

New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922
(212) 227-6005
FAX: (973) 376-8960

MJE8502 MJE8503

6.0 AMPERE

NPN SILICON POWER TRANSISTORS

700 and 800 VOLTS
80 WATTS

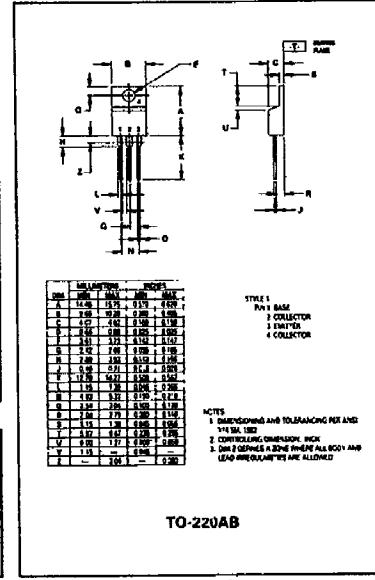
SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS

The MJE8502 and MJE8503 transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall-time is critical. They are particularly suited for line operated switch-mode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

Fast Turn-Off Times

160 ns Inductive Fall Time—25°C (Typ)
400 ns Inductive Crossover Time—25°C (Typ)
1200 ns Inductive Storage Time—25°C (Typ)


Operating Temperature Range —65 to +125°C

100°C Performance Specified for:

Reverse-Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristics boundaries — are given to facilitate "worst case" design.

TO-220AB

MAXIMUM RATINGS

Rating	Symbol	MJE8502	MJE8503	Unit
Collector-Emitter Voltage	$V_{CEO(sus)}$	700	800	Vdc
Collector-Emitter Voltage	V_{CEV}	1200	1400	Vdc
Emitter Base Voltage	V_{EB}	8.0	8.0	Vdc
Collector Current — Continuous Peak (1)	I_C I_{CM}	5.0 10	6.0 10	Adc
Base Current — Continuous Peak (1)	I_B I_{BM}	4.0 8.0	4.0 8.0	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ @ $T_C = 100^\circ\text{C}$	P_D	80 21 0.80	80 21 0.80	Watts $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	—65 to +125		$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{AJC}	1.26	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 6 Seconds	T_L	276	$^\circ\text{C}$

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle < 10%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Downloaded from: <http://www.datasheetcatalog.com/>

MJE8502, MJE8503

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Table 1) ($I_C = 100 \text{ mA}, I_B = 0$)	$V_{CEO(\text{sus})}$	700 800	—	—	Vdc
Collector Cutoff Current (V_{CEV} = Rated Value, $V_{BE(\text{off})} = 1.5 \text{ Vdc}$) (V_{CEV} = Rated Value, $V_{BE(\text{off})} = 1.5 \text{ Vdc}, T_C = 100^\circ\text{C}$)	I_{CEV}	—	—	0.25 5.0	mAdc
Collector Cutoff Current ($V_{CE} = \text{Rated } V_{CEV}, R_{BE} = 50 \Omega, T_C = 100^\circ\text{C}$)	I_{CER}	—	—	6.0	mAdc
Emitter Cutoff Current ($V_{EB} = 7.0 \text{ Vdc}, I_C = 0$)	I_{EBO}	—	—	1.0	mAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with base forward biased	$I_{S/b}$	See Figure 12			
Clamped Inductive SOA with Base Reverse Biased	RB_{SOA}	See Figure 13			
ON CHARACTERISTICS (1)					
DC Current Gain ($I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$)	h_{FE}	7.5	—	—	—
Collector-Emitter Saturation Voltage ($I_C = 2.5 \text{ Adc}, I_B = 1.0 \text{ Adc}$) ($I_C = 5.0 \text{ Adc}, I_B = 2.0 \text{ Adc}$) ($I_C = 2.5 \text{ Adc}, I_B = 1.0 \text{ Adc}, T_C = 100^\circ\text{C}$)	$V_{CE(\text{sat})}$	— — —	— 2.0 5.0 3.0	— — —	Vdc
Base-Emitter Saturation Voltage ($I_C = 2.5 \text{ Adc}, I_B = 1.0 \text{ Adc}$) ($I_C = 2.5 \text{ Adc}, I_B = 1.0 \text{ Adc}, T_C = 100^\circ\text{C}$)	$V_{BE(\text{sat})}$	— —	— 1.5 1.5	— —	Vdc
DYNAMIC CHARACTERISTICS					
Output Capacitance ($V_{CB} \sim 10 \text{ Vdc}, I_E = 0, f_{\text{test}} = 1.0 \text{ kHz}$)	C_{ob}	60	—	300	pF
SWITCHING CHARACTERISTICS					
Resistive Load (Table 1)					
Delay Time	t_d	—	0.040	0.20	μs
Rise Time	t_r	—	0.125	2.0	μs
Storage Time	t_s	—	1.2	4.0	μs
Fall Time	t_f	—	0.65	2.0	μs
Inductive Load, Clamped (Table 1)					
Storage Time	t_{sv}	—	1.8	5.0	μs
Crossover Time	t_c	—	0.60	2.0	μs
Storage Time	t_{sv}	—	1.2	—	μs
Crossover Time	t_c	—	0.4	—	μs
Fall Time	t_{ff}	—	0.15	—	μs

(1) Pulse Test: PW = 300 μs , Duty Cycle $\leq 2\%$.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.