

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

DESCRIPTION

The PLS105 and the PLS105A are bipolar Programmable Logic State machines of the Mealy type. They contain logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of 6 Q_p, and 8 Q_f edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option. all flip-flops are unconditionally preset to "1" during power turn on.

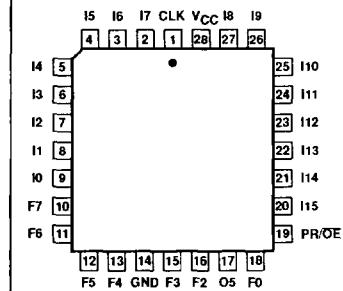
The AND array combines 16 external inputs I₀ – I₁₅ with six internal inputs P₀ – P₅, which are fed back from the State Registers to form up to 48 transition terms (AND terms). All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low-to-High transition of the Clock pulse. Both True and Complement transition terms can be generated by optional use of the internal input variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to Output Enable function, as an additional user-programmable option.

Order codes are listed below in the Ordering Information Table.

FEATURES

- PLS105
 - f_{MAX} = 13.9MHz
 - 20MHz clock rate
- PLS105A
 - f_{MAX} = 20MHz
 - 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition complement array
- Positive edge-triggered clocked flip-flops
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all "1" of internal registers
- Power dissipation: 600mW (typ.)
- TTL compatible
- Single +5V supply
- 3-State outputs

APPLICATIONS


- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

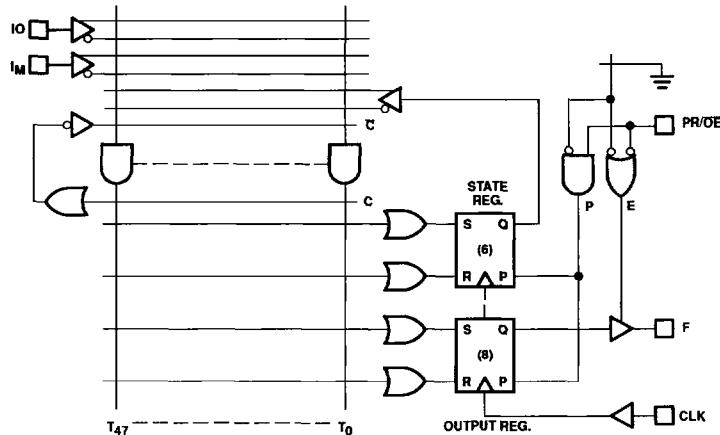
PIN CONFIGURATIONS

N = Plastic DIP (600mil-wide)

A Package

A = Plastic Leaded Chip Carrier

ORDERING INFORMATION

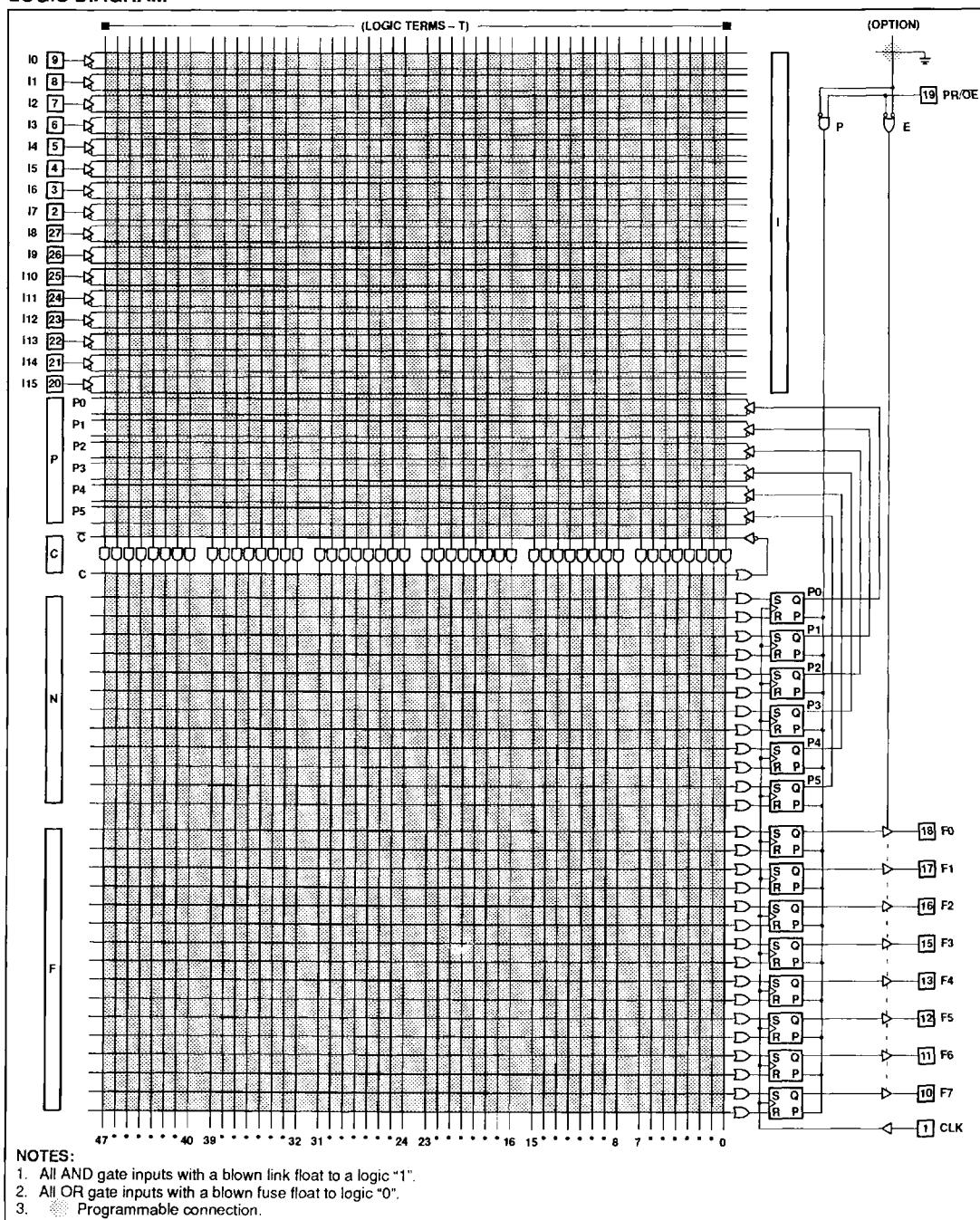

DESCRIPTION	ORDER CODE	DRAWING NUMBER
28-Pin Plastic DIP (600mil-wide)	PLS105N, PLS105AN	0413B
28-Pin Plastic Leaded Chip Carrier	PLS105A, PLS105AA	0401F

Programmable logic sequencers

(16 × 48 × 8)

PLS105/A

FUNCTIONAL DIAGRAM


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CLK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
2 – 8 20 – 27	I1 – I15	Logic Inputs: The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
9	I0	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercised with standard TTL levels. When I0 is held at +10V, device outputs F0 – 5 reflect the contents of State Register bits P0 – 5. The contents each Output Register remains unaltered.	Active-High/Low
10 – 13 15 – 18	F0 – 7	Logic/Diagnostic Outputs: Eight device outputs which normally reflect the contents of Output Register bits Q0 – 7, when enabled. When I0 is held at +10V, F0 – 5 = (P0 – 5), and F6, 7 = Logic "1".	Active-High
19	PR/OE	Preset or Output Enable Input: A user programmable function: <ul style="list-style-type: none"> Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and F0 – 7 are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low. Output Enable: Provides an Output Enable function to all output buffers F0 – 7 from the Output Register. 	Active-High (H) Active-Low (L)

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

LOGIC DIAGRAM

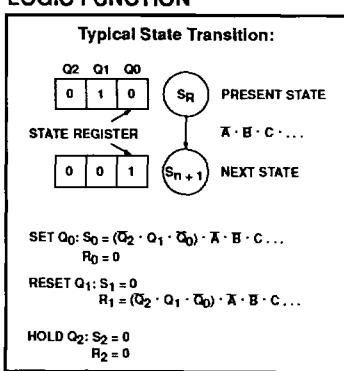
Programmable logic sequencers (16 × 48 × 8)

PLS105/A

TRUTH TABLE 1, 2, 3, 4, 5, 6

V _{CC}	OPTION		I ₀	CK	S	R	Q _{PF}	F
	PR	OE						
+5V	H		*	X	X	X	H	H
		L	+10V	X	X	X	Q _n	(Q _P) _n
		L	X	X	X	X	Q _n	(Q _F) _n
	H		*	X	X	X	Q _n	Hi-Z
		L	+10V	X	X	X	Q _n	(Q _P) _n
		L	X	X	X	X	Q _n	(Q _F) _n
	L		X	↑	L	L	Q _n	(Q _F) _n
		L	X	↑	L	H	L	L
		L	X	↑	H	L	H	H
		L	X	↑	H	H	IND.	IND.
↑	X	X	X	X	X	X	H	

NOTES:


1. Positive Logic:

$$S/R = T_0 + T_1 + T_2 + \dots + T_{47}$$

$$T_n = C(I_0 I_1 I_2 \dots) (P_0 P_1 \dots P_5)$$

2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.3. ↑ denotes transition from Low-to-High level.4. R = S = High is an illegal input condition.5. * = H or L or +10V.6. X = Don't Care (<5.5V).

LOGIC FUNCTION

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Thus, all outputs will be at "1", as preset by initial power-up procedure.2. All transition terms are disabled (0).3. All S/R flip-flop inputs are disabled (0).4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.

NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Philips Semiconductors qualified programming equipment.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	150°C
Maximum ambient	75°C
Allowable thermal rise ambient to junction	75°C

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS		UNIT
		MIN	MAX	
V _{CC}	Supply voltage		+7	V _{DC}
V _{IN}	Input voltage		+5.5	V _{DC}
V _{OUT}	Output voltage		+5.5	V _{DC}
I _{IN}	Input currents	-30	+30	mA
I _{OUT}	Output currents		+100	mA
T _{amb}	Operating temperature range	0	+75	°C
T _{sg}	Storage temperature range	-65	+150	°C

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

Programmable logic sequencers

(16 × 48 × 8)

PLS105/A

DC ELECTRICAL CHARACTERISTICS

0°C ≤ T_{amb} ≤ +75°C, 4.75V ≤ V_{CC} ≤ 5.25V

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			MIN	TYP ¹	MAX	
Input voltage²						
V_{IH}	High	$V_{CC} = \text{MAX}$	2.0			V
V_{IL}	Low	$V_{CC} = \text{MIN}$				V
V_{IC}	Clamp ³	$V_{CC} = \text{MIN}$, $I_{IN} = -12\text{mA}$		-0.8	-1.2	V
Output voltage²						
V_{OH}	High ⁴	$V_{CC} = \text{MIN}$	2.4			V
V_{OL}	Low ⁵	$I_{OH} = -2\text{mA}$ $I_{OL} = 9.6\text{mA}$		0.35	0.45	V
Input current						
I_{IH}	High	$V_{IN} = 5.5\text{V}$		<1	25	μA
I_{IL}	Low	$V_{IN} = 0.45\text{V}$		-10	-100	μA
I_{IL}	Low (CK input)	$V_{IN} = 0.45\text{V}$		-50	-250	μA
Output current						
$I_{O(OFF)}$	Hi-Z state ⁶	$V_{CC} = \text{MAX}$ $V_{OUT} = 5.5\text{V}$		1	40	μA
I_{OS}	Short circuit ^{3, 7}	$V_{OUT} = 0.45\text{V}$ $V_{OUT} = 0\text{V}$	-15	-1	-40	μA
I_{CC}	V_{CC} supply current ⁸	$V_{CC} = \text{MAX}$		120	180	mA
Capacitance⁶						
C_{IN}	Input	$V_{CC} = 5.0\text{V}$		8		pF
C_{OUT}	Output	$V_{IN} = 2.0\text{V}$ $V_{OUT} = 2.0\text{V}$		10		pF

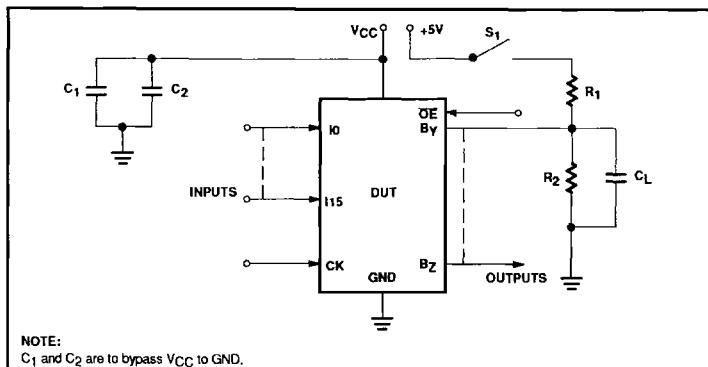
NOTES:

1. All typical values are at $V_{CC} = 5\text{V}$, $T_{amb} = +25^\circ\text{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with V_{IL} applied to OE and a logic high stored, or with V_{IH} applied to PR .
5. Measured with a programmed logic condition for which the output is at a low logic level, and V_{IL} applied to PR/OE . Output sink current is supplied through a resistor to V_{CC} .
6. Measured with V_{IH} applied to PR/OE .
7. Duration of short circuit should not exceed 1 second.
8. I_{CC} is measured with the PR/OE input grounded, all other inputs at 4.5V and the outputs open.

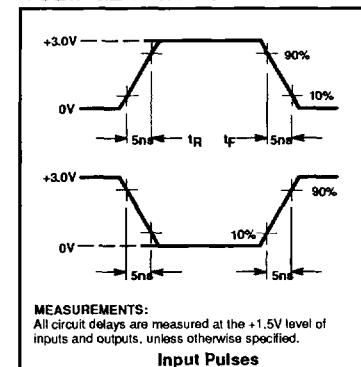
Programmable logic sequencers (16 × 48 × 8)

PLS105/A

AC ELECTRICAL CHARACTERISTICS

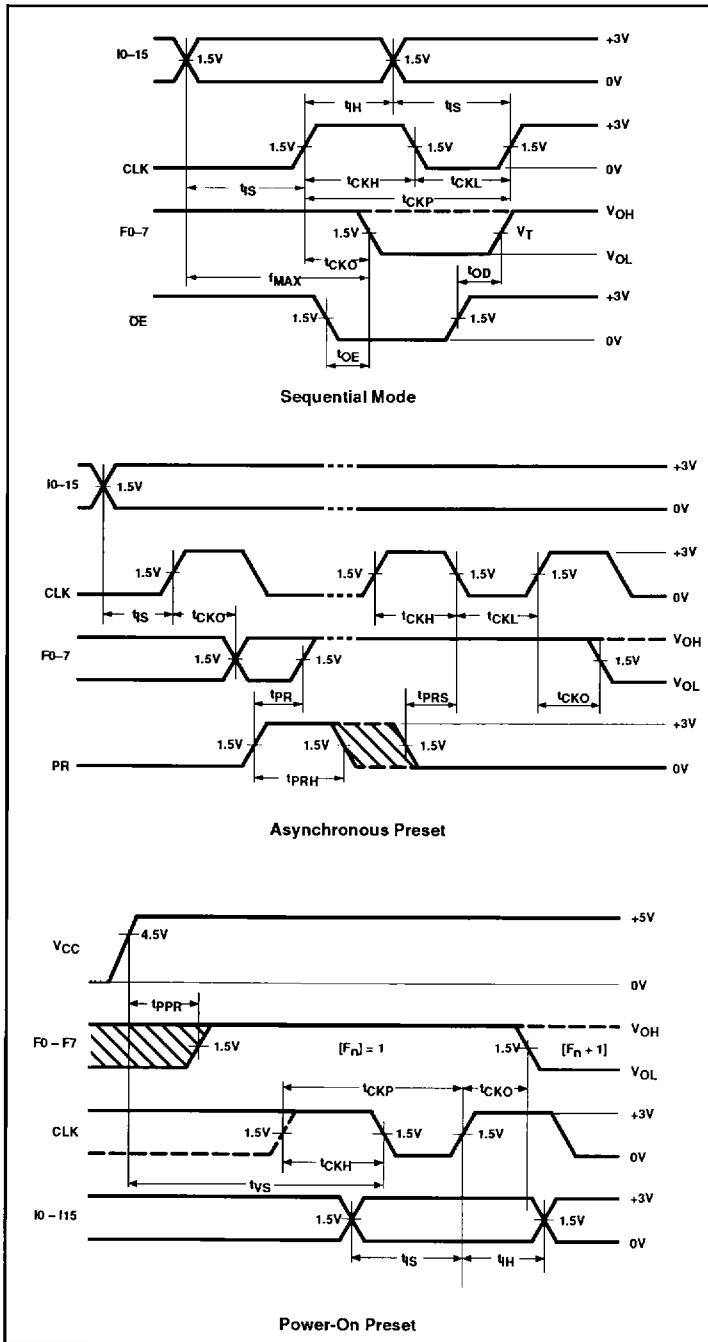

 $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$, $0^\circ C \leq T_{amb} \leq +75^\circ C$, $4.75V \leq V_{CC} \leq 5.25V$

SYMBOL	PARAMETER	FROM	TO	LIMITS						UNIT	
				PLS105			PLS105A				
				MIN	TYP ¹	MAX	MIN	TYP ¹	MAX		
Pulse width											
t_{CKH}	Clock ² High	CK +	CK -	25	15		20	15		ns	
t_{CKL}	Clock Low	CK -	CK +	25	15		20	15		ns	
t_{CKP}	Clock period	CK +	CK +	50	30		40	30		ns	
t_{PRH}	Preset pulse	PR +	PR -	25	15		25	15		ns	
Setup time³											
t_{IS1A}	Input	Input ±	CK +	60			40			ns	
t_{IS1B}	Input	Input ±	CK +	50			30			ns	
t_{IS1C}	Input	Input ±	CK +	42			N/A			ns	
t_{IS2A}	Input (through Complement Array)	Input ±	CK +	90			70			ns	
t_{IS2B}	Input (through Complement Array)	Input	CK +	80			60			ns	
t_{IS2C}	Input (through Complement Array)	Input	CK +	72			N/A			ns	
t_{VS}	Power-on preset	V_{CC} +	CK -	0	-10		0	-10		ns	
t_{PRS}	Preset	V_{CC} +	CK -	0	-10		0	-10		ns	
Hold time											
t_{IH}	Input	CK +	Input ±	5	-10		5	-10		ns	
Propagation delay											
t_{CKO}	Clock	CK +	Output ±		15	30		15	20	ns	
t_{OE}	Output enable ⁴	OE -	Output -		20	30		20	30	ns	
t_{OD}	Output disable ⁴	OE +	Output +		20	30		20	30	ns	
t_{PR}	Preset	PR +	Output +		18	30		18	30	ns	
t_{PPR}	Power-on preset	V_{CC} +	Output +		0	10		0	10	ns	
Frequency of operation³											
f_{MAXC}	Without Complement Array				13.9			20.0		MHz	
f_{MAXC}	With Complement Array				9.8			12.5		MHz	


NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_{amb} = +25^\circ C$.
2. To prevent spurious clocking, clock rise time (10% – 90%) $\leq 30ns$.
3. See "Speed vs. OR Loading" diagrams.
4. For 3-State output; output enable times are tested with $C_L = 30pF$ to the 1.5V level, and S_1 is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $C_L = 5pF$. High-to-High impedance tests are made to an output voltage of $V_T = (V_{OH} - 0.5V)$ with S_1 open, and Low-to-High impedance tests are made to the $V_T = (V_{OL} + 0.5V)$ level with S_1 closed.

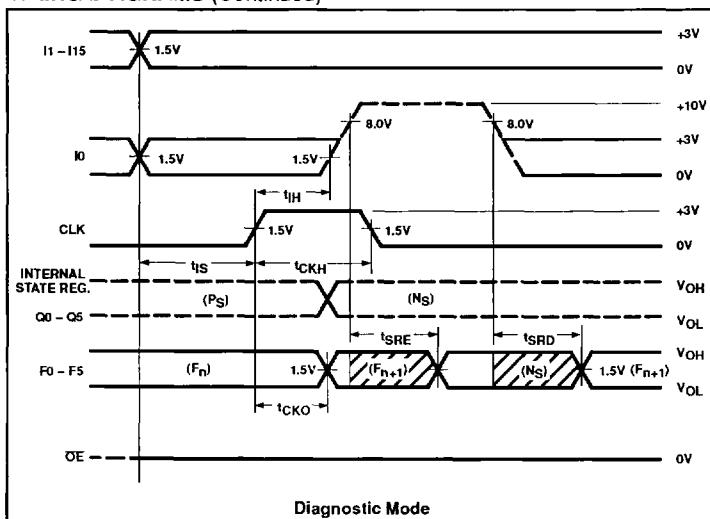
TEST LOAD CIRCUIT


VOLTAGE WAVEFORMS

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

TIMING DIAGRAMS


TIMING DEFINITIONS

SYMBOL	PARAMETER
t_{CKH}	Width of input clock pulse.
t_{CKL}	Interval between clock pulses.
t_{CKP}	Minimum guaranteed Clock period.
t_{IS1}	Required delay between beginning of valid input and positive transition of clock.
t_{IS2}	Required delay between beginning of valid input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND array).
t_{VS}	Required delay between V_{CC} (after power-on) and negative transition of Clock preceding first reliable clock pulse.
t_{PRS}	Required delay between negative transition of Asynchronous Preset and negative transition of Clock preceding first reliable clock pulse.
t_{IH}	Required delay between positive transition of Clock and end of valid input data.
t_{CKO}	Delay between positive transition of clock and when outputs become valid (with PR/OE Low).
t_{OE}	Delay between beginning of Output Enable Low and when outputs become valid.
t_{OD}	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
t_{ISRE}	Delay between input I_0 transition to Diagnostic mode and when the outputs reflect the contents of the State Register.
t_{SRD}	Delay between input I_0 transition to Logic mode and when the outputs reflect the contents of the Output Register.
t_{PR}	Delay between positive transition of Preset and when outputs become valid at "1".
t_{PPR}	Delay between V_{CC} (after power-on) and when outputs become preset at "1".
t_{PRH}	Width of preset input pulse.
f_{MAX}	Minimum guaranteed operating frequency.

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

TIMING DIAGRAMS (Continued)

SPEED VS. "OR" LOADING

The maximum frequency at which the PLS can be clocked while operating in **sequential mode** is given by:

$$(1/f_{MAX}) = t_{CY} = t_{IS} + t_{CKO}$$

This frequency depends on the number of transition terms T_n used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects t_{IS} due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of t_{IS1} with the number of terms connected per OR.

The PLS105 AC electrical characteristics contain three limits for the parameters t_{IS1} and t_{IS2} (refer to Figure 1). The first, t_{IS1A} is guaranteed for a device with 48 terms connected to any OR line. t_{IS1B} is guaranteed for a device with 32 terms connected to any OR line. And t_{IS1C} is guaranteed for a device with 24 terms connected to any OR line.

The three other entries in the AC table, t_{IS2} A, B, and C are corresponding 48, 32, and 24 term limits when using the on-chip Complement Array.

The PLS105A AC electrical characteristics contain two limits for the parameters t_{IS1} and t_{IS2} (refer to Figure 2). The first, t_{IS1A} is guaranteed for a device with 24 terms connected to any OR line. t_{IS1B} is guaranteed for a device with 16 terms connected to any OR line.

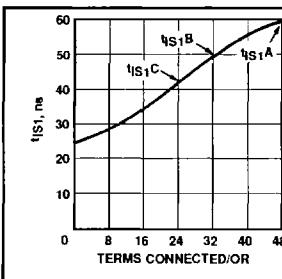


Figure 1. PLS105 t_{IS1} vs. Terms/OR Connected

The two other entries in the AC table, t_{IS2} A and B are corresponding 24 and 16 term limits when using the on-chip Complement Array.

The worst case of t_{IS} for a given application can be determined by identifying the OR line with the maximum number of T_n connections. This can be done by referring to the interconnect pattern in the PLS logic diagram, typically illustrated in Figure 3, or by counting the maximum number of "H" or "L" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 or 2 will yield the worst case t_{IS} and, by implication, the maximum clocking frequency for reliable operation.

Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.

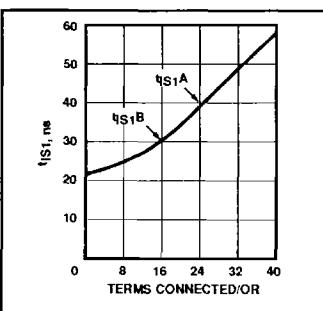


Figure 2. PLS105A t_{IS1} vs. Terms/OR Connected

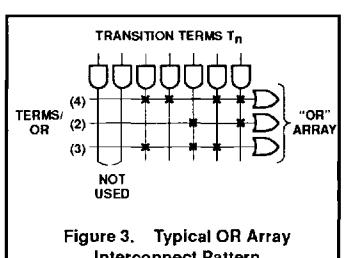


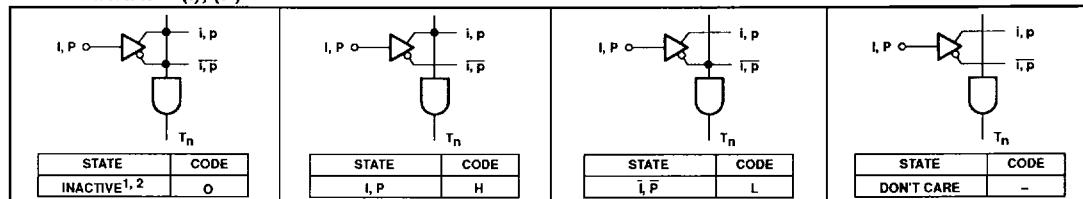
Figure 3. Typical OR Array Interconnect Pattern

Programmable logic sequencers

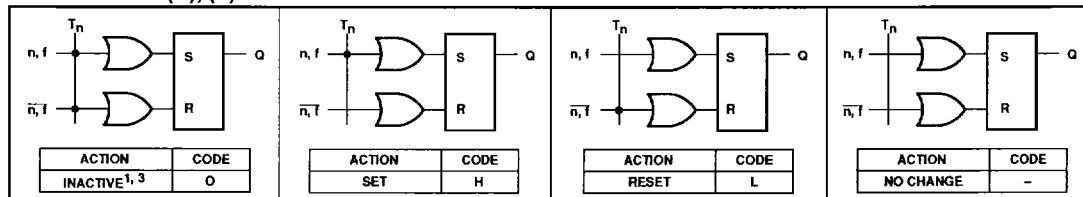
(16 × 48 × 8)

PLS105/A

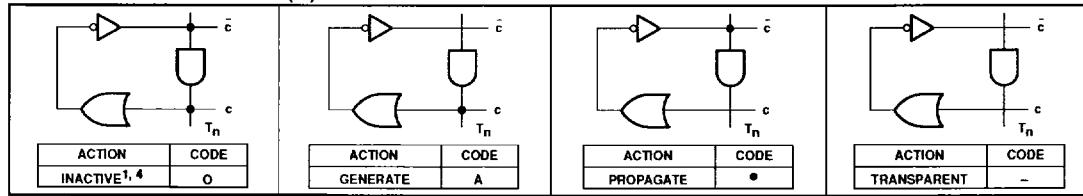
LOGIC PROGRAMMING


The PLS105/A devices are fully supported by industry standard (JEDEC compatible) PLD CAD tools, including Philips Semiconductors' SNAP, Data I/O Corporation's ABEL™ and Logical Devices Inc.'s CUPL™ design software packages.

All packages allow Boolean and state equation entry formats. SNAP, ABEL and CUPL also accept, as input, schematic capture format.


PLS105/A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Philips Semiconductors SNAP PLD design software package.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.


"AND" ARRAY – (I), (P)

"OR" ARRAY – (N), (F)

"COMPLEMENT" ARRAY – (C)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_n will be unconditionally inhibited if both the true and complement of any input (I or P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_n (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_n .

ABEL is a trademark of Data I/O Corp.
CUPL is a trademark of Logical Devices, Inc.

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

PROGRAM TABLE

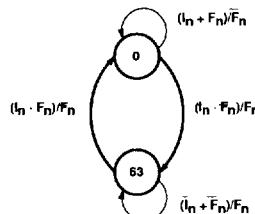
PROGRAM TABLE ENTRIES

NOTES:-

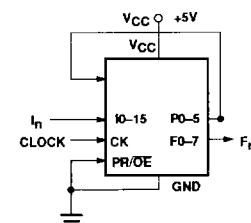
NOTES:

1. The FPLS is shipped with all links initially intact. Thus, a background of "0" for all Terms, and an "H" for the P/E option, exists in the table, shown BLANK instead for clarity.
2. Unused C_{ji} , I_m , and P_5 bits are normally programmed Don't Care (-).
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmers.

Programmable logic sequencers (16 × 48 × 8)


PLS105/A

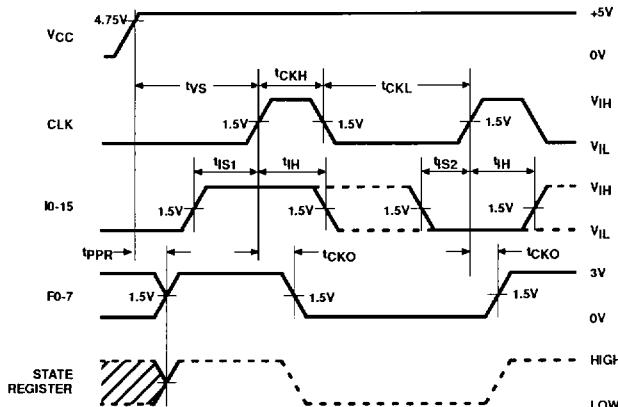
TEST ARRAY


The PLS105/A may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49, factory programmed as shown below.

Testing is accomplished by clocking the PLS105/A and applying the proper input sequence to I0-I15 as shown in the test circuit timing diagram.

State Diagram


PLS Under Test

TERM	AND																PRESENT STATE (Ps)				
	C	1	1	1	1	1	1	INPUT (Im)													
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	5	4	3	2	1	0
48	A	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	*	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

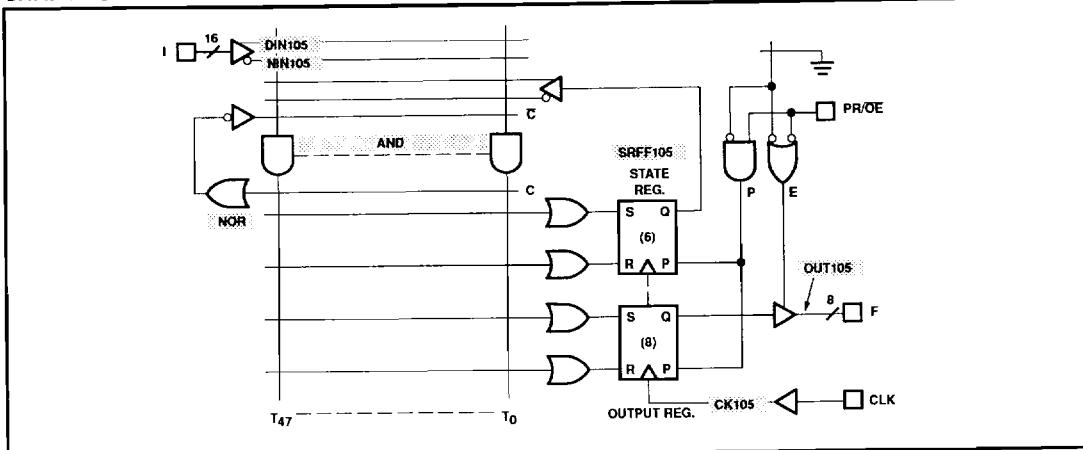
TERM	OPTION (P/E)																H			
	OR								OUTPUT (Fr)											
	NEXT STATE (Ns)								OUTPUT (Fr)											
5	4	3	2	1	0	7	6	5	4	3	2	1	0	5	4	3	2	1	0	
L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any Philips Semiconductors' qualified programming equipment.

Test Circuit Timing Diagram

TERM	AND																PRESENT STATE (Ps)				
	C	1	1	1	1	1	1	INPUT (Im)													
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	5	4	3	2	1	0
48	-	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	*	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L


Test Array Deleted

TERM	OPTION (P/E)																H			
	OR								OUTPUT (Fr)											
	NEXT STATE (Ns)								OUTPUT (Fr)											
5	4	3	2	1	0	7	6	5	4	3	2	1	0	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Programmable logic sequencers (16 × 48 × 8)

PLS105/A

SNAP RESOURCE SUMMARY DESIGNATIONS

