

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 51502NSC

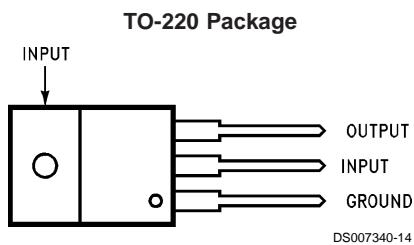
LM79XX Series 3-Terminal Negative Regulators

General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of -5V, -12V, and -15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a

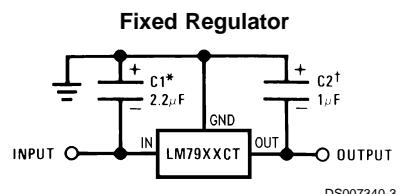

resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 datasheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

Connection Diagrams



DS007340-14

Front View

Order Number LM7905CT, LM7912CT or LM7915CT
See NS Package Number TO3B

Typical Applications

DS007340-3

*Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.

†Required for stability. For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of 100µF, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage ($V_o = -5V$)	-25V	Input-Output Differential ($V_o = -5V$)	25V
($V_o = -12V$ and $-15V$)	-35V	($V_o = -12V$ and $-15V$)	30V
		Power Dissipation (Note 2)	Internally Limited
		Operating Junction Temperature Range	0°C to $+125^{\circ}\text{C}$
		Storage Temperature Range	-65°C to $+150^{\circ}\text{C}$
		Lead Temperature (Soldering, 10 sec.)	230°C

Electrical Characteristics

Conditions unless otherwise noted: $I_{\text{OUT}} = 500\text{mA}$, $C_{\text{IN}} = 2.2\mu\text{F}$, $C_{\text{OUT}} = 1\mu\text{F}$, $0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$, Power Dissipation $\leq 1.5\text{W}$.

Part Number			LM7905C			Units	
Output Voltage			-5V				
Input Voltage (unless otherwise specified)			-10V				
Symbol	Parameter	Conditions	Min	Typ	Max		
V_o	Output Voltage	$T_J = 25^{\circ}\text{C}$ $5\text{mA} \leq I_{\text{OUT}} \leq 1\text{A}$, $P \leq 15\text{W}$	-4.8 -4.75 ($-20 \leq V_{\text{IN}} \leq -7$)	-5.0 -5.25	-5.2	V	
ΔV_o	Line Regulation	$T_J = 25^{\circ}\text{C}$, (Note 3)	8 ($-25 \leq V_{\text{IN}} \leq -7$) 2 ($-12 \leq V_{\text{IN}} \leq -8$)	50 15 15	mV V mV V		
ΔV_o	Load Regulation	$T_J = 25^{\circ}\text{C}$, (Note 3) $5\text{mA} \leq I_{\text{OUT}} \leq 1.5\text{A}$ $250\text{mA} \leq I_{\text{OUT}} \leq 750\text{mA}$	15 5	100 50	mV mV		
I_Q	Quiescent Current	$T_J = 25^{\circ}\text{C}$	1	2	mA		
ΔI_Q	Quiescent Current Change	With Line With Load, $5\text{mA} \leq I_{\text{OUT}} \leq 1\text{A}$		0.5 0.5	mA mA		
V_n	Output Noise Voltage	$T_A = 25^{\circ}\text{C}$, $10\text{Hz} \leq f \leq 100\text{Hz}$	125		μV		
	Ripple Rejection	$f = 120\text{Hz}$	54 ($-18 \leq V_{\text{IN}} \leq -8$)	66	dB		
	Dropout Voltage	$T_J = 25^{\circ}\text{C}$, $I_{\text{OUT}} = 1\text{A}$		1.1	V		
I_{OMAX}	Peak Output Current	$T_J = 25^{\circ}\text{C}$	2.2		A		
	Average Temperature Coefficient of Output Voltage	$I_{\text{OUT}} = 5\text{mA}$, $0^{\circ}\text{C} \leq T_J \leq 100^{\circ}\text{C}$	0.4		$\text{mV}/^{\circ}\text{C}$		

Electrical Characteristics

Conditions unless otherwise noted: $I_{\text{OUT}} = 500\text{mA}$, $C_{\text{IN}} = 2.2\mu\text{F}$, $C_{\text{OUT}} = 1\mu\text{F}$, $0^{\circ}\text{C} \leq T_J \leq +125^{\circ}\text{C}$, Power Dissipation $\leq 1.5\text{W}$.

Part Number			LM7912C			LM7915C			Units	
Output Voltage			-12V			-15V				
Input Voltage (unless otherwise specified)			-19V			-23V				
Symbol	Parameter	Conditions	Min	Typ	Max	Min	Typ	Max		
V_o	Output Voltage	$T_J = 25^{\circ}\text{C}$ $5\text{mA} \leq I_{\text{OUT}} \leq 1\text{A}$, $P \leq 15\text{W}$	-11.5 -11.4 ($-27 \leq V_{\text{IN}} \leq -14.5$)	-12.0 -12.6	-12.5	-14.4 -14.25 ($-30 \leq V_{\text{IN}} \leq -17.5$)	-15.0 -15.75	-15.6	V	
ΔV_o	Line Regulation	$T_J = 25^{\circ}\text{C}$, (Note 3)	5 ($-30 \leq V_{\text{IN}} \leq -14.5$) 3	80 30	80 ($-22 \leq V_{\text{IN}} \leq -16$)	5 3	100 50	mV mV		
ΔV_o	Load Regulation	$T_J = 25^{\circ}\text{C}$, (Note 3)				($-26 \leq V_{\text{IN}} \leq -20$)				

Electrical Characteristics (Continued)

Conditions unless otherwise noted: $I_{OUT} = 500\text{mA}$, $C_{IN} = 2.2\mu\text{F}$, $C_{OUT} = 1\mu\text{F}$, $0^\circ\text{C} \leq T_J \leq +125^\circ\text{C}$, Power Dissipation $\leq 1.5\text{W}$.

Part Number			LM7912C			LM7915C			Units	
Output Voltage			-12V			-15V				
Input Voltage (unless otherwise specified)			-19V			-23V				
Symbol	Parameter	Conditions	Min	Typ	Max	Min	Typ	Max		
		5mA $\leq I_{OUT} \leq 1.5\text{A}$ 250mA $\leq I_{OUT} \leq 750\text{mA}$	15	200		15	200		mV	
I_Q	Quiescent Current	$T_J = 25^\circ\text{C}$	1.5	3		1.5	3		mA	
ΔI_Q	Quiescent Current Change	With Line		0.5			0.5		mA	
		With Load, 5mA $\leq I_{OUT} \leq 1\text{A}$	(-30 $\leq V_{IN} \leq -14.5$)	0.5		(-30 $\leq V_{IN} \leq -17.5$)	0.5		V	
V_n	Output Noise Voltage	$T_A = 25^\circ\text{C}$, 10Hz $\leq f \leq 100\text{Hz}$	300			375			μV	
	Ripple Rejection	$f = 120\text{ Hz}$	54	70		54	70		dB	
			(-25 $\leq V_{IN} \leq -15$)			(-30 $\leq V_{IN} \leq -17.5$)			V	
	Dropout Voltage	$T_J = 25^\circ\text{C}$, $I_{OUT} = 1\text{A}$	1.1			1.1			V	
I_{OMAX}	Peak Output Current	$T_J = 25^\circ\text{C}$	2.2			2.2			A	
	Average Temperature Coefficient of Output Voltage	$I_{OUT} = 5\text{mA}$, $0^\circ\text{C} \leq T_J \leq 100^\circ\text{C}$		-0.8			-1.0		$\text{mV/}^\circ\text{C}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee Specific Performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Design Considerations

The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ θ_{JC} $^\circ\text{C/W}$	Max θ_{JC} $^\circ\text{C/W}$	Typ θ_{JA} $^\circ\text{C/W}$	Max θ_{JA} $^\circ\text{C/W}$
TO-220	3.0	5.0	60	40

$$P_{D MAX} = \frac{T_{J MAX} - T_A}{\theta_{JC} + \theta_{CA}} \text{ or } \frac{T_{J MAX} - T_A}{\theta_{JA}}$$

$$\theta_{CA} = \theta_{CS} + \theta_{SA} \text{ (without heat sink)}$$

Solving for T_J :

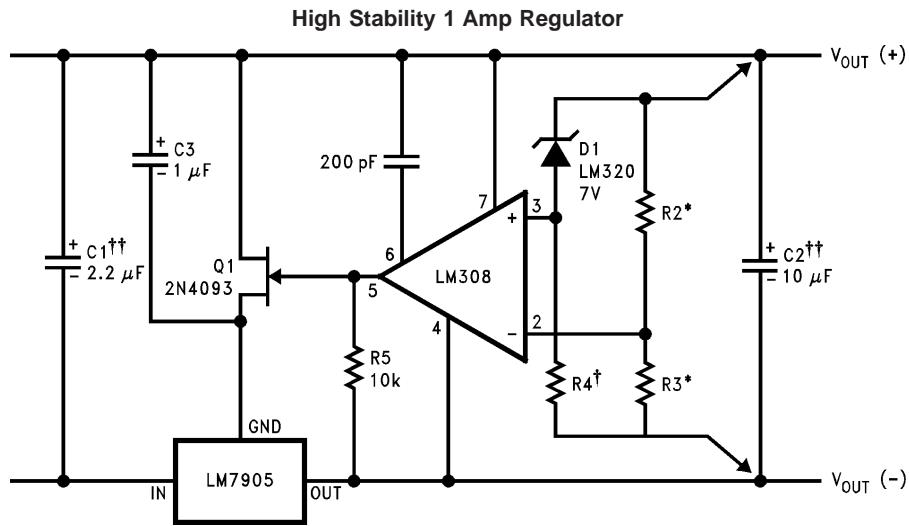
$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA}) \text{ or} \\ = T_A + P_D \theta_{JA} \text{ (without heat sink)}$$

Where:

T_J = Junction Temperature

T_A = Ambient Temperature

P_D = Power Dissipation

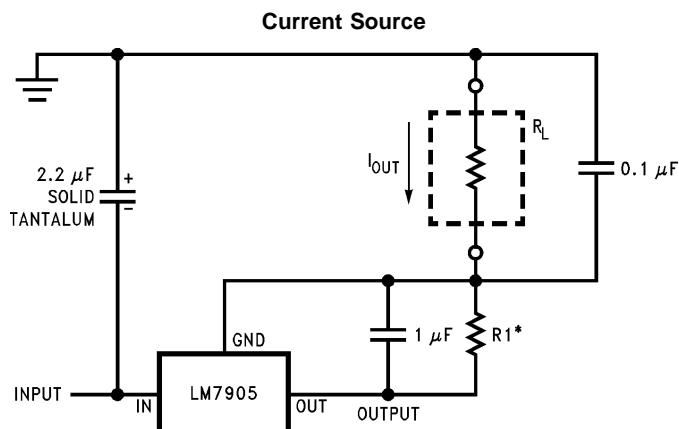

θ_{JA} = Junction-to-Ambient Thermal Resistance
 θ_{JC} = Junction-to-Case Thermal Resistance
 θ_{CA} = Case-to-Ambient Thermal Resistance
 θ_{CS} = Case-to-Heat Sink Thermal Resistance
 θ_{SA} = Heat Sink-to-Ambient Thermal Resistance

Typical Applications

Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.

The bypass capacitors, (2.2 μ F on the input, 1.0 μ F on the output) should be ceramic or solid tantalum which have good

high frequency characteristics. If aluminum electrolytics are used, their values should be 10 μ F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

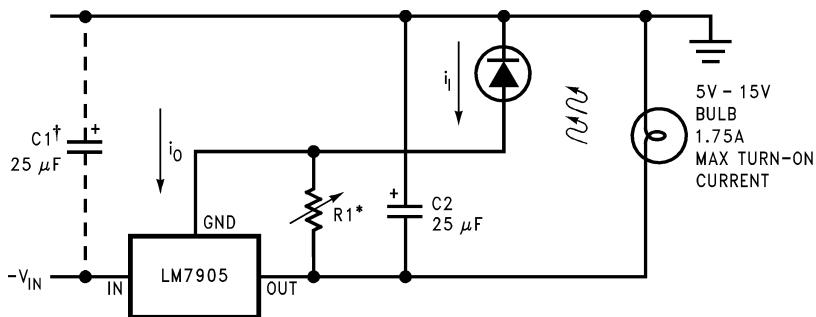

DS007340-5

Load and line regulation < 0.01% temperature stability $\leq 0.2\%$

†Determine Zener current

††Solid tantalum

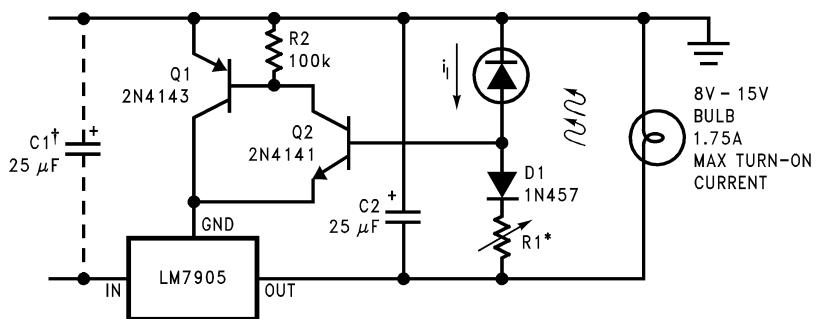
*Select resistors to set output voltage. 2 ppm/ $^{\circ}$ C tracking suggested



DS007340-7

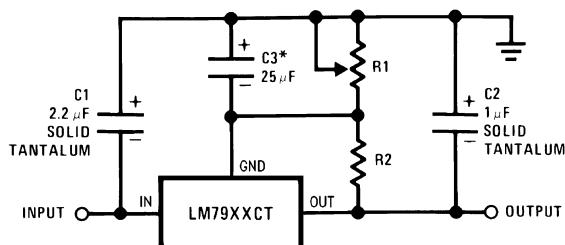
$$*I_{OUT} = 1 \text{ mA} + \frac{5V}{R1}$$

Typical Applications (Continued)


Light Controller Using Silicon Photo Cell

*Lamp brightness increase until $i_L = i_Q (\approx 1 \text{ mA}) + 5V/R1$.

†Necessary only if raw supply filter capacitor is more than 2" from LM7905CT


High-Sensitivity Light Controller

*Lamp brightness increases until $i_L = 5V/R1$ (i_L can be set as low as 1 μA)

†Necessary only if raw supply filter capacitor is more than 2" from LM7905

Variable Output

*Improves transient response and ripple rejection. Do not increase beyond 50 μF .

$$V_{\text{OUT}} = V_{\text{SET}} \left(\frac{R_1 + R_2}{R_2} \right)$$

Select R2 as follows:

LM7905CT	300 Ω
LM7912CT	750 Ω
LM7915CT	1k

Typical Applications (Continued)

(-15)Load Regulation at $\Delta I_L = 1A$

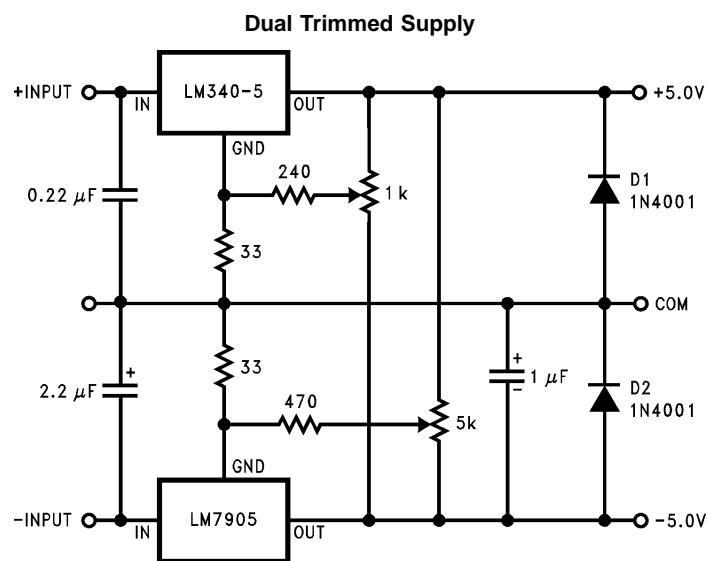
40mV

(+15)

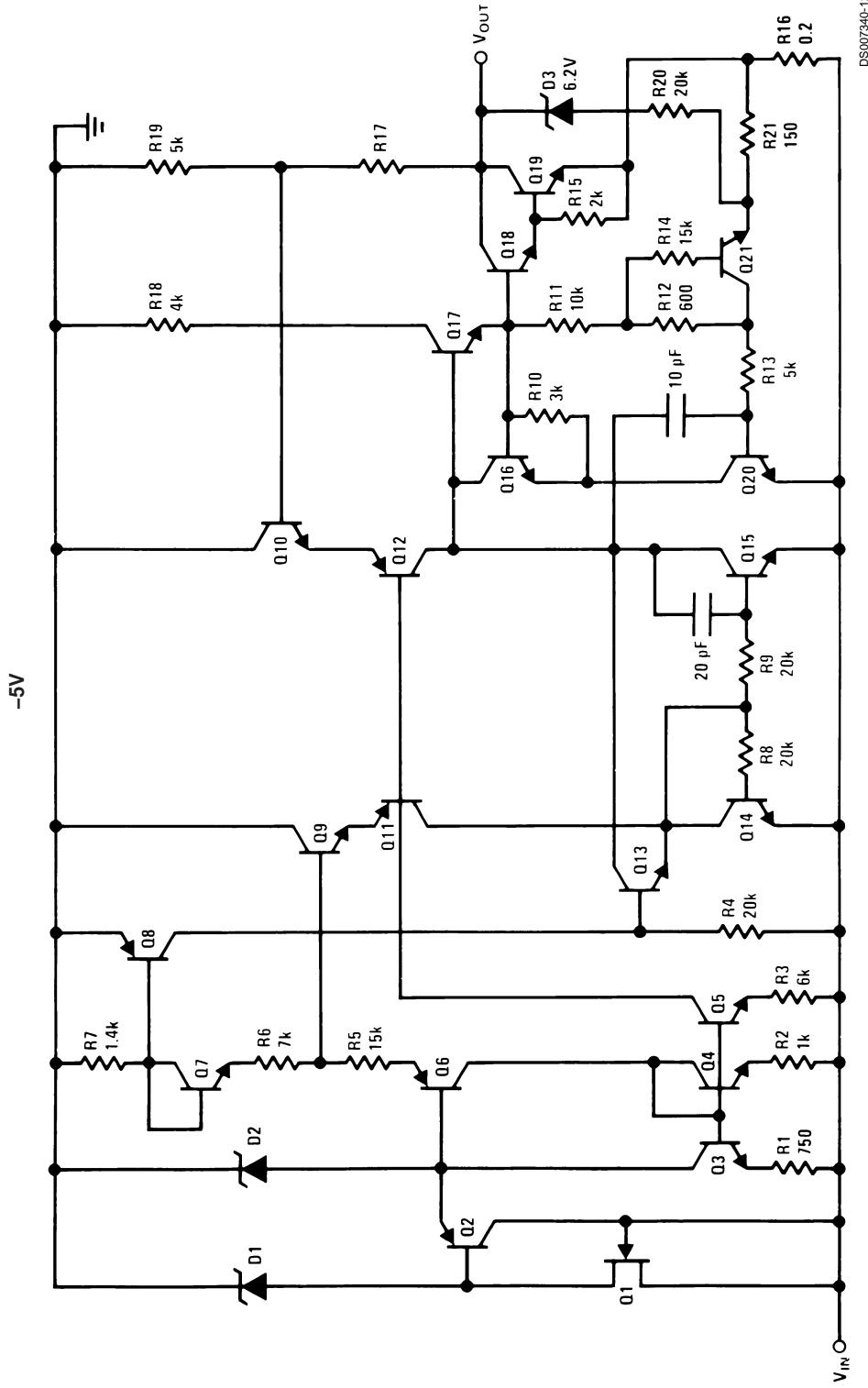
2mV

Output Ripple, $C_{IN} = 3000\mu F$, $I_L = 1A$ 100 μV_{rms} 100 μV_{rms}

Temperature Stability

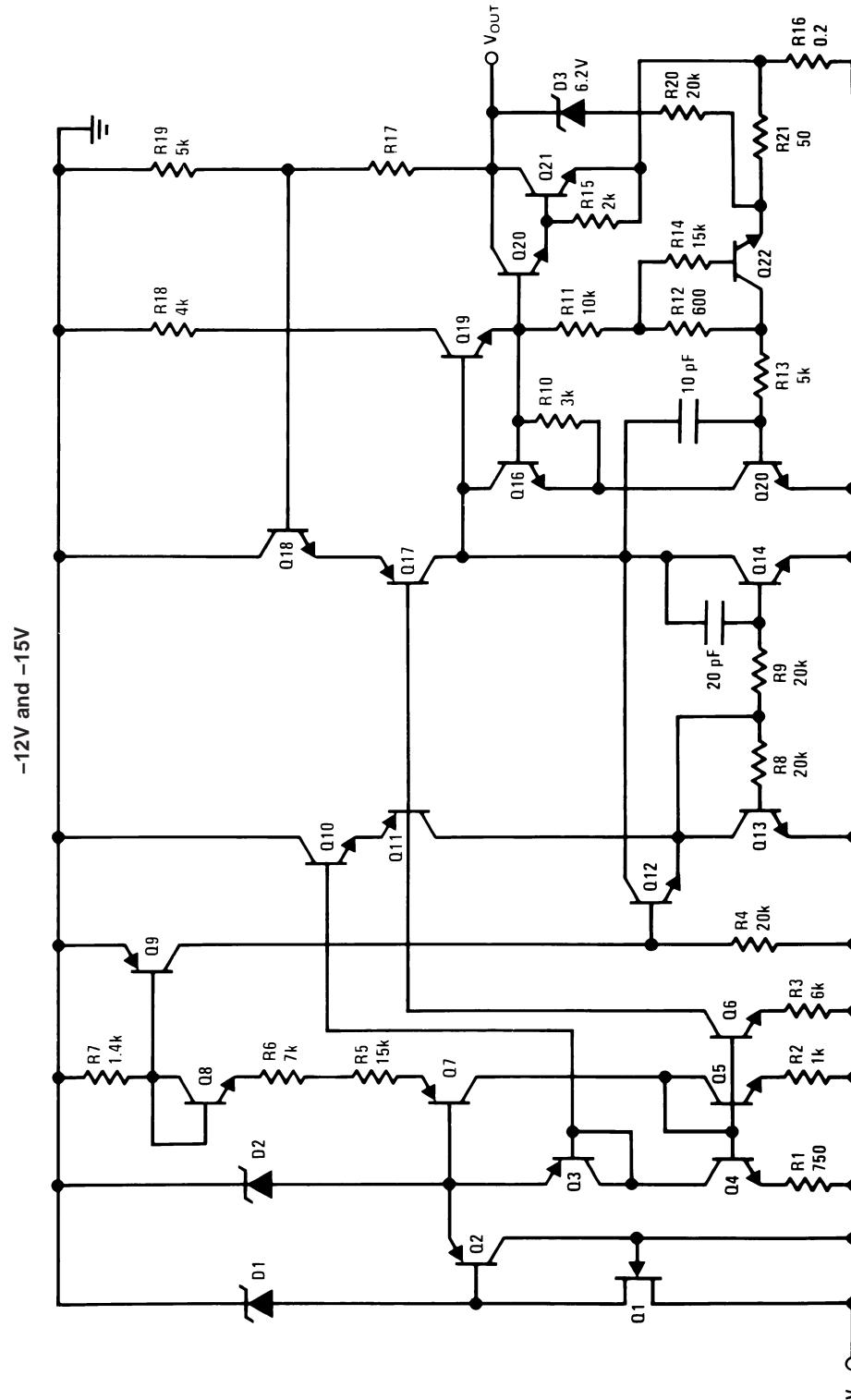

50mV

50mV

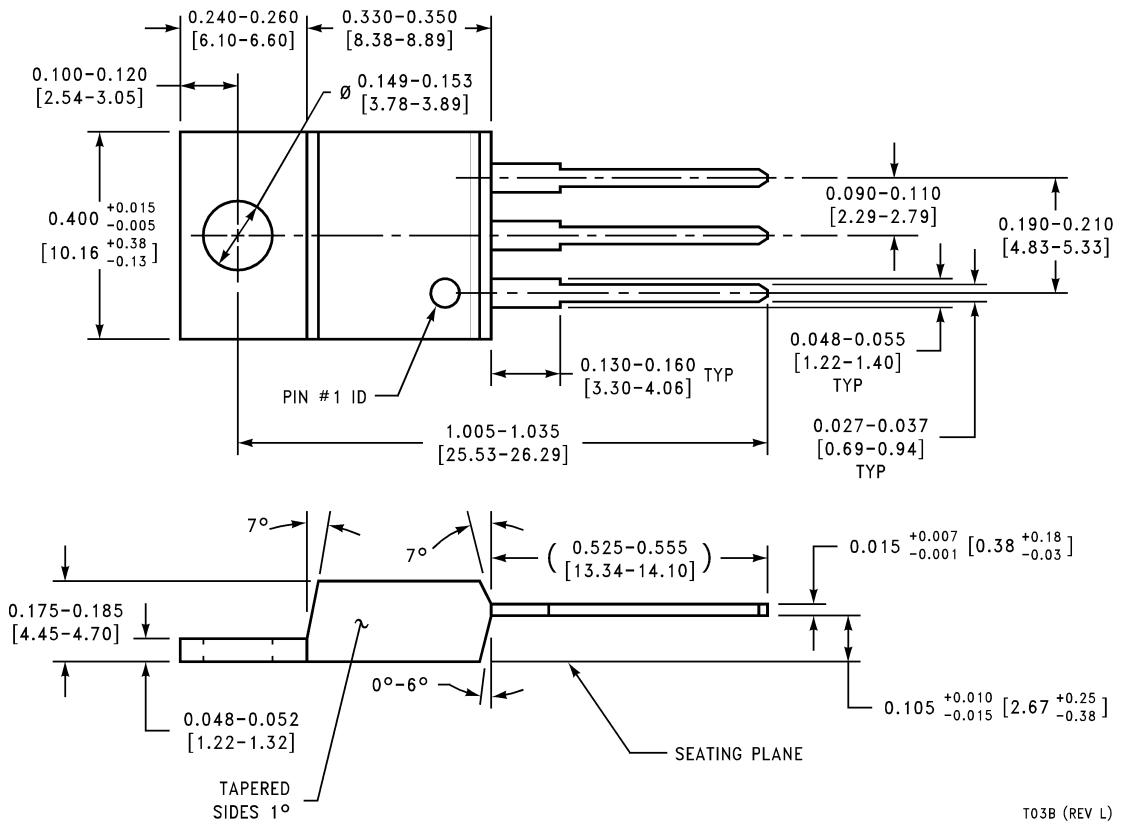

Output Noise 10Hz $\leq f \leq 10kHz$ 150 μV_{rms} 150 μV_{rms}

*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.

**Necessary only if raw supply filter capacitors are more than 3" from regulators.



Schematic Diagrams


LM79XX Series

Schematic Diagrams (Continued)

Physical Dimensions

inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

**National Semiconductor
Corporation**
Americas
Email: support@nsc.com

www.national.com

National Semiconductor
Europe
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor
Asia Pacific Customer
Response Group**
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

**National Semiconductor
Japan Ltd.**
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507