

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 13274FSC

CD4071BC • CD4081BC

Quad 2-Input OR Buffered B Series Gate • Quad 2-Input AND Buffered B Series Gate

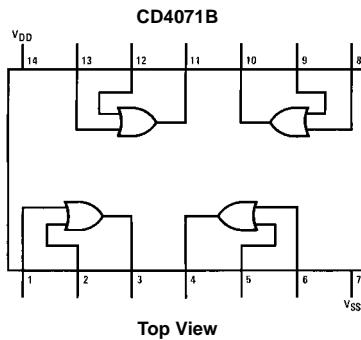
General Description

The CD4071BC and CD4081BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs protected against static discharge with diodes to V_{DD} and V_{SS} .

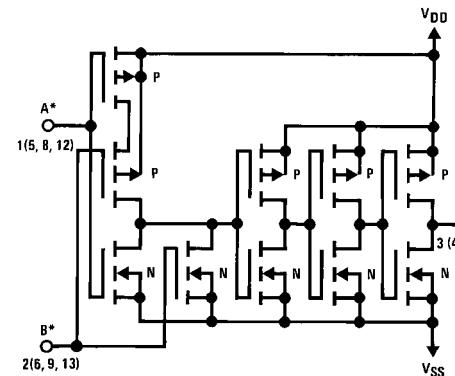
Features

- Low power TTL compatibility:
Fan out of 2 driving 74L or 1 driving 74LS
- 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 μ A at 15V over full temperature range


Ordering Code:

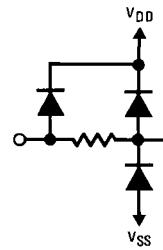
Order Number	Package Number	Package Description
CD4071BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4071BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4081BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4081BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices are also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

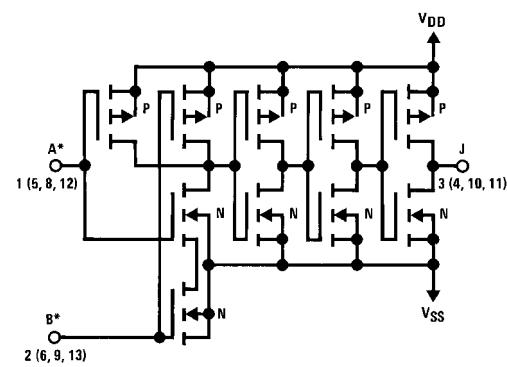

Connection Diagrams

Pin Assignments for DIP and SOIC

Schematic Diagrams

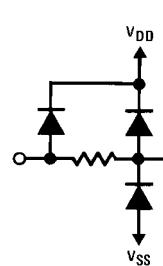

CD4071B

 $\frac{1}{4}$ of device shown $J = A + B$


Logical "1" = HIGH

Logical "0" = LOW

*All inputs protected by standard CMOS protection circuit.


CD4081B

 $\frac{1}{4}$ of device shown $J = A * B$

Logical "1" = HIGH

Logical "0" = LOW

All inputs protected by standard CMOS protection circuit.

Absolute Maximum Ratings (Note 1)

(Note 2)

Voltage at Any Pin	-0.5V to V_{DD} +0.5V
Power Dissipation (P_D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V_{DD} Range	-0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T_S)	-65°C to +150°C
Lead Temperature (T_L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

Operating Range (V_{DD})	3 V_{DC} to 15 V_{DC}
Operating Temperature Range (T_A)	
CD4071BC, CD4081BC	-40°C to +85°C
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.	

Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

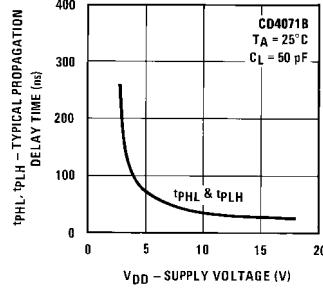
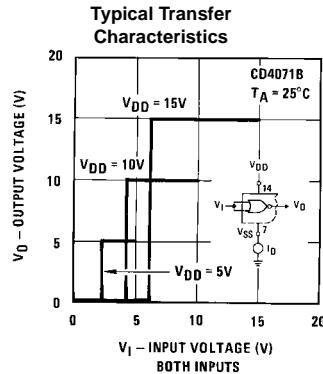
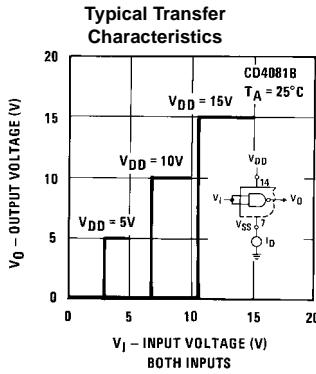
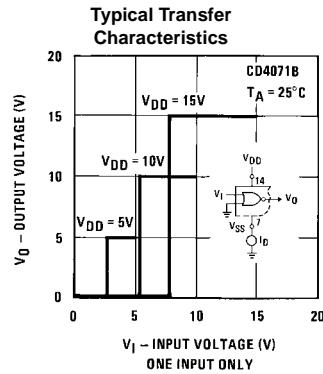
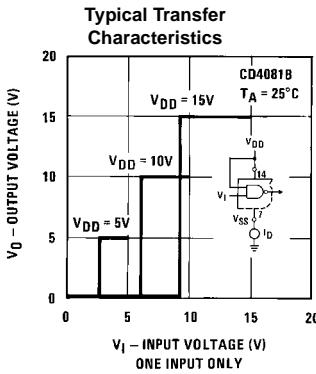
DC Electrical Characteristics (Note 2)

CD4071BC/CD4081BC

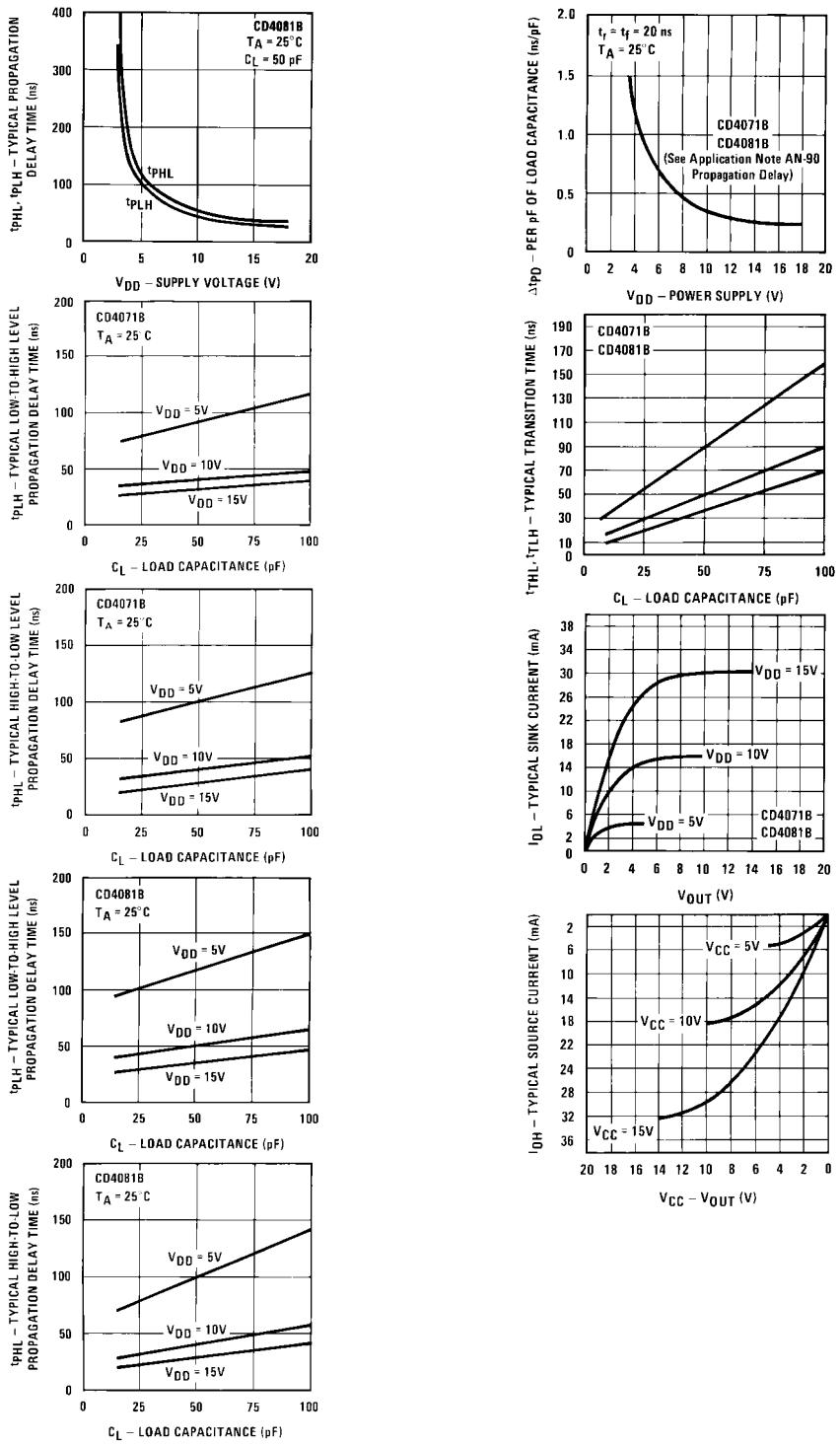
Symbol	Parameter	Conditions	-40°C		+25°C			+85°C		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$V_{DD} = 5V$		1		0.004	1		7.5	μA
		$V_{DD} = 10V$		2		0.005	2		15	μA
		$V_{DD} = 15V$		4		0.006	4		30	μA
V_{OL}	LOW Level Output Voltage	$V_{DD} = 5V$	0.05		0	0.05		0.05	V	
		$V_{DD} = 10V$	$ I_O < 1 \mu A$	0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V_{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95	V	
		$V_{DD} = 10V$	$ I_O < 1 \mu A$	9.95		9.95	10		9.95	V
		$V_{DD} = 15V$		14.95		14.95	15		14.95	V
V_{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V$		1.5		2	1.5		1.5	V
		$V_{DD} = 10V, V_O = 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_O = 1.5V$		4.0		6	4.0		4.0	V
V_{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_O = 4.5V$	3.5		3.5	3		3.5	V	
		$V_{DD} = 10V, V_O = 9.0V$	7.0		7.0	6		7.0	V	
		$V_{DD} = 15V, V_O = 13.5V$	11.0		11.0	9		11.0	V	
I_{OL}	LOW Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 0.4V$	0.52		0.44	0.88		0.36		mA
		$V_{DD} = 10V, V_O = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_O = 1.5V$	3.6		3.0	8.8		2.4		mA
I_{OH}	HIGH Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
		$V_{DD} = 10V, V_O = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_O = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I_{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10 ⁻⁵	0.30		1.0	μA

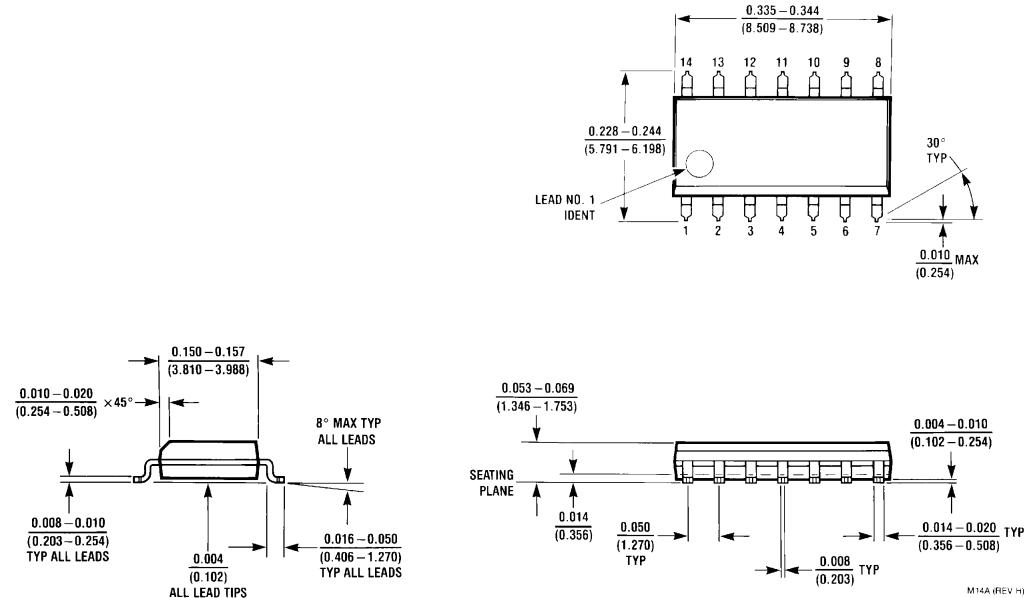
Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 4)CD4071BC $T_A = 25^\circ C$, Input $t_r, t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω , Typical temperature coefficient is 0.3%/°C






Symbol	Parameter	Conditions	Typ	Max	Units
t_{PHL}	Propagation Delay Time, HIGH-to-LOW Level	$V_{DD} = 5V$	100	250	ns
		$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t_{PLH}	Propagation Delay Time, LOW-to-HIGH Level	$V_{DD} = 5V$	90	250	ns
		$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t_{THL}, t_{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C_{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C_{PD}	Power Dissipation Capacity	Any Gate	18		pF

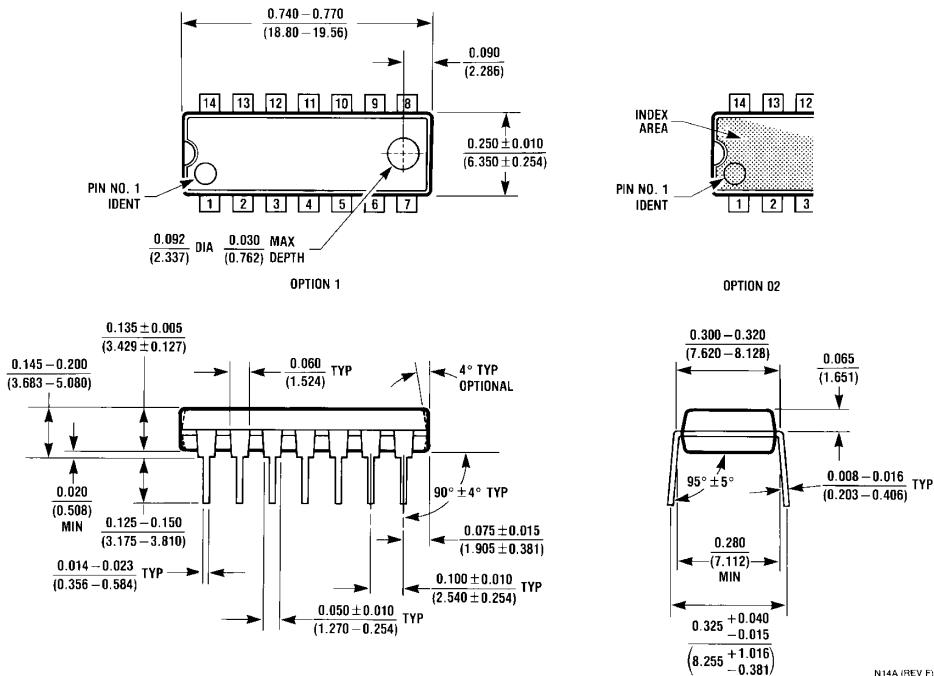
Note 4: AC Parameters are guaranteed by DC correlated testing.


AC Electrical Characteristics (Note 5)CD4081BC $T_A = 25^\circ\text{C}$, Input t_i , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω , Typical temperature coefficient is 0.3%/ $^\circ\text{C}$


Symbol	Parameter	Conditions	Typ	Max	Units
t_{PHL}	Propagation Delay Time, HIGH-to-LOW Level	$V_{DD} = 5\text{V}$	100	250	ns
		$V_{DD} = 10\text{V}$	40	100	ns
		$V_{DD} = 15\text{V}$	30	70	ns
t_{PLH}	Propagation Delay Time, LOW-to-HIGH Level	$V_{DD} = 5\text{V}$	120	250	ns
		$V_{DD} = 10\text{V}$	50	100	ns
		$V_{DD} = 15\text{V}$	35	70	ns
$t_{\text{THL}}, t_{\text{TLH}}$	Transition Time	$V_{DD} = 5\text{V}$	90	200	ns
		$V_{DD} = 10\text{V}$	50	100	ns
		$V_{DD} = 15\text{V}$	40	80	ns
C_{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C_{PD}	Power Dissipation Capacity	Any Gate	18		pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Typical Performance Characteristics


Typical Performance Characteristics (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com