

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 47001FSC

DM74LS191

Synchronous 4-Bit Up/Down Counter with Mode Control

General Description

The DM74LS191 circuit is a synchronous, reversible, up/down counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

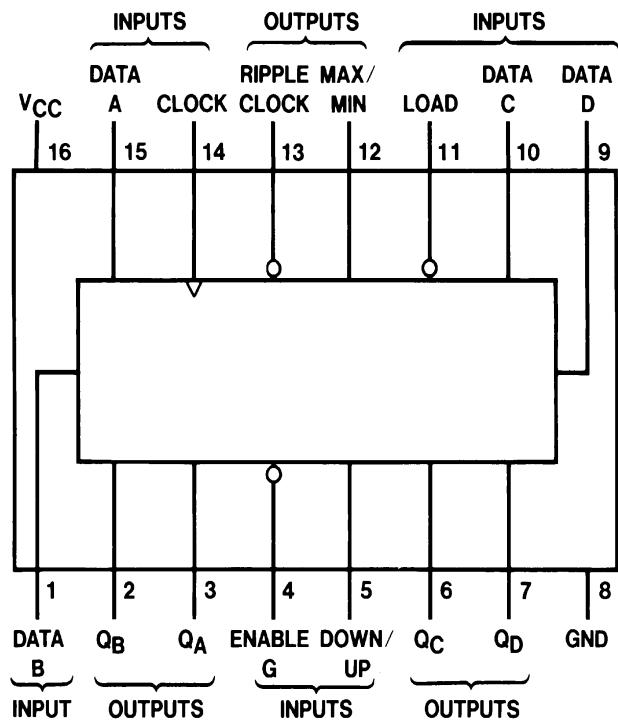
The outputs of the four master-slave flip-flops are triggered on a LOW-to-HIGH level transition of the clock input, if the enable input is LOW. A HIGH at the enable input inhibits counting. Level changes at either the enable input or the down/up input should be made only when the clock input is HIGH. The direction of the count is determined by the level of the down/up input. When LOW, the counter counts up and when HIGH, it counts down.

The counter is fully programmable; that is, the outputs may be preset to either level by placing a LOW on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

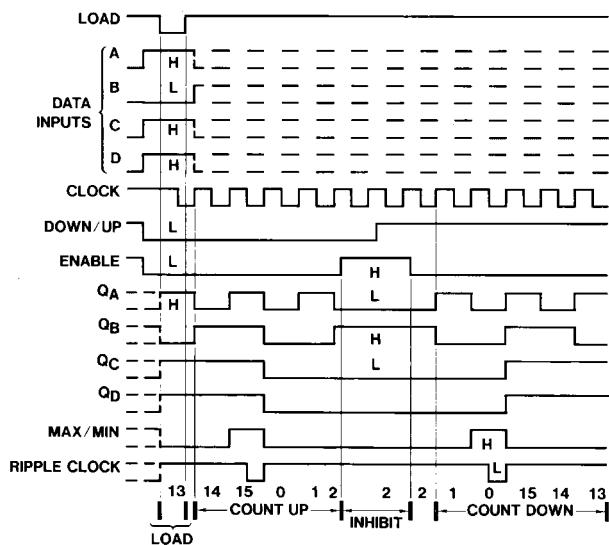
The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

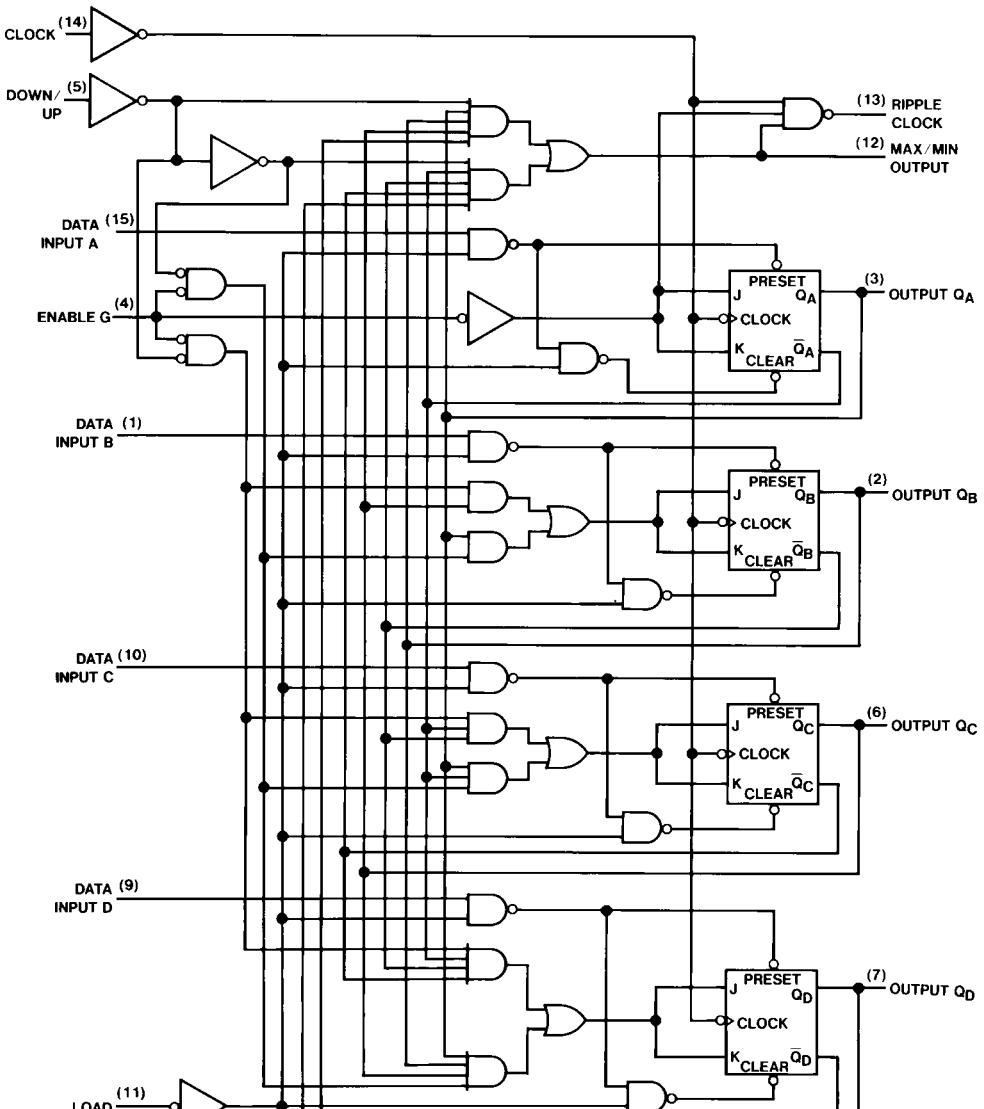
Features


- Counts binary
- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications
- Average propagation delay 20 ns
- Typical clock frequency 25 MHz
- Typical power dissipation 100 mW

Ordering Code:


Order Number	Package Number	Package Description
DM74LS191M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
DM74LS191N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

Timing Diagram

Logic Diagram

Absolute Maximum Ratings (Note 1)

Storage Temperature Range	-65°C to +150°C
Input Voltage	7V
Operating Free Air Temp. Range	0°C to +70°C
Supply Voltage	7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
V_{IH}	HIGH Level Input Voltage	2			V
V_{IL}	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
f_{CLK}	Clock Frequency (Note 2)	0		20	MHz
t_W	Pulse Width (Note 2)	Clock	25		ns
		Load	35		
t_{SU}	Data Setup Time (Note 2)	20			ns
t_H	Data Hold Time (Note 2)	0			ns
t_{EN}	Enable Time to Clock (Note 2)	30			ns
T_A	Free Air Operating Temperature	0		70	°C

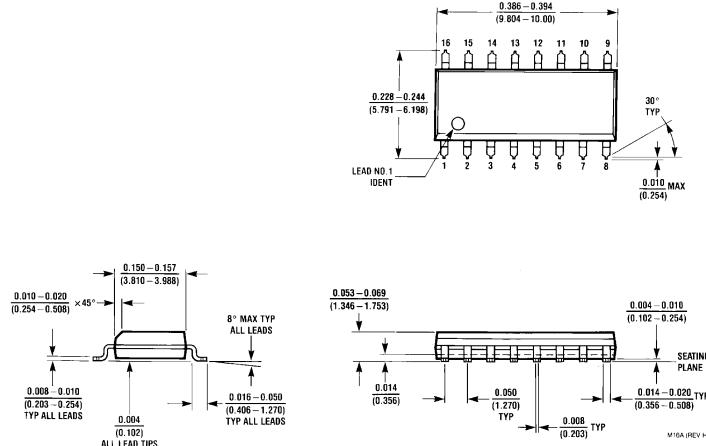
Note 2: $T_A = 25^\circ\text{C}$ and $V_{CC} = 5\text{V}$.

DC Electrical Characteristics

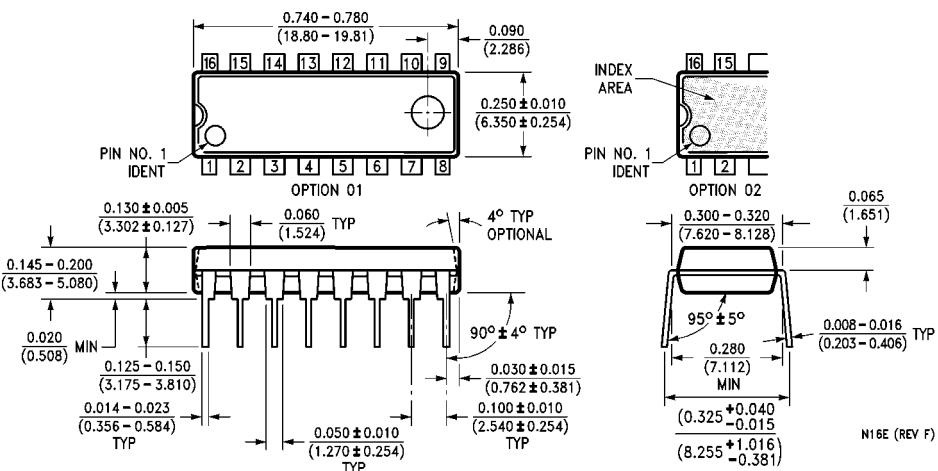
Symbol	Parameter	Conditions	Min	Typ (Note 3)	Max	Units
V_I	Input Clamp Voltage	$V_{CC} = \text{Min}$, $I_I = -18\text{ mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$V_{CC} = \text{Min}$, $I_{OH} = \text{Max}$ $V_{IL} = \text{Max}$, $V_{IH} = \text{Min}$	Mil	2.5	3.4	V
			Com	2.7	3.4	
V_{OL}	LOW Level Output Voltage	$V_{CC} = \text{Min}$, $I_{OL} = \text{Max}$ $V_{IL} = \text{Max}$, $V_{IH} = \text{Min}$ $I_{OL} = 4\text{ mA}$, $V_{CC} = \text{Min}$		0.25	0.4	V
				0.35	0.5	
				0.25	0.4	
I_I	Input Current @ Max Input Voltage	$V_{CC} = \text{Max}$ $V_I = 7\text{V}$	Enable		0.3	mA
			Others		0.1	
I_{IH}	HIGH Level Input Current	$V_{CC} = \text{Max}$ $V_I = 2.7\text{V}$	Enable		60	μA
			Others		20	
I_{IL}	LOW Level Input Current	$V_{CC} = \text{Max}$ $V_I = 0.4\text{V}$	Enable		-1.08	mA
			Others		-0.4	
I_{os}	Short Circuit Output Current	$V_{CC} = \text{Max}$ (Note 4)	Mil	-20	-100	mA
			Com	-20	-100	
I_{CC}	Supply Current	$V_{CC} = \text{Max}$ (Note 5)		20	35	mA

Note 3: All typicals are at $V_{CC} = 5\text{V}$, $T_A = 25^\circ\text{C}$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 5: I_{CC} is measured with all inputs grounded and all outputs open.

AC Electrical Characteristics


Symbol	Parameter	From (Input) To (Output)	$R_L = 2 \text{ k}\Omega$				Units	
			$C_L = 15 \text{ pF}$		$C_L = 50 \text{ pF}$			
			Min	Max	Min	Max		
f_{MAX}	Maximum Clock Frequency		20		20		MHz	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Load to Any Q		33		43	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Load to Any Q		50		59	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Data to Any Q		22		26	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Data to Any Q		50		62	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Ripple Clock		20		24	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Ripple Clock		24		33	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Any Q		24		29	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Any Q		36		45	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Max/Min		42		47	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Max/Min		52		65	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Up/Down to Ripple Clock		45		50	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Up/Down to Ripple Clock		45		54	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Down/Up to Max/Min		33		36	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Down/Up to Max/Min		33		42	ns	
t_{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Ripple Clock		33		36	ns	
t_{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Ripple Clock		33		42	ns	

Physical Dimensions

inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS012, 0.150" Narrow Body
Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 300" Wide
Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com