

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 13012TI

CD4046B Types

RECOMMENDED OPERATING CONDITIONS at T_A = Full Package-Temperature Range
For maximum reliability, nominal operating conditions should be selected so that
operation is always within the following ranges:

CHARACTERISTIC	LIMITS		UNITS
	Min.	Max.	
Supply-Voltage Range VCO Section: As Fixed Oscillator	3	18	V
Phased-Lock-Loop Operation	5	18	
Supply-Voltage Range Phase Comparator Section: Comparators	3	18	
VCO Operation	5	18	

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the CD4046B in a Phase-Locked-Loop system.

Characteristics	Phase Comparator Used	Design Information	
		VCO WITHOUT OFFSET $R_2 = \infty$	VCO WITH OFFSET
VCO Frequency	1		
		Same as for No. 1	
For No Signal Input	1	VCO will adjust to center frequency, f_0	
	2	VCO will adjust to lowest operating frequency, f_{min}	
Frequency Lock Range, $2f_L$	1	$2f_L = \text{full VCO frequency range}$	
	2	$2f_L = f_{max} - f_{min}$	
Frequency Capture Range, $2f_C$	1	$2f_C = \frac{1}{\pi\sqrt{\tau_1\tau_2}}$	(1), (2)
Loop Filter Component Selection	2		For $2f_C$, see Ref. (2)
			$f_C = f_L$
Phase Angle Between Signal and Comparator	1	90° at center frequency (f_0) approximating 0° and 180° at ends of lock range ($2f_L$)	
	2	Always 0° in lock	
Locks On Harmonic of Center Frequency	1	Yes	
	2	No	
Signal Input Noise Rejection	1	High	
	2	Low	

For further information, see

- (1) F. Gardner, "Phase-Lock Techniques" John Wiley and Sons, New York, 1966
- (2) G. S. Moschytz, "Miniatrized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965.

I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency (f_0).

The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range ($2f_C$).

The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range ($2f_L$). The capture range is \leq the lock range.

With phase comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal.

One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency. Fig. 2 shows the typical, triangular, phase-to-output response characteristic of phase-comparator I. Typical waveforms for a CMOS phase-locked-loop employing phase comparator I in locked condition of f_0 is shown in Fig. 3.

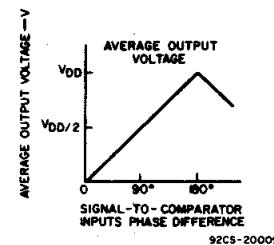


Fig. 2 - Phase-comparator I characteristics at low-pass filter output.

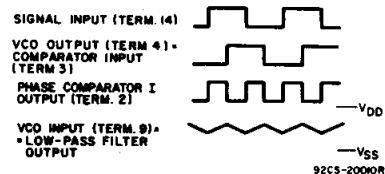


Fig. 3 - Typical waveforms for CMOS phase-locked loop employing phase comparator in locked condition of f_0 .

Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a three-state output circuit comprising p- and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to V_{DD} or down to V_{SS} , respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions

CD4046B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						U N I T S	
	V_O (V)	V_{IN} (V)	V_{DD} (V)	-55	-40	+85	+125	+25	Min.	Typ.	
VCO Section											
Output Low (Sink) Current I_{OL} Min.	0.4	0.5	5	0.64	0.61	0.42	0.36	0.51	1	—	mA
	0.5	0.10	10	1.6	1.5	1.1	0.9	1.3	2.6	—	
	1.5	0.15	15	4.2	4	2.8	2.4	3.4	6.8	—	
Output High (Source) Current, I_{OH} Min.	4.6	0.5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	—	mA
	2.5	0.5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	—	
	9.5	0.10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	—	
Output Voltage: Low-Level, V_{OL} Max.	13.5	0.15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—	V
	Term. 4	0.5	5	0.05				—	0	0.05	
	driving	0.10	10	0.05				—	0	0.05	
Output Voltage: High-Level, V_{OH} Min.	Term. 4	0.15	15	0.05				—	0	0.05	V
	e.g.	0.5	5	4.95				4.95	5	—	
	Term. 3	0.10	10	9.95				9.95	10	—	
Input Current I_{IN} Max.	0.15	15	14.95				14.95	14.95	15	—	μ A
	—	0.18	18	± 0.1	± 0.1	± 1	± 1	—	$\pm 10^{-5}$	± 0.1	
Phase Comparator Section											
Total Device Current, I_{DD} Max. Term. 14 open, Term. 5 = V_{DD}	—	0.5	5	0.2				—	0.1	0.2	mA
	—	0.10	10	1				—	0.5	1	
	—	0.15	15	1.5				—	0.75	1.5	
	—	0.20	20	4				—	2	4	
Term. 14 = V_{SS} or V_{DD} , Term. 5 = V_{DD}	—	0.5	5	20				—	10	20	μ A
	—	0.10	10	40				—	20	40	
	—	0.15	15	80				—	40	80	
	—	0.20	20	160				—	80	160	
Output Low (Sink) Current I_{OL} Min.	0.4	0.5	5	0.64	0.61	0.42	0.36	0.51	1	—	mA
	0.5	0.10	10	1.6	1.5	1.1	0.9	1.3	2.6	—	
	1.5	0.15	15	4.2	4	2.8	2.4	3.4	6.8	—	
Output High (Source) Current I_{OH} Min.	4.6	0.5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	—	mA
	2.5	0.5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	—	
	9.5	0.10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	—	
DC-Coupled Signal Input and Comparator Input Voltage Sensitivity Low Level V_{IL} Max.	13.5	0.15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	—	V
	0.5,4.5	—	5	1.5				—	—	1.5	
	1.9	—	10	3				—	—	3	
High Level V_{IH} Min.	1.5,13.5	—	15	4				—	—	4	V
	0.5,4.5	—	5	3.5				3.5	—	—	
	1.9	—	10	7				7	—	—	
	1.5,13.5	—	15	11				11	—	—	

control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparator-input frequency, the p-type output driver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder of the time. If the signal- and comparator-

of the time. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is maintained ON most of the time, and both the n and p drivers OFF (3 state) the remainder of the time. If the signal- and comparator-

input frequencies are the same, but the signal input lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the signal- and comparator-input frequencies are the same, but

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						U N I T S	
	V _O (V)	V _{IN} (V)	V _{DD} (V)	-55	-40	+85	+125	+25			
				Min.	Typ.	Max.					
Phase Comparator Section (cont'd)											
Input Current I _{IN} Max. (except Term.14)	-	0.18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μA
3-State Leakage Current, I _{OUT} Max.	0.18	0.18	18	±0.1	±0.1	±0.2	±0.2	-	±10 ⁻⁵	±0.1	μA

*Limit determined by minimum feasible leakage current measurement for automatic testing.

ELECTRICAL CHARACTERISTICS at T_A = 25°C

CHARAC- TERISTIC	TEST CONDITIONS		LIMITS			U N I T S	
			V _{DD} (V)	ALL TYPES	Min.	Typ.	
VCO Section							
Operating Power Dissipation, P _D	f _o = 10 kHz R ₂ = ∞	R ₁ = 1 MΩ V _{COIN} = $\frac{V_{DD}}{2}$	5 10 15	- 800 3000	70 1600 6000	140	μW
Maximum Operating Frequency f _{max}	C ₁ = 50 pF R ₂ = ∞ V _{COIN} = V _{DD}	R ₁ = 10 kΩ	5 10 15	0.3 0.6 0.8	0.6 1.2 1.6	-	MHz
	C ₁ = 50 pF R ₂ = ∞ V _{COIN} = V _{DD}	R ₁ = 5 kΩ	5 10 15	0.5 1 1.4	0.8 1.4 2.4	-	MHz
Center Frequency (f _o) and Frequency Range (f _{max} - f _{min})	Programmable with external components R ₁ , R ₂ , and C ₁ See Design Information						
Linearity	V _{COIN} = 2.5 V ± 0.3V, R ₁ = 10 kΩ = 5 V ± 1 V, = 100 kΩ = 5 V ± 2.5 V, = 400 kΩ = 7.5 V ± 1.5 V, = 100 kΩ = 7.5 V ± 5 V, = 1 MΩ	5 10 10 10 15	- - - - -	1.7 0.5 4 0.5 7	- - - - -	%	%
Temperature - Frequency Stability: No Frequency Offset f _{MIN} = 0		5 10 15	- - -	±0.12 ±0.04 ±0.015	- - -	%/°C	%/°C
Frequency Offset f _{MIN} ≠ 0		5 10 15	- - -	±0.09 ±0.07 ±0.03	- - -	%	%
Output Duty Cycle		5, 10, 15	-	50	-	%	%
Output Transition Times, t _{THL} , t _{TLH}		5 10 15	-	100 50 40	200 100 80	ns	ns

the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point both p- and n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. Moreover, the power dissipation due to the low-pass filter is reduced when this type of phase comparator is used because both the p- and n-type output drivers are OFF for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Fig. 10 shows typical waveforms for a CMOS PLL employing phase comparator II in a locked condition.

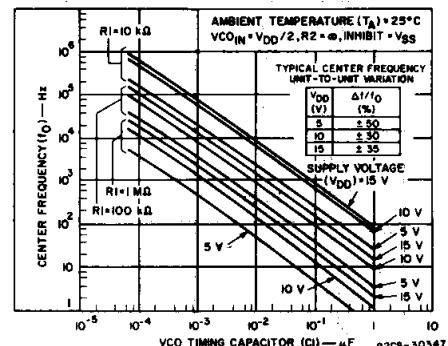


Fig. 4 - Typical center frequency as a function of C₁ and R₁ at V_{DD} = 5 V, 10 V, and 15 V.

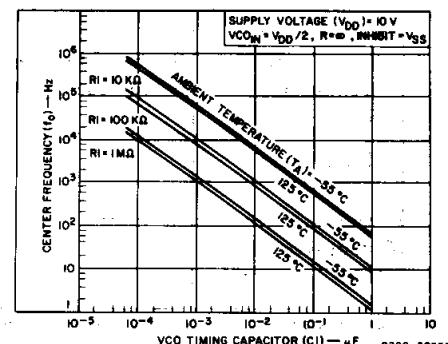


Fig. 5 - Center frequency as a function of C₁ and R₁ for ambient temperatures of -55°C to 125°C.

CD4046B Types

ELECTRICAL CHARACTERISTICS at $T_A = 25^\circ\text{C}$

CHARAC- TERISTIC	TEST CONDITIONS	V_{DD} (V)	LIMITS			UNITS	
			ALL TYPES				
			Min.	Typ.	Max.		
VCO Section (cont'd)							
Source-Follower Output (Demodu- lated Output): Offset Voltage $ VCO_{IN} - V_{DEMI} $	$RS > 10 \text{ k}\Omega$	5 10 15	— — —	1.8 1.8 1.8	2.5 2.5 2.5	V	
Linearity	$R_S = 100 \text{ k}\Omega$ $= 300 \text{ k}\Omega$ $= 500 \text{ k}\Omega$	$VCO_{IN} = 2.5 \pm 0.3 \text{ V}$ $= 5 \pm 2.5 \text{ V}$ $= 7.5 \pm 5 \text{ V}$	5 10 15	— — —	0.3 0.7 0.9	%	
Zener Diode Voltage (V_Z)	$I_Z = 50 \mu\text{A}$		4.45	5.5	6.15	V	
Zener Dynamic Resistance, R_Z	$I_Z = 1 \text{ mA}$		—	40	—	Ω	
Phase Comparator Section							
Term. 14 (SIGNAL IN) Input Resistance R_{14}		5 10 15	1 0.2 0.1	2 0.4 0.2	— — —	$\text{M}\Omega$	
AC Coupled Signal Input Voltage Sensi- tivity* (peak- to-peak)	$f_{IN} = 100 \text{ kHz}$, sine wave	5 10 15	— — —	180 330 900	360 660 1800	mV	
Propagation Delay Times, Terms. 14 to 1: High to Low Level, t_{PHL}		5 10 15	— — —	225 100 65	450 200 130	ns	
Low to High Level, t_{PLH}		5 10 15	— — —	350 150 100	700 300 200	ns	
3-State Propagation Delay Times, Terms. 3 to 13: High Level to High Impedance, t_{PHZ}		5 10 15	— — —	225 100 95	450 200 190	ns	
Terms. 14 to 13: Low Level to High Impedance, t_{PLZ}		5 10 15	— — —	285 130 95	570 260 190	ns	
Input Rise or Fall Times, t_r, t_f Comparator Input, Term. 3	See Fig. 5 for Phase Comp. II output loading	5 10 15	— — —	— — —	50 1 0.3	μs	
Signal Input, Term. 14		5 10 15	— — —	— — —	500 20 2.5	μs	
Output Transition Times, t_{THL}, t_{TLH}		5 10 15	— — —	100 50 40	200 100 80	ns	

* For sine wave, the frequency must be greater than 10 kHz for Phase Comparator II.

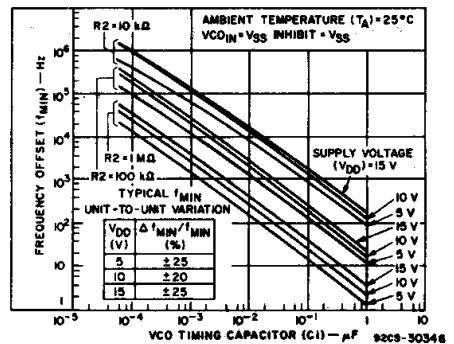


Fig. 6 – Typical frequency offset as a function of C_1 and R_2 for $V_{DD} = 5 \text{ V}, 10 \text{ V}$, and 15 V .

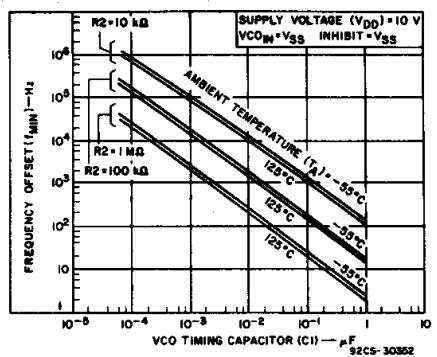


Fig. 7 – Frequency offset as a function of C_1 and R_2 for ambient temperatures of -55°C to 125°C .

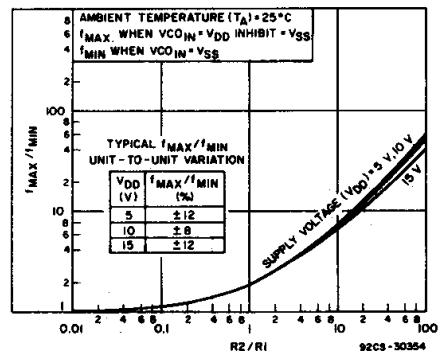


Fig. 8 – Typical f_{MAX}/f_{MIN} as a function of R_2/R_1 .

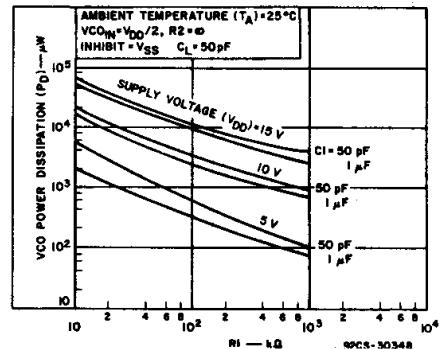


Fig. 9 – Typical VCO power dissipation at center frequency as a function of R_1 .

CD4046B Types

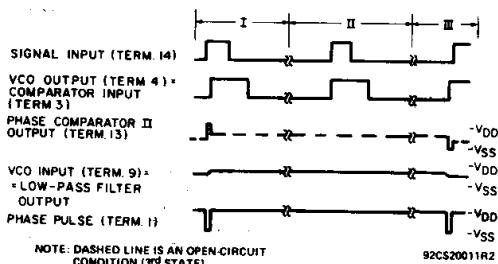


Fig. 10 - Typical waveforms for COS/MOS phase-locked loop employing phase comparator II in locked condition.

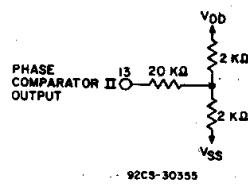


Fig. 11 - Phase comparator II output loading circuit.

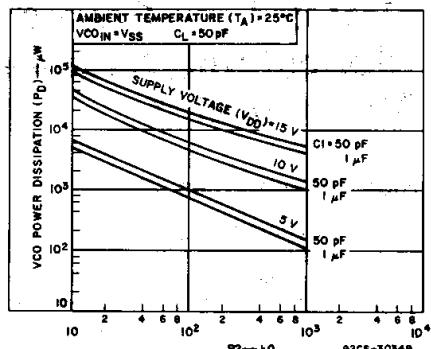


Fig. 12 - Typical VCO power dissipation at f_{MIN} as a function of R₂.

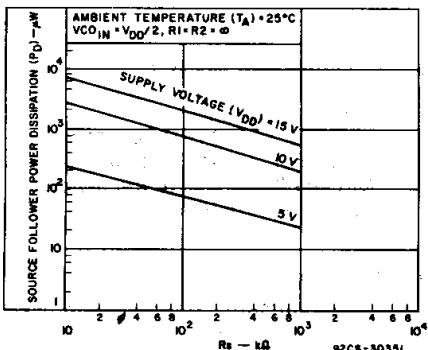


Fig. 13 - Typical source follower power dissipation as a function of R₃.



Fig. 14 - AC-coupled signal input voltage as a function of signal input frequency.

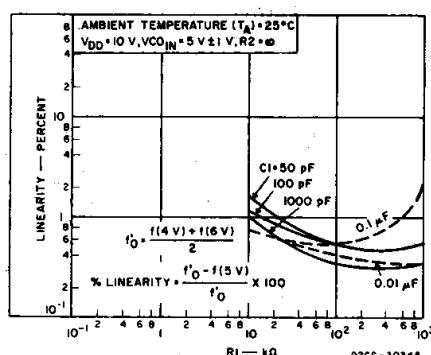
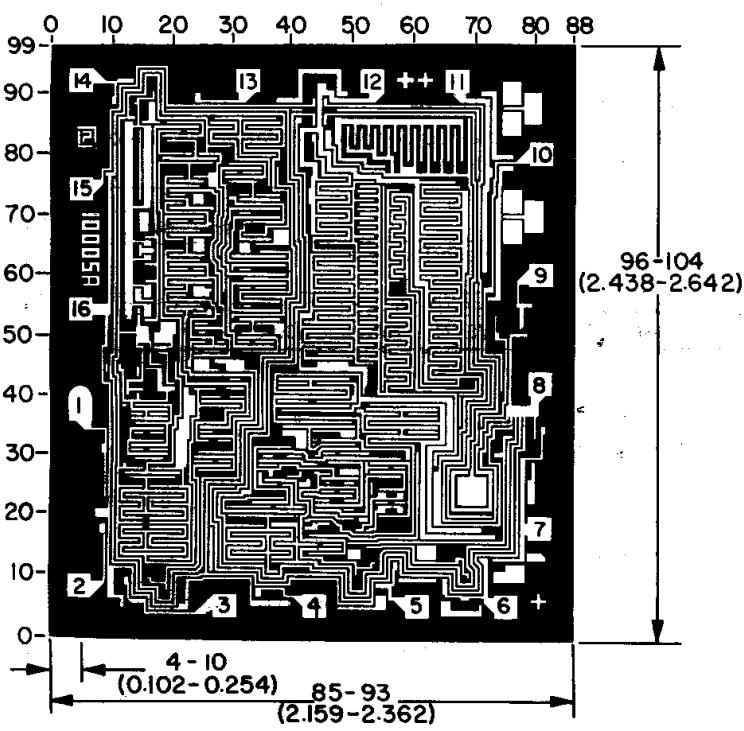



Fig. 15 - Typical VCO linearity as a function of R₁ and C₁ at V_{DD} = 10 V.

Dimensions and pad layout for CD4046BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

3

COMMERCIAL CMOS
HIGH VOLTAGE ICs

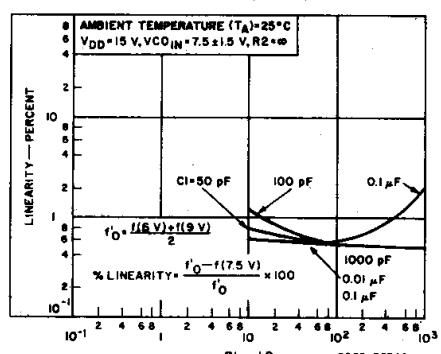


Fig. 16 - Typical VCO linearity as a function of R₁ and C₁ at V_{DD} = 15 V.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265