Introduction

The ChronoDot RTC is an extremely accurate real time clock module, based on
the DS3231 temperature compensated RTC (TCXO). It includes a CR2016

¥ the device has 5V power available. No external crystal or tuning capacitors are
required.

The DS3231 has an internal crystal and a switched bank of tuning capacitors. The temperature of the
crystal is continously monitored, and the capacitors are adjusted to maintain a stable frequency. Other RTC
solutions may drift minutes per month, especially in extreme temperature ranges...the ChronoDot will drift
less than a minute per year. This makes the ChronoDot very well suited for time critical applications that
cannot be regularly synchronized to an external clock. Here is a live demo of a DS3231 chip that has been
keeping time since it was last synchronized in 2005: DS3231 Web Demo

The ChronoDot will plug into a standard solderless breadboard and also has mounting holes for chassis
installation.

The 12C interface is very straightforward and virtually identical to the register addresses of the popular
DS1337 and DS1307 RTCs, which means that existing code for the Arduino, Basic Stamp, Cubloc, and other
controllers should work with no modification.

Features

Controller: Maxim DS3231
Function:  Temperature-compensated RTC
Accuracy: = 2ppm at 0C to 40C (—~1 minute per year)
Power Supply: 2.3to 5.5V
Current: 200uUA (active), 840nA (timekeep)
PCB Size: 1.2 inches diameter
Pin Spacing: 0.1 inches

ff;-"
|n\'*"

Sy

Assembly

The ChronoDot is typically shipped without the lithium CR2016 battery soldered in place. To allow
timekeeping in the absence of external power, you will need to attach the battery. The two solder pads on
the PCB are marked + and -. The battery provided with the ChronoDot has a metal tab that runs from the
top (positive, +) of the battery and down to the same level as the bottom (negative, -) side of the battery.
You will need to solder the tab leading from the top of the battery to the + pad on the ChronoDot. Please
refer to the bottom-view image above if necessary.

Power Connections

The VCC and GND pins are used to power the ChronoDot when it is connected to a microcontroller. The
ChronoDot can be used just with the internal battery power, but it could quickly run the battery down and
require replacement. VCC can be anywhere between 2.3 and 5.5 volts, making it possible to use the
ChronoDot with 3.3V and 5V systems.


http://macetech.com/store/index.php?main_page=product_info&cPath=5&products_id=8
http://www.maxim-ic.com/products/timers/DS3231_demo/

Battery

The battery is a 3V lithium CR2016 with solder tabs, typically provided with the ChronoDot but not soldered
in place. You will need to solder the battery before using it. Since the battery should supply the ChronoDot
with enough power to run for 8 years, future versions of the ChronoDot may be shipped with the battery
pre-soldered. The battery voltage is also connected directly to the BAT pin. This could be used to attach an
external battery instead of the CR2016, or to monitor the health of the battery. Make sure not to short this
pin accidentally, or the battery could be drained quickly.

SDA/SCL

The SDA and SCL pins are used to communicate with the ChronoDot, using the 12C standard interface.
The 12C bus requires pullup resistors from SDA and SCL to VCC. Since many devices that have 12C buses
already have the resistors in place, these are not provided with the ChronoDot. But there are two locations
for 4.7K or 10K resistors to be soldered, in case your controlling device does not have its own pullup
resistors.

RST

The RST pin is an active-low signal that can be used in some microcontroller applications. In most cases
you will not need to use it. If the VCC supply is less than ~2.5V, the RST line will activate. Additionally, the
RST line will watch for the signal to be pulled low by an external signal. If that happens, it will hold the
RST line low for 250ms beyond the point the external signal release the line. This can be useful for
resetting a microcontroller in the event of low power, or an external condition like a reset pushbutton. The
RST line does not affect timekeeping functions.

SQW

The SQW pin can be configured to output a square wave signal at 1.000 Hz, 1024 Hz, 4096 Hz, or 8192
Hz. This is controlled by the RS2 and RS1 bits in the control register (address OxOE). The pin can also be
used as an alarm trigger. If the INTCN bit in the control register is set, then the output will go low when
the current time matches the time set in either of the two alarm registers. This pin needs to be pulled up to
VCC with a resistor if it is used, 10K would be a good choice.

32K

The 32K pin is open-drain (needs a pullup resistor) and outputs a 32768 Hz clock signal. This can be
enabled using the EN32kHz bit in the Status register (address 0xOF). This pin could be used as an accurate
oscillator reference for some external device.

Datasheet

The DS3231 datasheet provides all other necessary information such as registers, maximum voltages,
power consumption, and special features.

Examples


https://www.analog.com/media/en/technical-documentation/data-sheets/DS3231.pdf

Very simple Arduino code to read and print the hours, minutes, and seconds from the ChronoDot:

#include <Wire.h>
¥oid setup()

Wire.begin();
Serial .begin(9600);

// clear /EOSC bit

// Sometimes necessary to ensure that the clock

// Keeps running on just battery power. Once set,

// it shouldn®™t need to be reset but it"s a good

// idea to make sure.

Wire.beginTransmission(0x68); // address DS3231
Wire.send(Ox0E); // select register

Wire.send(0b00011100); // write register bitmap, bit 7 is /EOSC
Wire.endTransmission();

}
void loop()
{

// send request to receive data starting at register 0
Wire.beginTransmission(0x68); // 0x68 is DS3231 device address
Wire.send(0); // start at register 0O

Wire.endTransmission();

Wire. requestFrom(0x68, 3); // request three bytes (seconds, minutes, hours)

ghile(Wire-available())

int seconds = Wire.receive(); // get seconds
int minutes = Wire.receive(); // get minutes
int hours = Wire.receive(); // get hours
seconds

decisss (((seconds & 0b11110000)>>4)*10 + (seconds & 0b00001111)); // convert BCD to
ecima

q _mi?utes = (((minutes & 0b11110000)>>4)*10 + (minutes & 0b00001111)); // convert BCD to
ecima

hours = (((hours & 0b00110000)>>4)*10 + (hours & 0b00001111)); // convert BCD to decimal
(assume 24 hour mode)

Serial.print(hours); Serial.print(*:"); Serial.print(minutes); Serial.print(':");
Segial-println(seconds ;

3 delay (1000);

/home/macetec/public_html/docs/data/pages/chronodot.txt - Last modified: 2011/01/30 00:32 by macegr



