

Features:

- ◆ High intensity
- ◆ Standard 5mm diameter package
- ◆ General purpose leads
- ◆ Pb-free

Package Dimensions:

Part NO.	Chip Material	Lens Color	Emission Color
LL-50ABD2E-017	InGaN	Blue Diffused	Super Bright Blue

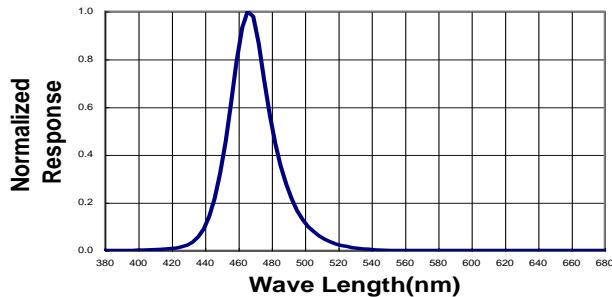
Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25\text{mm (.010")}$ unless otherwise noted.
3. Protruded resin under flange is 1.0mm (.04") max.
4. Lead spacing is measured where the leads emerge from the package.
5. Specifications are subject to change without notice.
6. Precautions for ESD:
Static electricity and surge can damage the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

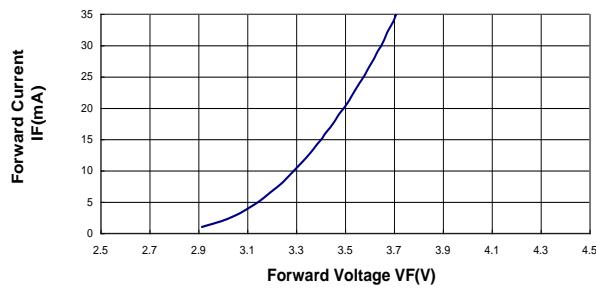
Absolute Maximum Ratings at Ta=25°C

Parameter	MAX.	Unit
Power Dissipation	80	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA
Continuous Forward Current	20	mA
Derating Linear From 50°C	0.4	mA/°C
Reverse Voltage	5	V
Electrostatic Discharge (ESD)	150	V
Operating Temperature Range	-30°C to +80°C	
Storage Temperature Range	-40°C to +100°C	
Lead Soldering Temperature [4mm(.157") From Body]	280°C for 5 Seconds	

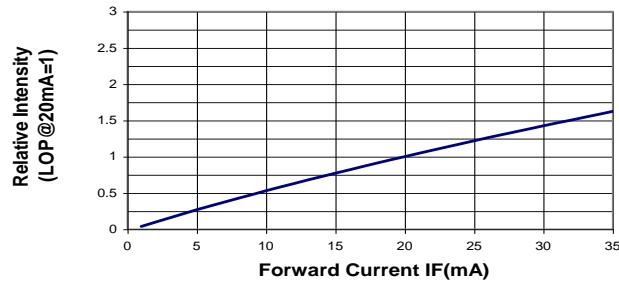
Electrical Optical Characteristics at Ta=25°C

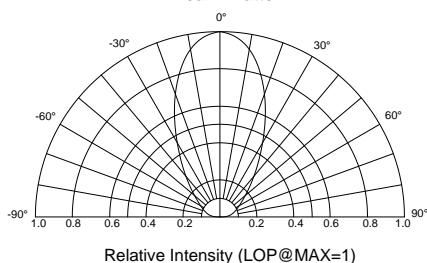

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	I _V	140	350		mcd	I _F =20mA (Note 1)
Viewing Angle	2θ _{1/2}	45	55	65	Deg	(Note 2)
Peak Emission Wavelength	λ _p	463	468	473	Nm	I _F =20mA
Dominant Wavelength	λ _d	465	470	475	Nm	I _F =20mA (Note 3)
Spectral Line Half-Width	△λ	20	25	30	Nm	I _F =20mA
Forward Voltage	V _F	2.8	3.5	3.8	V	I _F =20mA
Reverse Current	I _R			10	μA	V _R =5V

Notes:


1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. θ_{1/2} is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength (λ_d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
4. Forward voltage measurement allowance is ±0.1V
5. Luminous Intensity Measurement Allowance is ±10%

Typical Electrical / Optical Characteristics Curves
(25°C Ambient Temperature Unless Otherwise Noted)


Spectral Radiance (Peak @ 468nm)


Forward Current vs Forward Voltage

Relative Luminous Intensity vs Forward Current

Beam Pattern

Forward Current Derating Curve

