

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 13151TI

CD4060B Types

CMOS 14-Stage Ripple-Carry Binary Counter/Divider and Oscillator

High-Voltage Types (20-Volt Rating)

■ CD4060B consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which resets the counter to the all-0's state and disables the oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master-slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of ϕ_1 (and ϕ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the input-pulse line permits unlimited input-pulse rise and fall times.

The CD4060B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

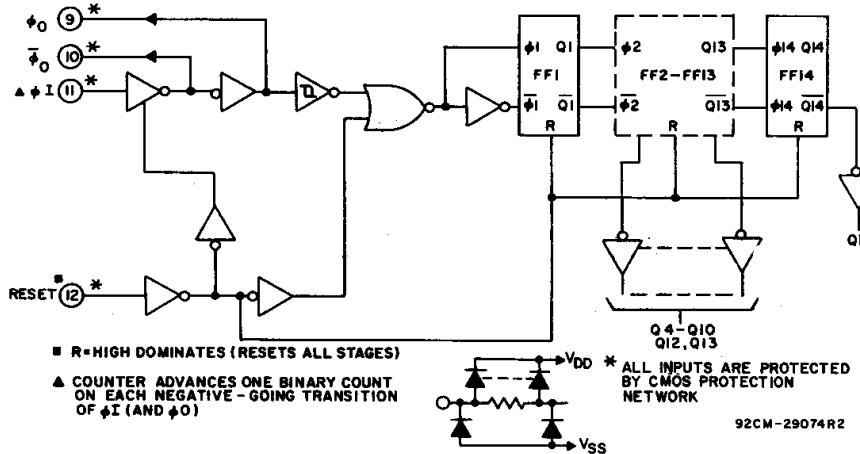


Fig. 1 – Logic diagram.

MAXIMUM RATINGS: Absolute Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V_{DD})

Voltages referenced to V_{SS} Terminal -0.5V to +20V

INPUT VOLTAGE RANGE, ALL INPUTS

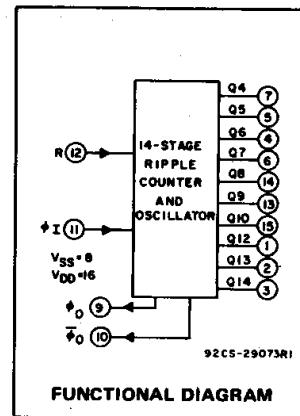
DC INPUT CURRENT, ANY ONE INPUT -0.5V to V_{DD} + 0.5V

POWER DISSIPATION PER PACKAGE (P_D):

For T_A = -55°C to +100°C 500mW

For T_A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR


FOR T_A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW

OPERATING-TEMPERATURE RANGE (T_A) -55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{stg}) -65°C to +150°C

LEAD TEMPERATURE (DURING SOLDERING):

At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

FUNCTIONAL DIAGRAM

Features:

- 12 MHz clock rate at 15 V
- Common reset
- Fully static operation
- Buffered inputs and outputs
- Schmitt trigger input-pulse line
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for description of "B" Series CMOS Devices"

Oscillator Features:

- All active components on chip
- RC or crystal oscillator configuration
- RC oscillator frequency of 690 kHz min. at 15 V

Applications

- Control counters
- Timers
- Frequency dividers
- Time-delay circuits

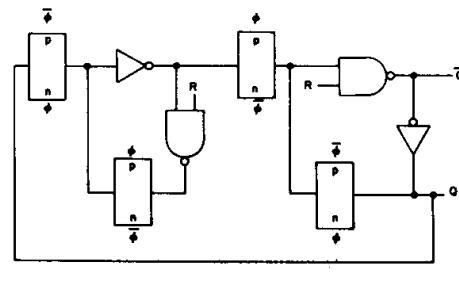


Fig. 2 – Detail of typical flip-flop stage.

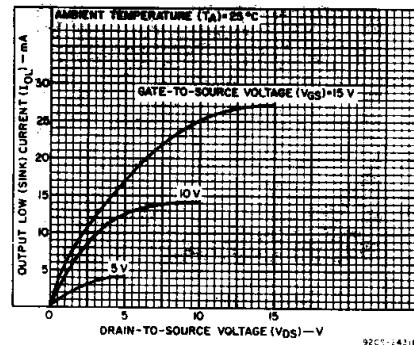


Fig. 3 – Typical n-channel output low (sink) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						UNITS	
	V_O (V)	V_{IN} (V)	V_{DD} (V)	-55	-40	+85	+125	+25			
Quiescent Device Current, I_{DD} Max.	—	0.5	5	5	5	150	150	—	0.04	5	μA
	—	0.10	10	10	10	300	300	—	0.04	10	μA
	—	0.15	15	20	20	600	600	—	0.04	20	μA
	—	0.20	20	100	100	3000	3000	—	0.08	100	μA
Output Low (Sink) Current*, I_{OL} Min.	0.4	0.5	5	0.64	0.61	0.42	0.36	0.51	1	—	mA
	0.5	0.10	10	1.6	1.5	1.1	0.9	1.3	2.6	—	mA
	1.5	0.15	15	4.2	4	2.8	2.4	3.4	6.8	—	mA
Output High (Source) Current*, I_{OH} Min.	4.6	0.5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	—	mA
	2.5	0.5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	—	mA
	9.5	0.10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	—	mA
	13.5	0.15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—	mA
Output Voltage: Low-Level, V_{OL} Max.	—	0.5	5	—	0.05	—	—	—	0	0.05	V
	—	0.10	10	—	0.05	—	—	—	0	0.05	V
	—	0.15	15	—	0.05	—	—	—	0	0.05	V
Output Voltage: High-Level, V_{OH} Min.	—	0.5	5	—	4.95	—	4.95	—	5	—	V
	—	0.10	10	—	9.95	—	9.95	—	10	—	V
	—	0.15	15	—	14.95	—	14.95	—	15	—	V
Input Low Voltage V_{IL} Max.	0.5,4.5	—	5	—	1.5	—	—	—	1.5	—	V
	1.9	—	10	—	3	—	—	—	3	—	V
	1.5,13.5	—	15	—	4	—	—	—	4	—	V
Input High Voltage, V_{IH} Min.	0.5,4.5	—	5	—	3.5	—	3.5	—	—	—	V
	1.9	—	10	—	7	—	7	—	—	—	V
	1.5,13.5	—	15	—	11	—	11	—	—	—	V
Input Current I_{IN} Max.	—	0.18	18	± 0.1	± 0.1	± 1	± 1	—	$\pm 10^{-5}$	± 0.1	μA

* Data not applicable to terminal 9 or 10.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges

CHARACTERISTIC	V_{DD}	LIMITS		UNITS
		MIN.	MAX.	
Supply-Voltage Range (For T_A = Full Package Temperature Range)	—	3	18	V
Input-Pulse Width, t_W ($f = 100$ kHz)	5	100	—	ns
	10	40	—	ns
	15	30	—	ns
Input-Pulse Rise Time and Fall Time, $t_{r\phi}, t_{f\phi}$	5	10	Unlimited	
	10	—	—	
	15	—	—	
Input-Pulse Frequency, f_{pL} (External pulse source)	5	—	3.5	MHz
	10	—	8	
	15	—	12	
Reset Pulse Width, t_W	5	120	—	ns
	10	60	—	ns
	15	40	—	ns

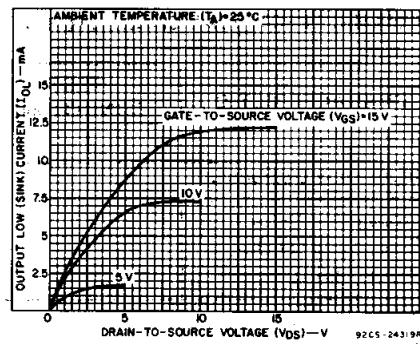


Fig. 4 – Minimum n-channel output low (sink) current characteristics.

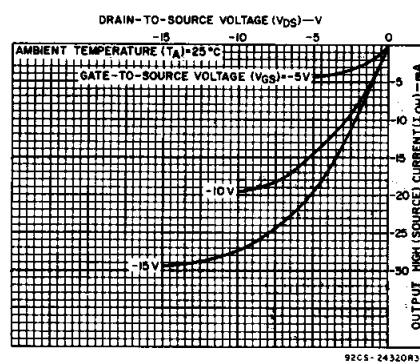


Fig. 5 – Typical p-channel output high (source) current characteristics.

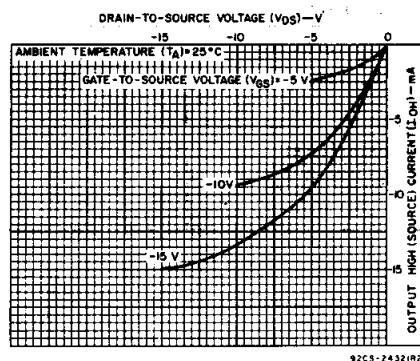


Fig. 6 – Minimum p-channel output high (source) current characteristics.

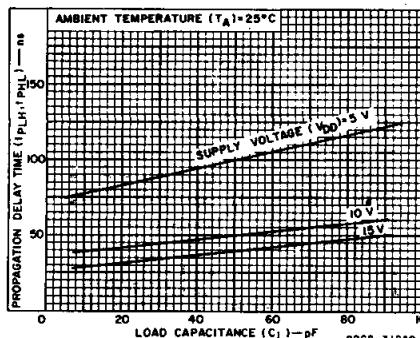


Fig. 7 – Typical propagation delay time (t_{PHL} , t_{PLH}) as a function of load capacitance.

CD4060B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^\circ\text{C}$, Input $t_r, t_f = 20\text{ ns}$, $C_L = 50\text{ pF}$, $R_L = 200\text{ k}\Omega$

CHARACTERISTIC	TEST CONDITIONS	LIMITS			UNITS
		V _{DD} (V)	MIN.	TYP.	
Input-Pulse Operation					
Propagation Delay Time, ϕ_I to Q4 Out; t_{PHL}, t_{PLH}		5	—	370	740
		10	—	150	300
		15	—	100	200
Propagation Delay Time, Q _n to Q _{n+1} ; t_{PHL}, t_{PLH}		5	—	100	200
		10	—	50	100
		15	—	40	80
Transition Time, t_{THL}, t_{TLH}		5	—	100	200
		10	—	50	100
		15	—	40	80
Min. Input-Pulse Width, t_W	f = 100 kHz	5	—	50	100
		10	—	20	40
		15	—	15	30
Input-Pulse Rise & Fall Time, $t_{r\phi}, t_{f\phi}$		5	Unlimited		
		10	Unlimited		
		15	Unlimited		
Max. Input-Pulse Frequency, $f_{\phi I}$ (External pulse source)		5	3.5	7	—
		10	8	16	—
		15	12	24	—
Input Capacitance, C_1	Any Input	—	5	7.5	pF
Reset Operation					
Propagation Delay Time, t_{PHL}		5	—	180	360
		10	—	80	160
		15	—	50	100
Minimum Reset Pulse Width, t_W		5	—	60	120
		10	—	30	60
		15	—	20	40

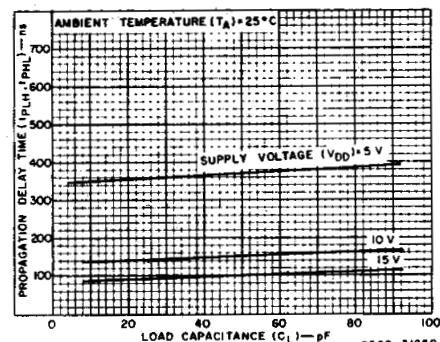


Fig. 8 – Typical propagation delay time (ϕ_I to Q₄ Output) as a function of load capacitance.

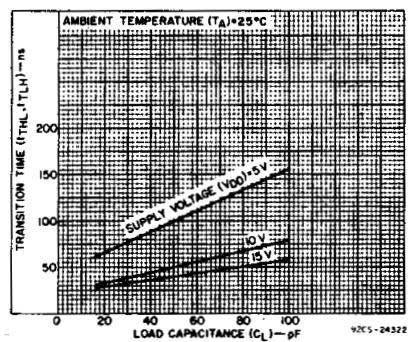


Fig. 9 – Typical transition time as a function of load capacitance.

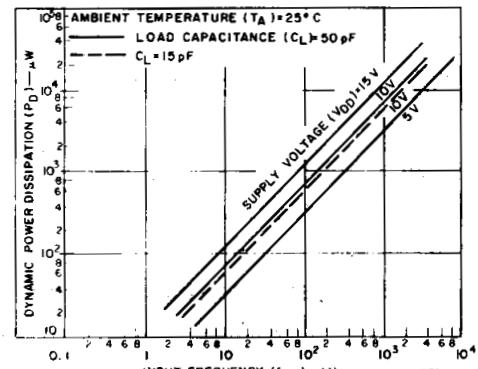


Fig. 10 – Typical dynamic power dissipation as a function of input frequency.

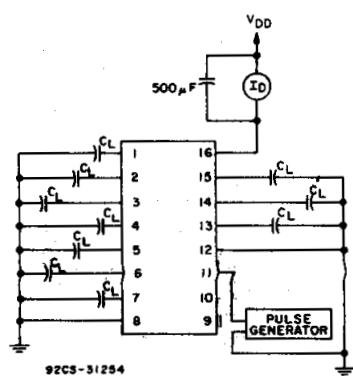


Fig. 11 – Dynamic power dissipation test circuit.

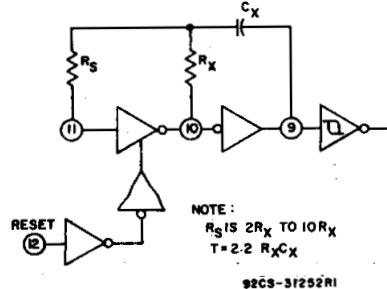
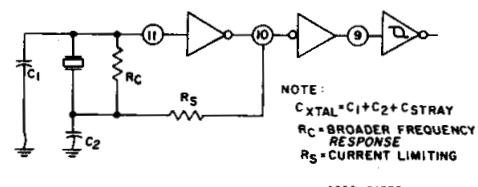
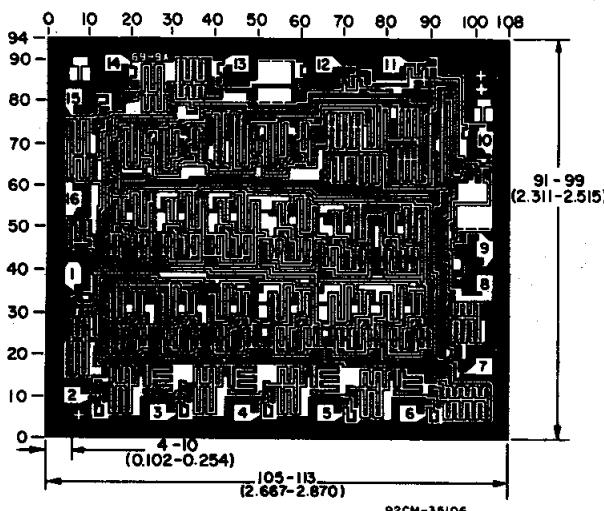


Fig. 12 – Typical RC circuit.




Fig. 13 – Typical crystal circuit.

CD4060B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^\circ\text{C}$, Input $t_r, t_f = 20\text{ ns}$, $C_L = 50\text{ pF}$, $R_L = 200\text{ k}\Omega$ [cont'd]

CHARACTERISTIC	TEST CONDITIONS	V _{DD} (V)	LIMITS			UNITS
			Min.	Typ.	Max.	
RC Operation						
Variation of Frequency (Unit-to-Unit)	$C_X = 200\text{ pF}$, $R_S = 560\text{ k}\Omega$, $R_X = 50\text{ k}\Omega$	5	—	$23 \pm 10\%$	—	kHz
		10	—	$24 \pm 10\%$	—	
		15	—	$25 \pm 10\%$	—	
Variation of Frequency with voltage change (Same Unit)	$C_X = 200\text{ pF}$, $R_S = 560\text{ k}\Omega$, $R_X = 50\text{ k}\Omega$	5V to 10V	—	1.5	—	
		10V to 15V	—	0.5	—	
R_X max.	$C_X = 10\text{ }\mu\text{F}$ = $50\text{ }\mu\text{F}$ = $10\text{ }\mu\text{F}$	5	—	—	20	M Ω
		10	—	—	20	
		15	—	—	10	
C_X max.	$R_X = 500\text{ k}\Omega$ = $300\text{ k}\Omega$ = $300\text{ k}\Omega$	5	—	—	1000	μF
		10	—	—	50	
		15	—	—	50	
Maximum Oscillator Frequency*	$R_X = 5\text{ k}\Omega$ $R_S = 30\text{ k}\Omega$ $C_X = 15\text{ pF}$	10	530	650	810	kHz
		15	690	800	940	
Drive Current at Pin 9 (For Oscillator Design)	$V_O = 0.4\text{ V}$ = 0.5 V = 1.5 V	5	0.16	0.35	—	mA
		10	0.42	0.8	—	
		15	1	2	—	
	$V_O = 4.6\text{ V}$ = 9.5 V = 13.5 V	5	-0.16	-0.35	—	
		10	-0.42	-0.8	—	
		15	-1	-2	—	

*RC oscillator applications are not recommended at supply voltages below 7 V for $R_X < 50\text{ k}\Omega$.

Chip dimensions and pad layout for CD4060B

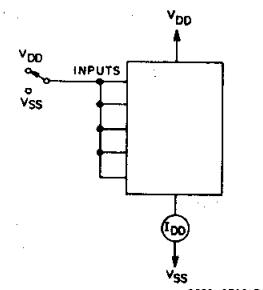


Fig. 14 – Quiescent device current.

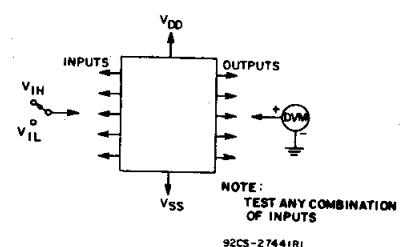


Fig. 15 – Input voltage.

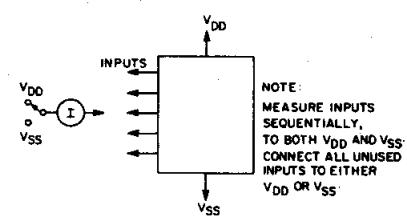
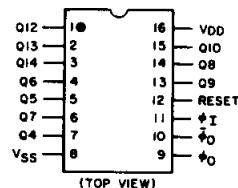



Fig. 16 – Input current.

TERMINAL DIAGRAM

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

PRODUCT FOLDER | PRODUCT INFO: [FEATURES](#) | [DESCRIPTION](#) | [DATASHEETS](#) | [PRICING/AVAILABILITY/PKG](#) | [APPLICATION NOTES](#) | [RELATED DOCUMENTS](#)

PRODUCT SUPPORT: [TRAINING](#)

CD4060B, CMOS 14-Stage Ripple-Carry Binary Counter/Divider and Oscillator

DEVICE STATUS: ACTIVE

PARAMETER NAME	CD4060B
Voltage Nodes (V)	5, 10, 15
Vcc range (V)	3.0 to 18.0
Input Level	CMOS
Output Level	CMOS

FEATURES

[Back to Top](#)

- 12 MHz clock rate at 15 V
- Common reset
- Fully static operation
- Buffered inputs and outputs
- Schmitt trigger input-pulse line
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"
- Oscillator Features:
 - All active components on chip
 - RC or crystal oscillator configuration
 - RC oscillator frequency of 690 kHz min. at 15 V
- Applications
 - Control counters
 - Timers
 - Frequency dividers
 - Time-delay circuits

DESCRIPTION

[Back to Top](#)

CD4060B consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which resets the counter to the all-0's state and disables the oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master-slave flip-flops. The state of the counter is advanced one step in binary order on the negative transitions of Φ_I (and Φ_O). All inputs and outputs are fully buffered. Schmitt trigger action on the input-pulse line permits unlimited input-pulse rise and fall times.

The CD4060B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

TECHNICAL RESOURCES

[Back to Top](#)

To view the following documents, [Acrobat Reader 4.0](#) is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET[Back to Top](#)Full datasheet in Acrobat PDF: [cd4060b.pdf](#) (228 KB, Rev.A) (Updated: 03/14/2002)**APPLICATION NOTES**[Back to Top](#)View Application Reports for [Digital Logic](#)

- [Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits \(SZZA026 - Updated: 06/20/2001\)](#)

RELATED DOCUMENTS[Back to Top](#)

- [Advanced Bus Interface Logic Selection Guide \(SCYT126, 448 KB - Updated: 01/09/2001\)](#)
- [Documentation Rules \(SAP\) And Ordering Information \(Rev. B\) \(SZZU001B, 13 KB - Updated: 05/06/1999\)](#)
- [Logic Selection Guide First Half 2002 \(Rev. Q\) \(SDYU001Q, 3368 KB - Updated: 12/17/2001\)](#)
- [MicroStar Junior BGA Design Summary \(SCET004, 167 KB - Updated: 07/28/2000\)](#)
- [More Power In Less Space - Technical Article \(Rev. A\) \(SCAU001A, 850 KB - Updated: 03/01/1996\)](#)
- [Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet \(Rev. A\) \(SDYZ001A, 138 KB - Updated: 07/01/1996\)](#)

PRICING/AVAILABILITY/PKG[Back to Top](#)

ORDERABLE DEVICE	PACKAGE	PINS	TEMP (°C)	STATUS	BUDGETARY PRICE	PACK QTY	DSCC NUMBER	PRICING/AVAILABILITY/PKG
					USS/UNIT QTY=1000+			
CD4060BE	N	16	-55 TO 125	ACTIVE	0.29	25		Check stock or order
CD4060BF	J	16	-55 TO 125	ACTIVE	2.57	1		Check stock or order
CD4060BF3A	J	16	-55 TO 125	ACTIVE	3.03	1		Check stock or order
CD4060BPWR	PW	16	-55 TO 125	ACTIVE	0.29	2000		Check stock or order

Table Data Updated on: 4/28/2002[Products](#) | [Applications](#) | [Support](#) | [TI&ME](#)

© Copyright 1995-2002 Texas Instruments Incorporated. All rights reserved.

[Trademarks](#) | [Privacy Policy](#) | [Terms of Use](#)