baud Rate Register Low Byte 168
$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 203
$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 218
$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 220
$05 ($25) ADCH ADC Data Register High Byte 221
$04 ($24) ADCL ADC Data Register Low Byte 221
$03 ($23) TWDR Two-wire Serial Interface Data Register 183
$02 ($22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 183
334 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Notes: 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debug-
ger specific documentation for details on how to use the OCDR Register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.
4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on

all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

$01 ($21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 182
$00 ($20) TWBR Two-wire Serial Interface Bit Rate Register 181

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
335
2466N–AVR–10/06

Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
336 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1

Mnemonics Operands Description Operation Flags #Clocks
337
2466N–AVR–10/06

CLH Clear Half Carry Flag in SREG H ← 0 H 1
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-Chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
338 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Ordering Information

Note: 1. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.

Speed (MHz) Power Supply Ordering Code Package Operation Range

8 2.7 - 5.5V

ATmega16L-8AC
ATmega16L-8PC
ATmega16L-8MC

44A
40P6
44M1

Commercial
(0oC to 70oC)

ATmega16L-8AI
ATmega16L-8AU(1)

ATmega16L-8PI
ATmega16L-8PU(1)

ATmega16L-8MI
ATmega16L-8MU(1)

44A
44A
40P6
40P6
44M1
44M1

Industrial
(-40oC to 85oC)

16 4.5 - 5.5V

ATmega16-16AC
ATmega16-16PC
ATmega16-16MC

44A
40P6
44M1

Commercial
(0oC to 70oC)

ATmega16-16AI
ATmega16-16AU(1)

ATmega16-16PI
ATmega16-16PU(1)

ATmega16-16MI
ATmega16-16MU(1)

44A
44A
40P6
40P6
44M1
44M1

Industrial
(-40oC to 85oC)

Package Type

44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)

44M1 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
339
2466N–AVR–10/06

Packaging Information

44A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

B44A

10/5/2001

PIN 1 IDENTIFIER

0˚~7˚

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable

protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10 mm maximum.

A – – 1.20

A1 0.05 – 0.15

A2 0.95 1.00 1.05

D 11.75 12.00 12.25

D1 9.90 10.00 10.10 Note 2

E 11.75 12.00 12.25

E1 9.90 10.00 10.10 Note 2

B 0.30 – 0.45

C 0.09 – 0.20

L 0.45 – 0.75

e 0.80 TYP
340 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
40P6

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual
Inline Package (PDIP) B40P6

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 4.826

A1 0.381 – –

D 52.070 – 52.578 Note 2

E 15.240 – 15.875

E1 13.462 – 13.970 Note 2

B 0.356 – 0.559

B1 1.041 – 1.651

L 3.048 – 3.556

C 0.203 – 0.381

eB 15.494 – 17.526

e 2.540 TYP

Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
341
2466N–AVR–10/06

44M1

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm,

 G44M1

5/27/06

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A3 0.25 REF

 b 0.18 0.23 0.30

 D

 D2 5.00 5.20 5.40

6.90 7.00 7.10

6.90 7.00 7.10

 E

 E2 5.00 5.20 5.40

 e 0.50 BSC

 L 0.59 0.64 0.69

K 0.20 0.26 0.41
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

E2

D2

b e

Pin #1 Corner
L

A1

A3

A

SEATING PLANE

Pin #1
Triangle

Pin #1
Chamfer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

1
2
3

5.20 mm Exposed Pad, Micro Lead Frame Package (MLF)
342 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Errata The revision letter in this section refers to the revision of the ATmega16 device.

ATmega16(L) Rev. M • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

ATmega16(L) Rev. L • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
343
2466N–AVR–10/06

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

ATmega16(L) Rev. K • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
344 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

ATmega16(L) Rev. J • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

ATmega16(L) Rev. I • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.
345
2466N–AVR–10/06

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.

– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.

ATmega16(L) Rev. H • First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conver-
sion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Com-
parator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous
timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

 Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.

Problem Fix / Workaround

– If ATmega16 is the only device in the scan chain, the problem is not visible.
346 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
– Select the Device ID Register of the ATmega16 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega16 while reading the Device ID Registers of preceding devices of the
boundary scan chain.

– If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega16 must be the fist device in the chain.
347
2466N–AVR–10/06

Datasheet Revision
History

Please note that the referring page numbers in this section are referred to this docu-
ment. The referring revision in this section are referring to the document revision.

Rev. 2466N-10/06 1. Updated “Timer/Counter Oscillator” on page 31.

2. Updated “Fast PWM Mode” on page 102.

3. Updated Table 38 on page 83, Table 40 on page 84, Table 45 on page 112,
Table 47 on page 113, Table 50 on page 129 and Table 52 on page 130.

4. Updated C code example in “USART Initialization” on page 150.

5. Updated “Errata” on page 343.

Rev. 2466M-04/06 1. Updated typos.

2. Updated “Serial Peripheral Interface – SPI” on page 136.

3. Updated Table 86 on page 222, Table 116 on page 279 ,Table 121 on page 298
and Table 122 on page 300.

Rev. 2466L-06/05 1. Updated note in “Bit Rate Generator Unit” on page 179.

2. Updated values for VINT in “ADC Characteristics” on page 300.

3. Updated “Serial Programming Instruction set” on page 279.

4. Updated USART init C-code example in “USART” on page 145.

Rev. 2466K-04/05 1. Updated “Ordering Information” on page 339.

2. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame
Package QFN/MLF”.

3. Updated “Electrical Characteristics” on page 294.

Rev. 2466J-10/04 1. Updated “Ordering Information” on page 339.

Rev. 2466I-10/04 1. Removed references to analog ground.

2. Updated Table 7 on page 28, Table 15 on page 38, Table 16 on page 42, Table
81 on page 211, Table 116 on page 279, and Table 119 on page 296.

3. Updated “Pinout ATmega16” on page 2.

4. Updated features in “Analog to Digital Converter” on page 205.

5. Updated “Version” on page 230.

6. Updated “Calibration Byte” on page 264.
348 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
7. Added “Page Size” on page 265.

Rev. 2466H-12/03 1. Updated “Calibrated Internal RC Oscillator” on page 29.

Rev. 2466G-10/03 1. Removed “Preliminary” from the datasheet.

2. Changed ICP to ICP1 in the datasheet.

3. Updated “JTAG Interface and On-chip Debug System” on page 36.

4. Updated assembly and C code examples in “Watchdog Timer Control Regis-
ter – WDTCR” on page 43.

5. Updated Figure 46 on page 103.

6. Updated Table 15 on page 38, Table 82 on page 218 and Table 115 on page
279.

7. Updated “Test Access Port – TAP” on page 223 regarding JTAGEN.

8. Updated description for the JTD bit on page 232.

9. Added note 2 to Figure 126 on page 255.

10. Added a note regarding JTAGEN fuse to Table 105 on page 263.

11. Updated Absolute Maximum Ratings* and DC Characteristics in “Electrical
Characteristics” on page 294.

12. Updated “ATmega16 Typical Characteristics” on page 302.

13. Fixed typo for 16 MHz QFN/MLF package in “Ordering Information” on page
339.

14. Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata” on page 343.

Rev. 2466F-02/03 1. Added note about masking out unused bits when reading the Program
Counter in “Stack Pointer” on page 12.

2. Added Chip Erase as a first step in “Programming the Flash” on page 291 and
“Programming the EEPROM” on page 292.

3. Added the section “Unconnected pins” on page 55.

4. Added tips on how to disable the OCD system in “On-chip Debug System” on
page 34.

5. Removed reference to the “Multi-purpose Oscillator” application note and
“32 kHz Crystal Oscillator” application note, which do not exist.

6. Added information about PWM symmetry for Timer0 and Timer2.
349
2466N–AVR–10/06

7. Added note in “Filling the Temporary Buffer (Page Loading)” on page 256
about writing to the EEPROM during an SPM Page Load.

8. Removed ADHSM completely.

9. Added Table 73, “TWI Bit Rate Prescaler,” on page 183 to describe the TWPS
bits in the “TWI Status Register – TWSR” on page 182.

10. Added section “Default Clock Source” on page 25.

11. Added note about frequency variation when using an external clock. Note
added in “External Clock” on page 31. An extra row and a note added in Table
118 on page 296.

12. Various minor TWI corrections.

13. Added “Power Consumption” data in “Features” on page 1.

14. Added section “EEPROM Write During Power-down Sleep Mode” on page 22.

15. Added note about Differential Mode with Auto Triggering in “Prescaling and
Conversion Timing” on page 208.

16. Added updated “Packaging Information” on page 340.

Rev. 2466E-10/02 1. Updated “DC Characteristics” on page 294.

Rev. 2466D-09/02 1. Changed all Flash write/erase cycles from 1,000 to 10,000.

2. Updated the following tables: Table 4 on page 26, Table 15 on page 38, Table
42 on page 85, Table 45 on page 112, Table 46 on page 112, Table 59 on page
144, Table 67 on page 168, Table 90 on page 237, Table 102 on page 261, “DC
Characteristics” on page 294, Table 119 on page 296, Table 121 on page 298,
and Table 122 on page 300.

3. Updated “Errata” on page 343.

Rev. 2466C-03/02 1. Updated typical EEPROM programming time, Table 1 on page 20.

2. Updated typical start-up time in the following tables:

Table 3 on page 25, Table 5 on page 27, Table 6 on page 28, Table 8 on page 29,
Table 9 on page 29, and Table 10 on page 30.

3. Updated Table 17 on page 43 with typical WDT Time-out.

4. Added Some Preliminary Test Limits and Characterization Data.

Removed some of the TBD's in the following tables and pages:

Table 15 on page 38, Table 16 on page 42, Table 116 on page 272 (table removed
in document review #D), “Electrical Characteristics” on page 294, Table 119 on
page 296, Table 121 on page 298, and Table 122 on page 300.

5. Updated TWI Chapter.
350 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Added the note at the end of the “Bit Rate Generator Unit” on page 179.

6. Corrected description of ADSC bit in “ADC Control and Status Register A –
ADCSRA” on page 220.

7. Improved description on how to do a polarity check of the ADC doff results in
“ADC Conversion Result” on page 217.

8. Added JTAG version number for rev. H in Table 87 on page 230.

9. Added not regarding OCDEN Fuse below Table 105 on page 263.

10. Updated Programming Figures:

Figure 127 on page 265 and Figure 136 on page 277 are updated to also reflect that
AVCC must be connected during Programming mode. Figure 131 on page 273
added to illustrate how to program the fuses.

11. Added a note regarding usage of the “PROG_PAGELOAD ($6)” on page 283
and “PROG_PAGEREAD ($7)” on page 283.

12. Removed alternative algortihm for leaving JTAG Programming mode.

See “Leaving Programming Mode” on page 291.

13. Added Calibrated RC Oscillator characterization curves in section “ATmega16
Typical Characteristics” on page 302.

14. Corrected ordering code for QFN/MLF package (16MHz) in “Ordering Informa-
tion” on page 339.

15. Corrected Table 90, “Scan Signals for the Oscillators(1)(2)(3),” on page 237.
351
2466N–AVR–10/06

352 ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Table of Contents Features.. 1

Pin Configurations... 2

Disclaimer... 2

Overview... 3
Block Diagram .. 3
Pin Descriptions.. 4

Resources .. 6

About Code Examples... 7

AVR CPU Core ... 8
Introduction... 8
Architectural Overview.. 8
ALU – Arithmetic Logic Unit.. 9
Status Register ... 9
General Purpose Register File ... 11
Stack Pointer .. 12
Instruction Execution Timing... 13
Reset and Interrupt Handling.. 13

AVR ATmega16 Memories .. 16
In-System Reprogrammable Flash Program Memory .. 16
SRAM Data Memory... 17
EEPROM Data Memory.. 18
I/O Memory... 23

System Clock and Clock Options .. 24
Clock Systems and their Distribution .. 24
Clock Sources... 25
Default Clock Source.. 25
Crystal Oscillator... 25
Low-frequency Crystal Oscillator .. 28
External RC Oscillator .. 28
Calibrated Internal RC Oscillator .. 29
External Clock... 31
Timer/Counter Oscillator... 31

Power Management and Sleep Modes... 32
Idle Mode.. 33
ADC Noise Reduction Mode... 33
Power-down Mode.. 33
Power-save Mode... 33
i
2466N–AVR–10/06

Standby Mode... 34
Extended Standby Mode .. 34
Minimizing Power Consumption ... 35

System Control and Reset .. 37
Internal Voltage Reference... 42
Watchdog Timer ... 42

Interrupts .. 45
Interrupt Vectors in ATmega16... 45

I/O Ports.. 50
Introduction... 50
Ports as General Digital I/O.. 51
Alternate Port Functions ... 55
Register Description for I/O Ports ... 66

External Interrupts... 68

8-bit Timer/Counter0 with PWM.. 71
Overview... 71
Timer/Counter Clock Sources... 72
Counter Unit.. 72
Output Compare Unit.. 73
Compare Match Output Unit ... 74
Modes of Operation .. 76
Timer/Counter Timing Diagrams... 81
8-bit Timer/Counter Register Description ... 83

Timer/Counter0 and Timer/Counter1 Prescalers 87

16-bit Timer/Counter1.. 89
Overview... 89
Accessing 16-bit Registers ... 92
Timer/Counter Clock Sources... 94
Counter Unit.. 95
Input Capture Unit... 96
Output Compare Units .. 98
Compare Match Output Unit ... 100
Modes of Operation .. 101
Timer/Counter Timing Diagrams... 108
16-bit Timer/Counter Register Description ... 111

8-bit Timer/Counter2 with PWM and Asynchronous Operation .. 118
Overview... 118
Timer/Counter Clock Sources... 119
ii ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
Counter Unit.. 119
Output Compare Unit.. 120
Compare Match Output Unit ... 122
Modes of Operation .. 123
Timer/Counter Timing Diagrams... 127
8-bit Timer/Counter Register Description ... 129
Asynchronous Operation of the Timer/Counter .. 132
Timer/Counter Prescaler... 135

Serial Peripheral Interface – SPI... 136
SS Pin Functionality.. 141
Data Modes .. 144

USART .. 145
Overview... 145
Clock Generation .. 146
Frame Formats ... 149
USART Initialization.. 150
Data Reception – The USART Receiver .. 155
Asynchronous Data Reception ... 158
Multi-processor Communication Mode ... 162
Accessing UBRRH/ UCSRC Registers... 163
USART Register Description .. 164
Examples of Baud Rate Setting.. 169

Two-wire Serial Interface .. 173
Features.. 173
Two-wire Serial Interface Bus Definition... 173
Data Transfer and Frame Format ... 174
Multi-master Bus Systems, Arbitration and Synchronization 177
Overview of the TWI Module .. 179
TWI Register Description.. 181
Using the TWI... 184
Transmission Modes... 187
Multi-master Systems and Arbitration... 200

Analog Comparator ... 202
Analog Comparator Multiplexed Input .. 204

Analog to Digital Converter .. 205
Features.. 205
Operation.. 206
Starting a Conversion ... 207
Prescaling and Conversion Timing... 208
Changing Channel or Reference Selection .. 211
ADC Noise Canceler... 213
iii
2466N–AVR–10/06

ADC Conversion Result.. 217

JTAG Interface and On-chip Debug System 223
Features.. 223
Overview... 223
Test Access Port – TAP.. 223
TAP Controller .. 225
Using the Boundary-scan Chain ... 226
Using the On-chip Debug System .. 226
On-chip Debug Specific JTAG Instructions .. 227
On-chip Debug Related Register in I/O Memory .. 228
Using the JTAG Programming Capabilities .. 228
Bibliography .. 228

IEEE 1149.1 (JTAG) Boundary-scan .. 229
Features.. 229
System Overview.. 229
Data Registers .. 229
Boundary-scan Specific JTAG Instructions .. 231
Boundary-scan Chain ... 234
ATmega16 Boundary-scan Order... 243
Boundary-scan Description Language Files ... 248

Boot Loader Support – Read-While-Write Self-Programming..... 249
Features.. 249
Application and Boot Loader Flash Sections .. 249
Read-While-Write and no Read-While-Write Flash Sections 249
Boot Loader Lock Bits... 251
Entering the Boot Loader Program... 252
Addressing the Flash during Self-Programming ... 254
Self-Programming the Flash... 255

Memory Programming... 262
Program And Data Memory Lock Bits .. 262
Fuse Bits... 263
Signature Bytes .. 264
Calibration Byte .. 264
Page Size ... 265
Parallel Programming Parameters, Pin Mapping, and Commands 265
Parallel Programming ... 268
Serial Downloading... 276
Programming via the JTAG Interface ... 281

Electrical Characteristics.. 294
Absolute Maximum Ratings*... 294
DC Characteristics.. 294
iv ATmega16(L)
2466N–AVR–10/06

ATmega16(L)
External Clock Drive Waveforms.. 296
External Clock Drive ... 296
Two-wire Serial Interface Characteristics ... 297
SPI Timing Characteristics ... 298
ADC Characteristics – Preliminary Data... 300

ATmega16 Typical Characteristics .. 302

Register Summary ... 334

Instruction Set Summary .. 336

Ordering Information... 339

Packaging Information .. 340
44A ... 340
40P6 ... 341
44M1... 342

Errata .. 343
ATmega16(L) Rev. M ... 343
ATmega16(L) Rev. L .. 343
ATmega16(L) Rev. K .. 344
ATmega16(L) Rev. J... 345
ATmega16(L) Rev. I ... 345
ATmega16(L) Rev. H.. 346

Datasheet Revision History .. 348
Rev. 2466N-10/06... 348
Rev. 2466M-04/06 .. 348
Rev. 2466L-06/05 ... 348
Rev. 2466K-04/05... 348
Rev. 2466J-10/04 ... 348
Rev. 2466I-10/04 .. 348
Rev. 2466H-12/03... 349
Rev. 2466G-10/03 .. 349
Rev. 2466F-02/03... 349
Rev. 2466E-10/02... 350
Rev. 2466D-09/02... 350
Rev. 2466C-03/02... 350

Table of Contents ... i
v
2466N–AVR–10/06

vi ATmega16(L)
2466N–AVR–10/06

2466N–AVR–10/06

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio®, and oth-
ers, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of oth-
ers.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

