

Distributed by:



**[www.Jameco.com](http://www.Jameco.com) ♦ 1-800-831-4242**

The content and copyrights of the attached  
material are the property of its owner.

Jameco Part Number 46050FSC

## MM74HC540 • MM74HC541

### Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

#### General Description

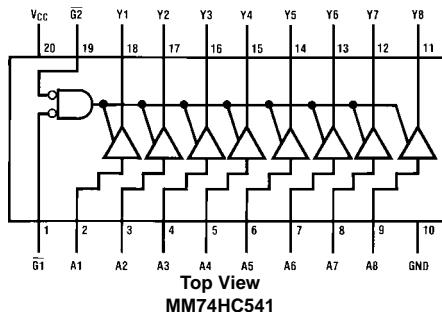
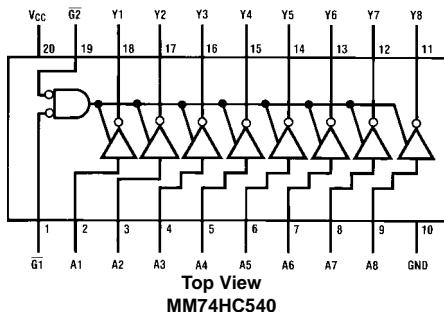
The MM74HC540 and MM74HC541 3-STATE buffers utilize advanced silicon-gate CMOS technology. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. Both devices have a fanout of 15 LS-TTL equivalent inputs.

The MM74HC540 is an inverting buffer and the MM74HC541 is a non-inverting buffer. The 3-STATE control gate operates as a two-input NOR such that if either  $\bar{G1}$  or  $G2$  are HIGH, all eight outputs are in the high-impedance state.

In order to enhance PC board layout, the MM74HC540 and MM74HC541 offers a pinout having inputs and outputs on opposite sides of the package. All inputs are protected from damage due to static discharge by diodes to  $V_{CC}$  and ground.

#### Features

- Typical propagation delay: 12 ns
- 3-STATE outputs for connection to system buses
- Wide power supply range: 2–6V
- Low quiescent current: 80  $\mu$ A maximum (74HC Series)
- Output current: 6 mA



#### Ordering Code:

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| MM74HC540WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HC540SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HC540MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HC540N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |
| MM74HC541WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HC541SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HC541MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HC541N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

#### Connection Diagrams

Pin Assignments for DIP, SOIC, SOP and TSSOP



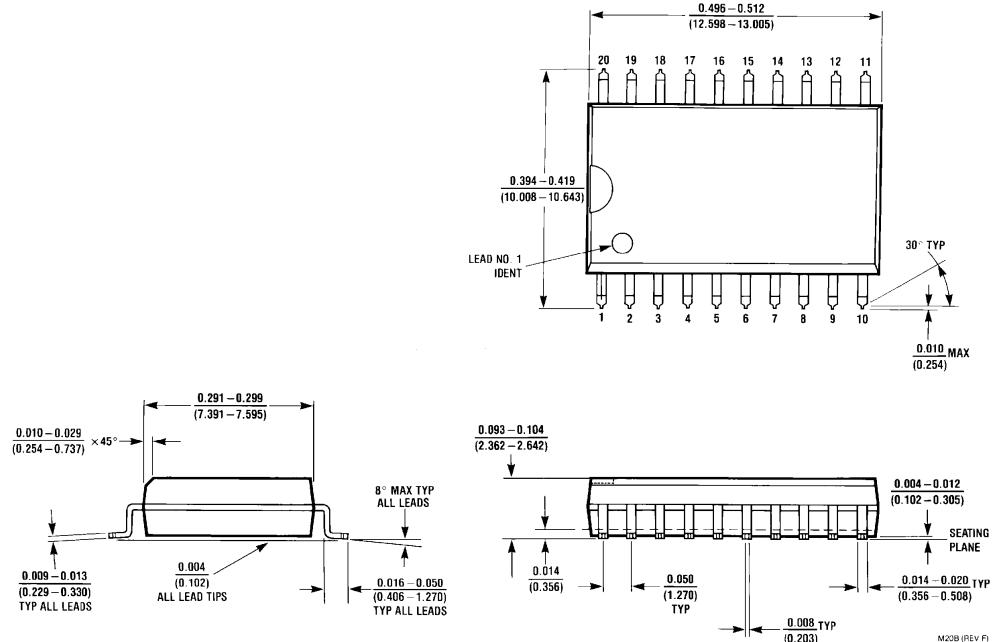
| Absolute Maximum Ratings <sup>(Note 1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                 | Recommended Operating Conditions                                                                   |                          |          |                                          |                                           |       |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|----------|------------------------------------------|-------------------------------------------|-------|---|
| (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                 |                                                                                                    |                          |          |                                          |                                           |       |   |
| Supply Voltage ( $V_{CC}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                 | –0.5 to +7.0V                          |                                                                                 |                                                                                                    |                          | Min      | Max                                      | Units                                     |       |   |
| DC Input Voltage ( $V_{IN}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                               | –1.5 to $V_{CC}$ +1.5V                 |                                                                                 | Supply Voltage ( $V_{CC}$ )                                                                        | 2                        | 6        | V                                        |                                           |       |   |
| DC Output Voltage ( $V_{OUT}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                             | –0.5 to $V_{CC}$ +0.5V                 |                                                                                 | DC Input or Output Voltage                                                                         |                          |          |                                          |                                           |       |   |
| Clamp Diode Current ( $I_{CD}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±20 mA                                 |                                                                                 | ( $V_{IN}$ , $V_{OUT}$ )                                                                           | 0                        | $V_{CC}$ | V                                        |                                           |       |   |
| DC Output Current, per pin ( $I_{OUT}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±35 mA                                 |                                                                                 | Operating Temperature Range ( $T_A$ )                                                              | –40                      | +85      | °C                                       |                                           |       |   |
| DC $V_{CC}$ or GND Current, per pin ( $I_{CC}$ )                                                                                                                                                                                                                                                                                                                                                                                                                            | ±70 mA                                 |                                                                                 | Input Rise or Fall Times                                                                           |                          |          |                                          |                                           |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | ( $t_r$ , $t_f$ ) $V_{CC}$ = 2.0V                                                                  |                          | 1000     | ns                                       |                                           |       |   |
| Storage Temperature Range ( $T_{STG}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                     | –65°C to +150°C                        |                                                                                 | $V_{CC}$ = 4.5V                                                                                    |                          | 500      | ns                                       |                                           |       |   |
| Power Dissipation ( $P_D$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                 | $V_{CC}$ = 6.0V                                                                                    |                          | 400      | ns                                       |                                           |       |   |
| (Note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600 mW                                 |                                                                                 | Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.     |                          |          |                                          |                                           |       |   |
| S.O. Package only                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500 mW                                 |                                                                                 | Note 2: Unless otherwise specified all voltages are referenced to ground.                          |                          |          |                                          |                                           |       |   |
| Lead Temperature ( $T_L$ )<br>(Soldering 10 seconds)                                                                                                                                                                                                                                                                                                                                                                                                                        | 260°C                                  |                                                                                 | Note 3: Power Dissipation temperature derating — plastic "N" package: –12 mW/°C from 65°C to 85°C. |                          |          |                                          |                                           |       |   |
| DC Electrical Characteristics (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                 |                                                                                                    |                          |          |                                          |                                           |       |   |
| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                              | Conditions                                                                      | $V_{CC}$                                                                                           | $T_A = 25^\circ\text{C}$ |          | $T_A = -40 \text{ to } 85^\circ\text{C}$ | $T_A = -55 \text{ to } 125^\circ\text{C}$ | Units |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 |                                                                                                    | Typ                      |          | Guaranteed Limits                        |                                           |       |   |
| $V_{IH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum HIGH Level Input Voltage       |                                                                                 | 2.0V                                                                                               |                          | 1.5      | 1.5                                      | 1.5                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 4.5V                                                                                               |                          | 3.15     | 3.15                                     | 3.15                                      | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 6.0V                                                                                               |                          | 4.2      | 4.2                                      | 4.2                                       | V     |   |
| $V_{IL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum LOW Level Input Voltage        |                                                                                 | 2.0V                                                                                               |                          | 0.5      | 0.5                                      | 0.5                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 4.5V                                                                                               |                          | 1.35     | 1.35                                     | 1.35                                      | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 6.0V                                                                                               |                          | 1.8      | 1.8                                      | 1.8                                       | V     |   |
| $V_{OH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum HIGH Level Output Voltage      | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 20 \mu\text{A}$                | 2.0V                                                                                               | 2.0                      | 1.9      | 1.9                                      | 1.9                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 4.5V                                                                                               | 4.5                      | 4.4      | 4.4                                      | 4.4                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 6.0V                                                                                               | 6.0                      | 5.9      | 5.9                                      | 5.9                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 6.0 \text{ mA}$                                   | 4.5V                     | 4.2      | 3.98                                     | 3.84                                      | 3.7   | V |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $ I_{OUT}  \leq 7.8 \text{ mA}$                                                                    | 6.0V                     | 5.7      | 5.48                                     | 5.34                                      | 5.2   | V |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 20 \mu\text{A}$                                   | 2.0V                     | 0        | 0.1                                      | 0.1                                       | 0.1   | V |
| $V_{OL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum LOW Level Output Voltage       | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 20 \mu\text{A}$                | 4.5V                                                                                               | 0                        | 0.1      | 0.1                                      | 0.1                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | 6.0V                                                                                               | 0                        | 0.1      | 0.1                                      | 0.1                                       | V     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 6.0 \text{ mA}$                                   | 2.0V                     | 0.2      | 0.26                                     | 0.33                                      | 0.4   | V |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $ I_{OUT}  \leq 7.8 \text{ mA}$                                                                    | 4.5V                     | 0.2      | 0.26                                     | 0.33                                      | 0.4   | V |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \leq 6.0 \text{ mA}$                                   | 6.0V                     | 0.2      | 0.26                                     | 0.33                                      | 0.4   | V |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                 | $ I_{OUT}  \leq 7.8 \text{ mA}$                                                                    | 2.0V                     | 0        | 0.1                                      | 0.1                                       | 0.1   | V |
| $I_{IN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum Input Current                  | $V_{IN} = V_{CC}$ or GND                                                        | 6.0V                                                                                               |                          | ±0.1     | ±1.0                                     | ±1.0                                      | μA    |   |
| $I_{OZ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum 3-STATE Output Leakage Current | $V_{IN} = V_{IH}$ or $V_{IL}$ , $\bar{G} = V_{IH}$<br>$V_{OUT} = V_{CC}$ or GND | 6.0V                                                                                               |                          | ±0.5     | ±5                                       | ±10                                       | μA    |   |
| $I_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum Quiescent Supply Current       | $V_{IN} = V_{CC}$ or GND<br>$I_{OUT} = 0 \mu\text{A}$                           | 6.0V                                                                                               |                          | 8.0      | 80                                       | 160                                       | μA    |   |
| Note 4: For a power supply of $5V \pm 10\%$ the worst case output voltages ( $V_{OH}$ , and $V_{OL}$ ) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case $V_{IH}$ and $V_{IL}$ occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The $V_{IH}$ value at 5.5V is 3.85V.) The worst case leakage current ( $I_{IN}$ , $I_{CC}$ , and $I_{OZ}$ ) occur for CMOS at the higher voltage and so the 6.0V values should be used. |                                        |                                                                                 |                                                                                                    |                          |          |                                          |                                           |       |   |

## AC Electrical Characteristics

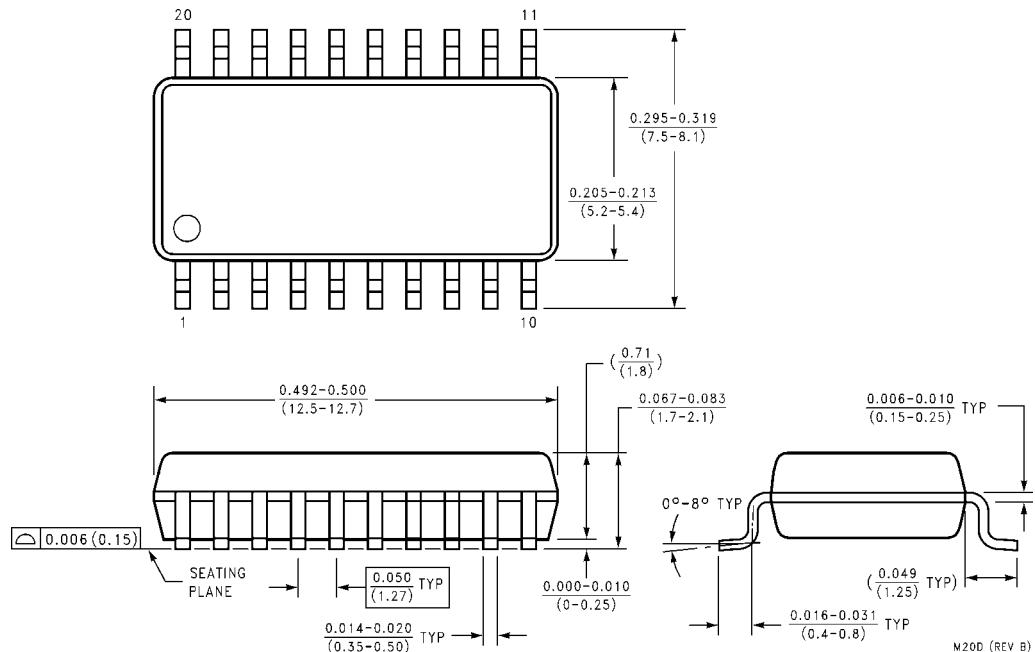
$V_{CC} = 5V$ ,  $T_A = 25^\circ C$ ,  $t_r = t_f = 6 \text{ ns}$

| Symbol             | Parameter                       | Conditions                                         | Typ | Guaranteed Limit | Units |
|--------------------|---------------------------------|----------------------------------------------------|-----|------------------|-------|
| $t_{PHL}, t_{PLH}$ | Maximum Propagation Delay (540) | $C_L = 45 \text{ pF}$                              | 12  | 18               | ns    |
| $t_{PHL}, t_{PLH}$ | Maximum Propagation Delay (541) | $C_L = 45 \text{ pF}$                              | 14  | 20               | ns    |
| $t_{PZH}, t_{PZL}$ | Maximum Output Enable Time      | $R_L = 1 \text{ k}\Omega$<br>$C_L = 45 \text{ pF}$ | 17  | 28               | ns    |
| $t_{PHZ}, t_{PLZ}$ | Maximum Output Disable Time     | $R_L = 1 \text{ k}\Omega$<br>$C_L = 5 \text{ pF}$  | 15  | 25               | ns    |

## AC Electrical Characteristics

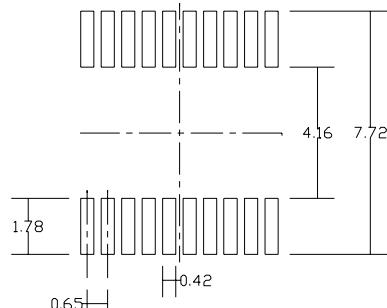
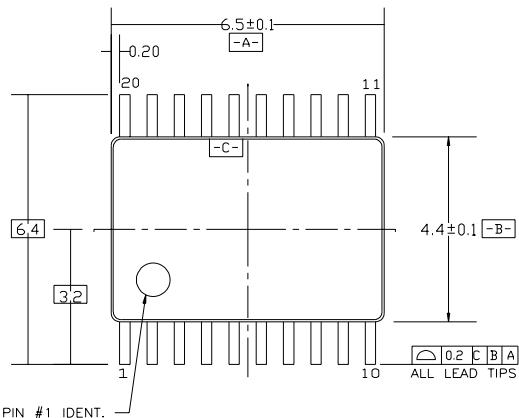

$V_{CC} = 2.0V$  to  $6.0V$ ,  $C_L = 50 \text{ pF}$ ,  $t_r = t_f = 6 \text{ ns}$  (unless otherwise specified)

| Symbol             | Parameter                              | Conditions                | $V_{CC}$ | $T_A = 25^\circ C$ |                   | $T_A = -40 \text{ to } 85^\circ C$ | $T_A = -55 \text{ to } 125^\circ C$ | Units |
|--------------------|----------------------------------------|---------------------------|----------|--------------------|-------------------|------------------------------------|-------------------------------------|-------|
|                    |                                        |                           |          | Typ                | Guaranteed Limits |                                    |                                     |       |
| $t_{PHL}, t_{PLH}$ | Maximum Propagation Delay (540)        | $C_L = 50 \text{ pF}$     | 2.0V     | 55                 | 100               | 126                                | 149                                 | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 2.0V     | 83                 | 150               | 190                                | 224                                 | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 4.5V     | 12                 | 20                | 25                                 | 30                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 4.5V     | 22                 | 30                | 38                                 | 45                                  | ns    |
|                    | Maximum Propagation Delay (541)        | $C_L = 50 \text{ pF}$     | 6.0V     | 11                 | 17                | 21                                 | 25                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 6.0V     | 18                 | 26                | 32                                 | 38                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 2.0V     | 58                 | 115               | 145                                | 171                                 | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 2.0V     | 83                 | 165               | 208                                | 246                                 | ns    |
| $t_{PZH}, t_{PZL}$ | Maximum Output Enable Time             | $R_L = 1 \text{ k}\Omega$ | 4.5V     | 14                 | 23                | 29                                 | 34                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 4.5V     | 17                 | 33                | 42                                 | 49                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 6.0V     | 11                 | 20                | 25                                 | 29                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 6.0V     | 14                 | 28                | 35                                 | 42                                  | ns    |
|                    | Maximum Output Disable Time            | $R_L = 1 \text{ k}\Omega$ | 2.0V     | 75                 | 150               | 189                                | 224                                 | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 2.0V     | 100                | 200               | 252                                | 298                                 | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 4.5V     | 15                 | 30                | 38                                 | 45                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 4.5V     | 30                 | 40                | 50                                 | 60                                  | ns    |
| $t_{PHZ}, t_{PLZ}$ | Maximum Output Disable Time            | $R_L = 1 \text{ k}\Omega$ | 6.0V     | 13                 | 26                | 32                                 | 38                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 6.0V     | 17                 | 34                | 43                                 | 51                                  | ns    |
|                    |                                        | $C_L = 150 \text{ pF}$    | 2.0V     | 75                 | 150               | 189                                | 224                                 | ns    |
|                    | Maximum Output Rise and Fall Time      | $C_L = 50 \text{ pF}$     | 4.5V     | 15                 | 30                | 38                                 | 45                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 6.0V     | 13                 | 26                | 32                                 | 38                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 2.0V     | 25                 | 60                | 75                                 | 90                                  | ns    |
| $t_{THL}, t_{TLH}$ | Maximum Output Rise and Fall Time      | $C_L = 50 \text{ pF}$     | 4.5V     | 7                  | 12                | 15                                 | 18                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 6.0V     | 6                  | 10                | 13                                 | 15                                  | ns    |
|                    |                                        | $C_L = 50 \text{ pF}$     | 2.0V     | 10                 |                   |                                    |                                     | pF    |
| $C_{PD}$           | Power Dissipation Capacitance (Note 5) | $\bar{G} = V_{IH}$        |          | 10                 |                   |                                    |                                     | pF    |
|                    |                                        | $\bar{G} = V_{IL}$        |          | 50                 |                   |                                    |                                     | pF    |
| $C_{IN}$           | Maximum Input Capacitance              |                           |          | 5                  | 10                | 10                                 | 10                                  | pF    |
| $C_{OUT}$          | Maximum Output Capacitance             |                           |          | 15                 | 20                | 20                                 | 20                                  | pF    |

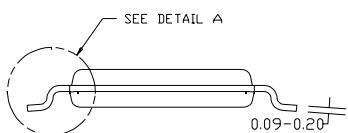
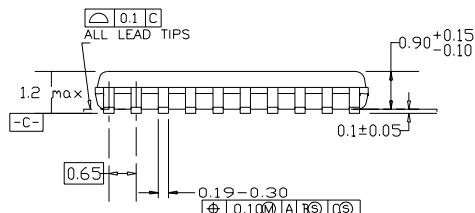

**Note 5:**  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} V_{CC} f + I_{CC}$ .

### Physical Dimensions

inches (millimeters) unless otherwise noted

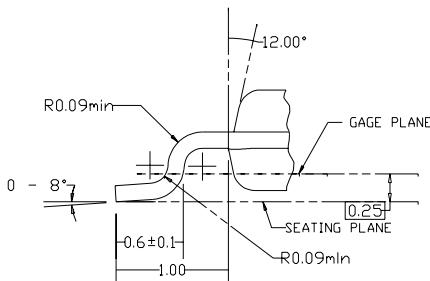

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  
Package Number M20B


20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide  
Package Number M20D

## Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

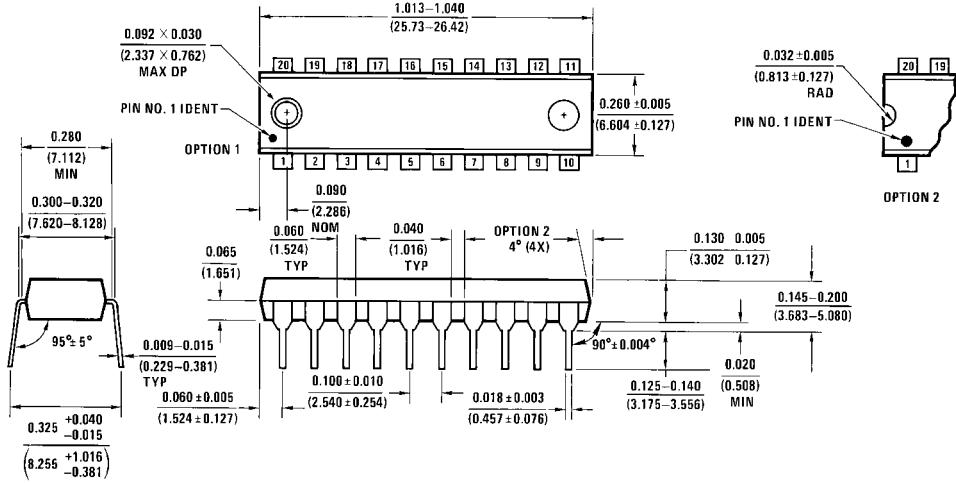



LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC,  
REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH,  
AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.



DETAIL A

**20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide  
Package Number MTC20**

**Physical Dimensions** inches (millimeters) unless otherwise noted (Continued)



N20A (REV G)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide  
Package Number N20A

**LIFE SUPPORT POLICY**

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[www.fairchildsemi.com](http://www.fairchildsemi.com)